

Course Outline

CP1521

Computer Systems Fundamentals

Diploma Program

UNSW Global Education

Intake: September, 2018

1. Staff
Position Name Email

Course Convenor &
Lecturer

Dr Angela Finlayson A.Finlayson@unswglobal.unsw.edu.au

2. Course information
Units of credit (UOC): 6

Pre-requisite(s): CP1511

Total course contact hours: 96

2.1 Course summary
This course provides a programmer's view on how a computer system executes programs,
manipulates data and communicates. It enables students to become effective programmers in
dealing with issues of performance, portability, and robustness.

The course assumes that students have completed the first course in programming in the C
programming language, CP1511.

2.2 Course aims
This course aims to give students an overview of the structure and behaviour of modern
computer systems, and to provide a foundation for later courses on networks, operating
systems, computer architecture and compilers, where a deeper understanding of systems-level
issues is required.

2.3 Course learning outcomes (CLO)
At the successful completion of this course you (the student) should be able to:

1 Describe the layers of architectures in modern computer systems from hardware device
levels upwards

2 Describe the principles of memory management and explain the workings of a system with
virtual memory management

3 Explain how the major components of a CPU work together, including how data (including
instructions) is represented in a computer

4 Design, implement and analyse small programs at the assembly/machine level

5 Describe the relationship between high-level procedural languages (e.g., C) and
assembly/machine language in the conventional machine layer, including how a compiled
program is executed in a classical von Neumann machine

6 Explain how input/output operations are implemented, and describe some basic I/O devices

7 Describe the components comprising and the services offered by an operating system

8 Describe the layered structure of standard network architecture

9 Implement simple programs involving communication and concurrency

2.4 Relationship between course and program learning
outcomes and assessments

Course
Learning
Outcome
(CLO)

Program Learning Outcome (PLO) Related Tasks &
Assessment

CLO 1 Understanding of underpinnings (EA1.1) Exam, Quizzes

CLO 2 Understanding of specialist bodies of engineering
knowledge (EA1.3)

Exam, Quizzes

CLO 3 Understanding of specialist bodies of engineering
knowledge (EA1.3)

Exam, Quizzes, Labs

CLO 4 Application of established engineering practice
(EA2.1)

Labs, Assignments

CLO 5 Conceptual understanding of computer
underpinnings (EA1.2)

Exam, Labs

CLO 6 Understanding of specialist bodies of engineering
knowledge (EA1.3)

Exam, Quizzes, Labs

CLO 7 Understanding of specialist bodies of engineering
knowledge (EA1.3)

Exam, Quizzes

CLO 8 Application of established engineering practice
(EA2.1)

Labs

CLO 9 Application of established engineering practice
(EA2.1)

 Exam, Labs

3. Strategies and approaches to learning
3.1 Learning and teaching activities

This course involves a number of teaching activities:

Lectures – 4 hours per week

Lectures present theory and concepts, by way of case studies and practical examples. Lecture
notes will be provided in advance of each class.

Tutorials – 2 hours per week

Tutorials allow students to collaboratively work through example problems to illustrate lecture
idea, and have concepts from lectures clarified by the tutor. Each student will lead a “code
review” (discussion of a piece of software or a system) at least once during the course.

There is up to 1 bonus mark available for students who give an outstanding code review.

Lab Classes – 2 hours per week

Lab Classes involve small exercises where students build systems that illustrate the ideas
covered in lectures. Students work in pairs to write software, and show their work to the Lab
demonstrator for assessment and feedback.

To obtain a mark for a lab exercise you should (as a pair) demonstrate the completed lab
exercise to your tutor during a lab class and both members of the pair should separately submit
it using give.

You should normally get your lab work assessed during the week for which it is scheduled (i.e.
you must complete the week 3 lab exercise during the week 3 lab). If you don't finish it during
the lab, you may continue working on it during the week, but you both must submit it
(using give) by the following Sunday 11:59pm in order to get any marks for it. You must then
(as a pair) also demonstrate your work to your tutor during the first hour of the following
week's lab. The code that you submit by Sunday is what will be assessed.

Summary: to obtain any lab marks for the Week X lab, you must do 2 things:

1 submit your lab work by the following Monday 11:00am

2 demonstrate your work to your tutor in the week X lab class
OR demonstrate your work at the start of the lab in week X+1

You cannot obtain marks by e-mailing lab work to tutors.

One of the labs will be used for a Practice Prac Exam, where you will use the exam environment
to individually solve a small(ish) programming tasks (one MIPS and one C). You must complete
the Practice Prac Exam in the lab in the scheduled week. The Practice Prac Exam will be worth
twice the marks of a standard lab.

Lab exercises will be assessed using the following grade system:

Grade Criteria

A+ Outstanding effort; must complete any challenges and go beyond the
standard exercises

A Complete, correct, and clear solution to standard lab exercises
(worth full marks)

B Most of the standard lab exercises completed, or all completed but
with one or more major bugs

C Partial solution only, much of lab not completed or has many glaring
errors

D Submitted something , but it's completely hopeless

. Not attempted

Optional challenge exercises may be specified for some labs.

There will be more lab marks available than necessary to obtain full marks for the 10% lab
component. In other words, the total lab mark will be capped, with a small bonus available for
consistently outstanding work.

Assignments – 2 during the course

Assignments are take-home problems that are larger in scope than Lab exercises and require
students to use creativity to solve a challenging realistic problem. Each assignment requires
students to understand the problem, design a solution, and implement and test their solution.

Online Quizzes – 5 during the course

Online quizzes encourage students to revise ideas from lectures. There are 5 quizzes and each
quiz is worth 2 marks.

Online Forum

An online forum allows students to ask and answer questions on the tutorial, lab and
assignment exercises, and on lecture material.

Final Exam

There will be a three-hour exam, to be held in the CSE labs during the exam period.

It will contain a mixture of: implementation tasks (which will require you to write C and
assembler programs); "theory" questions (which require analysis and written answers); multiple
choice questions. During this exam you will be able to execute, debug and test your answers.
The implementation tasks will be similar to those encountered in lab exercises.

There is a hurdle requirement on the final exam. If you do not score at least 40% (24/60) on
the exam, you cannot pass this course. If your overall course score exceeds 50%, despite
scoring very poorly (<40%) on the exam, the hurdle will be enforced via a grade of UF. Of
course, if your overall course score is less than 50%, then your grade will be FL.

3.2 Expectations of students
Students are expected to:

• attend all lectures, and ask questions, but otherwise not disturb other students

• attend all tutorials and actively participate in the discussions

• attend all lab classes and work diligently on the exercises

• do all of the assignment work themselves, asking only the forum or tutors for help

On the course forum, students should:

• use relevant/meaningful message titles on all posts

• ask questions clearly and provide sufficient background information that the question
can be reasonably answered

• not post significant pieces of code, especially code for assignment

4. Course schedule and structure

This course consists of 8 hours of class contact hours per week. You are expected to take an
additional 5 hours outside classes to complete assessments, readings, and exam preparation.

Week Lectures Tutorial and Labs Assessment Related CLO

Week
1

Course Introduction,
Debugging and Software
Tools

Welcome, C Revision,
Input/output, man, bc

 1

Week
2

Data Representation Number Systems, Priority
Queues, Big Numbers,
gdb

 3, 4

Week
3

Data Representation and
Instruction set
architecture

Bit-manipulation,
Memory, Data
Representation, Unions,
Floats

Quiz 1 3, 4

Week
4

Assembly language
Programming

Assembly Language and
debugging

Assignment 1
Released

4

Week
5

Assembly Language
Programming

Assembly Language Quiz 2 4

Week
6

Computer Systems
Architecture, Operating
Systems, Systems Calles,
File Systems

Assembly Language 4

Week
7

Devices, Virtual Memory Operating Systems and
the Unix File System

Quiz 3 2,8

Week
8

Processes and Signals Devices, Virtual Memory Assignment 1 Due

Assignment 2
Released

2,6

Week
9

Revision, Practice
Practical Exam
Preparation

Processes and Signals Quiz 4 8

Week
10

Network Architecture Practice Practical Exam
Revision and Practice
Practical Exam

 7

Week
11

Parallelism, concurrency,
synchronisation,
coordination,
communication

Networks and network
programming

 5,7

Week
12

Exam Preparation Concurrency and Inter-
Process Communication
and Exam Preparation

Quiz 5

Assignment 2 due

5,7

5. Assessment

5.1 Assessment tasks

Assessment task Length Weight Due CLOs

Quizzes Throughout semester 10% Weeks
3,5,7,9,12

1-9

Assignment 1 (assembly
language)

4 weeks 9% Week 8 4

Assignment 2 (C
programming)

4 weeks 11% Week 12 2,5

Labs Throughout Semester 10% Weekly on
Sunday

1-7,9

Final Exam 3 Hours 60% Exam period 1-9

Programming assignments are marked primarily on their correctness with respect to the
assignment specification. Test cases will be provided for each assignment, and further (unseen)
test cases will be used for marking. A small component of the mark will be for code quality.

Lab exercises are similarly marked primarily on their correctness, but Lab demonstrators will
also give feedback on code quality.

Online quizzes are multiple choice.

Most labs are done in pairs, but the Practice Practical Exam is done individually.

Final Mark

Your final mark for this course will be computed using the above assessments as follows:

CourseWorkMark = QuizMark + LabMark + Ass1Mark + Ass2Mark out of 40

ExamPracMark = marks for prac questions on final exam out of 30

ExamTheoryMark = marks for written questions on final exam out of 30

ExamMark = ExamPracMark + ExamTheoryMark out of 60

ExamOK = ExamMark ≥ 24/60 true/false

FinalMark = CourseWorkMark + ExamMark out of 100

FinalGrade = UF, if ! ExamOK && FinalMark ≥ 50
FL, if FinalMark < 50/100
PS, if 50/100 ≤ FinalMark < 65/100
CR, if 65/100 ≤ FinalMark < 75/100
DN, if 75/100 ≤ FinalMark < 85/100
HD, if FinalMark ≥ 85/100

Students may be eligible for a Supplementary Exam if and only if:

• they cannot attend the final exam due to illness or misadventure; or

• their final mark is in the range 47 ≤ FinalMark < 50 and their attendance across all
courses was at least 80%.
(in this case, FinalMark is limited to 50)

A Supplementary Exam will not be awarded for any other reason.

5.2 Assessment criteria and standards
In all programming work, the primary assessment criterion is correctness (i.e. does the code
produce the expected output/behaviour according to the exercise specification). This will be
tested by executing code against a variety of test cases, some of which are available to
students, and others of which are used after submission for assessment purposes. Code is also
expected to be expressed clearly, with consistent formatting and using relevant variable names.

5.3 Submission of assessment tasks
All assignments will be submitted online via CSE’s submission system. Late penalties accrue on
an hourly basis. Marks are capped according to how late the submission is, but it would typically
be the case that marks are capped at 50% after 36 hours.

If you are unable to submit an assignment by the due date, due to medical reasons or other
reasons which significantly affect your ability to carry out your work, you should contact the
lecturer as soon as possible, preferably well before the assignment deadline. If the lecturer
considers that your ability to complete the assignment on time has been adversely affected, an
extension may be granted to make up for the time you were unable to work on the assignment.

Lab exercises must be submitted by the end of the Sunday after the lab class. Demonstrators
will then look at the exercise, and assess it, possibly asking you to explain what you did in the
following lab class. Failure to complete and submit a lab exercise results in a mark of zero for
that lab.

Quizzes must be completed by the deadline shown on the quiz. No extensions are possible for
quizzes.

5.4. Feedback on assessment
Assignments will be marked after the submission deadline and annotated with comments by the
tutor. You can discuss the tutor’s comments in a lab class after you have received the feedback.

Lab demonstrators will discuss your lab submission with you during the lab class in the week
following the submission.

6. Readings and resources
There is no single text book that covers all of the material in this course at the right level of
detail and using the same technology base as we are. The lecture notes should provide
sufficient detail to introduce topics, and you will then study them in further depth in the tutes,
labs and assignments.

There are also many online resources available, and we will provide links to the most useful
ones. Some are listed below. If you find others, please post links in the Comments section on
the Course Outline page.

The following is a Recommended Reading for this course

Computer Systems: A Programmer's Perspective , by Randal E. Bryant and David R. O'Hallaron,
Prentice-Hall (web site)

There are copies in the UNSW Bookstore and in the library. It covers many of the topics in the
course, but uses a different machine language (i.e. not MIPS).

Some suggestions for other books that cover at least some of the topics in this course

• Introduction to Computer Systems: From Bits and Gates to C and Beyond , by Yale N. Patt and
Sanjay J. Patel, McGraw Hill

• nand2tetris: The Elements of Computing Systems: Building a Modern Computer from First
Principles , by Noam Nisan and Shimon Schocken, MIT Press (web site , including lecture
slides)

Documentation for the various systems used in the course is linked from the course website.

http://csapp.cs.cmu.edu/
http://nand2tetris.org/

	1. Staff
	2. Course information
	2.1 Course summary
	2.2 Course aims
	2.3 Course learning outcomes (CLO)
	2.4 Relationship between course and program learning outcomes and assessments

	3. Strategies and approaches to learning
	3.1 Learning and teaching activities
	Lectures – 4 hours per week
	Tutorials – 2 hours per week
	Lab Classes – 2 hours per week
	Assignments – 2 during the course
	Online Quizzes – 5 during the course
	Online Forum
	Final Exam

	3.2 Expectations of students

	4. Course schedule and structure
	5. Assessment
	5.1 Assessment tasks
	Final Mark

	5.2 Assessment criteria and standards
	5.3 Submission of assessment tasks
	5.4. Feedback on assessment

	6. Readings and resources

