Defining a Model

class MyModel(torch.nn.Module):
 def __init__(self):
 super(MyModel, self).__init__() # define structure of the network here
 def forward(self, input):
 # apply network and return output

Defining a Custom Model

Consider the function \((x, y) \mapsto Ax \log(y) + By^2\)

```python
import torch.nn as nn
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.A = nn.Parameter(torch.randn((1), requires_grad=True))
        self.B = nn.Parameter(torch.randn((1), requires_grad=True))
    def forward(self, input):
        output = self.A * input[:, 0] * torch.log(input[:, 1]) + self.B * input[:, 1] * input[:, 1]
        return output
```

Typical Structure of a PyTorch Program

```python
# create neural network according to model specification
net = MyModel().to(device)  # CPU or GPU

train_loader = torch.utils.data.DataLoader(...)  
test_loader = torch.utils.data.DataLoader(...)

# choose between SGD, Adam or other optimizer
optimizer = torch.optim.SGD(net.parameters, ...)

for epoch in range(1, epochs):
    train(params, net, device, train_loader, optimizer)
    if epoch % 10 == 0:
        test(params, net, device, test_loader)
```
Building a Net from Individual Components

```python
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.in_to_hid = torch.nn.Linear(2, 2)
        self.hid_to_out = torch.nn.Linear(2, 1)

    def forward(self, input):
        hid_sum = self.in_to_hid(input)
        hidden = torch.tanh(hid_sum)
        out_sum = self.hid_to_out(hidden)
        output = torch.sigmoid(out_sum)
        return output
```

Defining a Sequential Network

```python
class MyModel(torch.nn.Module):
    def __init__(self, num_input, num_hid, num_out):
        super(MyModel, self).__init__()
        self.main = nn.Sequential(
            nn.Linear(num_input, num_hid),
            nn.Tanh(),
            nn.Linear(num_hid, num_out),
            nn.Sigmoid()
        )

    def forward(self, input):
        output = self.main(input)
        return output
```

Declaring Data Explicitly

```python
import torch.utils.data
input = torch.Tensor([[0, 0], [0, 1], [1, 0], [1, 1]])
target = torch.Tensor([[0], [1], [1], [0]])
xdata = torch.utils.data.TensorDataset(input, target)
train_loader = torch.utils.data.DataLoader(xdata, batch_size=4)
```

Note:

1. data are presented in the form of a tensor (multi-dimensional matrix)
2. for feedforward networks, data is presented “batch first” in the sense that the first dimension (dim=0) of the tensor indexes the items within a batch
3. for LSTM’s, the batch index will be the second dimension (dim=1)
Choosing an Optimizer

SGD stands for “Stochastic Gradient Descent”

```
optimizer = torch.optim.SGD(net.parameters(),
    lr=0.01, momentum=0.9,
    weight_decay=0.0001)
```

Adam = Adaptive Momentum (good for deep networks)

```
optimizer = torch.optim.Adam(net.parameters(),
    lr=0.01, betas=(0.5, 0.999),
    weight_decay=0.0001)
```

Training

```
def train(args, net, device, train_loader, optimizer):
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()  # zero the gradients
        output = net(data)     # apply network
        loss = ...             # compute loss function
        loss.backward()        # update gradients
        optimizer.step()       # update weights
```
Computational Graphs

PyTorch automatically builds a computational graph, enabling it to backpropagate derivatives. Every Parameter includes .data and .grad components, for example:

```python
A.data
A.grad
```

optimizer.zero_grad() sets all .grad components to zero.

loss.backward() updates the .grad component of all Parameters by backpropagating gradients through the computational graph.

optimizer.step() updates the .data components.

Loss Functions

```python
import torch.nn.functional as F

loss = torch.sum((output-target)*(output-target))
loss = F.nll_loss(output,target)
loss = F.binary_cross_entropy(output,target)
loss = F.softmax(output,dim=1)
loss = F.log_softmax(output,dim=1)
```

Note that softmax and log_softmax use dim=1, to normalize over the outputs within a single item. One common mistake is to use dim=0, which would instead normalize over the items in a batch.

Testing

```python
def test(args, model, device, test_loader):
    with torch.no_grad(): # suppress updating of gradients
        net.eval() # toggle batch norm, dropout
        test_loss = 0
        for data, target in test_loader:
            output = model(data)
            test_loss += ...
        print(test_loss)
        net.train() # toggle batch norm, dropout back again
```

Controlling the Computational Graph

If we need to block the gradients from being backpropagated through a certain variable (or expression) A, we can exclude it from the computational graph by using:

```python
A.detach()
```

By default, loss.backward() discards the computational graph after computing the gradients.

If needed, we can force it to keep the computational graph by calling:

```python
loss.backward(retain_graph=True)
```