9a. Autoencoders

Recall: Encoder Networks

- Inputs: 10000, 01000, 00100, 00010, 00001
- Outputs: 10000, 01000, 00100, 00010, 00001

- Identity mapping through a bottleneck
- Also called N–M–N task
- Used to investigate hidden unit representations

Autoencoder Networks

- Output is trained to reproduce the input as closely as possible
- Activations normally pass through a bottleneck, so the network is forced to compress the data in some way
- Like the RBM, autoencoders can be used to automatically extract abstract features from the input

Outline

- Autoencoder Networks (14.1)
- Regularized Autoencoders (14.2)
- Stochastic Encoders and Decoders (14.4)
- Generative Models
- Variational Autoencoders (20.10.3)
Autoencoder Networks

If the encoder computes $z = f(x)$ and the decoder computes $g(f(x))$ then we aim to minimize some distance function between x and $g(f(x))$

$$E = L(x, g(f(x)))$$

Greedy Layerwise Pretraining

- Autoencoders can be used as an alternative to Restricted Boltzmann Machines, for greedy layerwise pretraining.
- An autoencoder with one hidden layer is trained to reconstruct the inputs. The first layer (encoder) of this network becomes the first layer of the deep network.
- Each subsequent layer is then trained to reconstruct the previous layer.
- A final classification layer is then added to the resulting deep network, and the whole thing is trained by backpropagation.

Avoiding Trivial Identity

- If there are more hidden nodes than inputs (which often happens in image processing) there is a risk the network may learn a trivial identity mapping from input to output.
- We generally try to avoid this by introducing some form of regularization.
Regularized Autoencoders (14.2)

- autoencoders with dropout at hidden layer(s)
- sparse autoencoders
- contractive autoencoders
- denoising autoencoders

Sparse Autoencoder (14.2.1)

- One way to regularize an autoencoder is to include a penalty term in the loss function, based on the hidden unit activations.
- This is analogous to the weight decay term we previously used for supervised learning.
- One popular choice is to penalize the sum of the absolute values of the activations in the hidden layer

\[
E = L(x, g(f(x))) + \lambda \sum_i |h_i|
\]

- This is sometimes known as L1-regularization (because it involves the absolute value rather than the square); it can encourage some of the hidden units to go to zero, thus producing a sparse representation.

Contractive Autoencoder (14.2.3)

- Another popular penalty term is the L2-norm of the derivatives of the hidden units with respect to the inputs

\[
E = L(x, g(f(x))) + \lambda \sum_i \|\nabla_x h_i\|^2
\]

- This forces the model to learn hidden features that do not change much when the training inputs x are slightly altered.

Denoising Autoencoder (14.2.2)

Another regularization method, similar to contractive autoencoder, is to add noise to the inputs, but train the network to recover the original input

repeat:
- sample a training item \(x^{(i)}\)
- generate a corrupted version \(\tilde{x}\) of \(x^{(i)}\)
- train to reduce \(E = L(x^{(i)}, g(\tilde{x}))\)

end
Loss Functions and Probability

- We saw previously how the loss (cost) function at the output of a feedforward neural network (with parameters θ) can be seen as defining a probability distribution $p_{\theta}(x)$ over the outputs. We then train to maximize the log of the probability of the target values.
 - squared error assumes an underlying Gaussian distribution, whose mean is the output of the network
 - cross entropy assumes a Bernoulli distribution, with probability equal to the output of the network
 - softmax assumes a Boltzmann distribution

Generative Models

- Sometimes, as well as reproducing the training items $\{x^{(i)}\}$, we also want to be able to use the decoder to generate new items which are of a similar “style” to the training items.
- In other words, we want to be able to choose latent variables z from a standard Normal distribution $p(z)$, feed these values of z to the decoder, and have it produce a new item x which is somehow similar to the training items.
- Generative models can be:
 - explicit (Variational Autoencoders)
 - implicit (Generative Adversarial Networks)

Stochastic Encoders and Decoders (14.4)

- For autoencoders, the decoder can be seen as defining a conditional probability distribution $p_{\theta}(x|z)$ of output x for a certain value z of the hidden or “latent” variables.
- In some cases, the encoder can also be seen as defining a conditional probability distribution $q_{\phi}(z|x)$ of latent variables z based on an input x.
- We have seen an example of this with the Restricted Boltzmann Machine, where $q_{\phi}(z|x)$ and $p_{\theta}(x|z)$ are Bernoulli distributions.

Gaussian Distribution (3.9.3)

$$P_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}$$

- $\mu =$ mean
- $\sigma =$ standard deviation
- Multivariate Gaussian: $P_{\mu,\sigma}(x) = \prod_i P_{\mu_i,\sigma_i}(x_i)$
Entropy and KL-Divergence

- The **entropy** of a distribution $q()$ is $H(q) = \int \theta q(\theta)(-\log q(\theta))d\theta$
- In Information Theory, $H(q)$ is the amount of information (bits) required to transmit a random sample from distribution $q()$
- For a Gaussian distribution, $H(q) = \sum \log \sigma_i$
- KL-Divergence $D_{KL}(q \parallel p) = \int \theta q(\theta)(\log q(\theta) - \log p(\theta))d\theta$
- $D_{KL}(q \parallel p)$ is the number of **extra** bits we need to transmit if we designed a code for $p()$ but the samples are drawn from $q()$ instead.
- If $p(z)$ is Standard Normal distribution, minimizing $D_{KL}(q_\theta(z) \parallel p(z))$ encourages $q_\theta()$ to center on zero and spread out to approximate $p()$.

Variational Autoencoder (20.10.3)

Instead of producing a single z for each $x^{(i)}$, the encoder (with parameters ϕ) can be made to produce a mean $\mu_{z|x^{(i)}}$ and standard deviation $\sigma_{z|x^{(i)}}$

This defines a conditional (Gaussian) probability distribution $q_\theta(z|x^{(i)})$

We then train the system to maximize

$$E_{z \sim q_\theta(z|x^{(i)})}[\log p_\theta(x^{(i)}|z)] - D_{KL}(q_\theta(z|x^{(i)}) \parallel p(z))$$

- the first term enforces that any sample z drawn from the conditional distribution $q_\theta(z|x^{(i)})$ should, when fed to the decoder, produce something approximating $x^{(i)}$
- the second term encourages $q_\theta(z|x^{(i)})$ to approximate $p(z)$
- in practice, the distributions $q_\theta(z|x^{(i)})$ for various $x^{(i)}$ will occupy complementary regions within the overall distribution $p(z)$

Variational Autoencoder Digits

1st Epoch | 9th Epoch | Original

![Variational Autoencoder Digits](image)
Variational Autoencoder Faces

Variational Autoencoder

- Variational Autoencoder produces reasonable results
- tends to produce blurry images
- often end up using only a small number of the dimensions available to z

References

http://kvfrans.com/variational-autoencoders-explained/