ENGG1811 Computing for Engineers

Week 8 : numpy 2

- elementwise operations
- numpy (Broadcasting, Slicing, Boolean indexing)
- Mutable and immutable data types

Arithmetic operators

- You can use $+,-, *, /, * *$ on two numpy arrays
- They perform elementwise operations
- See the next two slides for illustration
- The shapes of these arrays are required to be compatible.
- We will first consider the case where both arrays have the same shape
- Code in numpy_arith_1.py

Elementwise multiplication

$$
\begin{aligned}
& \text { array1 = np.array }([-3.2,0,0.5,5.8] \text {, } \\
& \text { [6, -4, 6.2, 7.1], } \\
& \text { [3.8, 5, 2.7, 3.7]]) } \\
& \text { array2 }=\text { np.array }\left(\left[\begin{array}{l}
-1.2, \\
2,-3.1, ~ 0.0], ~
\end{array}\right.\right. \\
& \text { [4, -5, 3.5, 7.1], } \\
& \text { [2.7, 2, 1.7, 3.4]]) }
\end{aligned}
$$

array_mul = array1 * array2 \# NOT matrix multiplication

$$
\begin{array}{r}
\operatorname{array}([[3.84,0 .,-1.55,0 .], \\
{[24 ., 20 ., 21.7,50.41]} \\
[10.26,10 ., 4.59,12.58]])
\end{array}
$$

Elementwise division

$$
\begin{aligned}
\operatorname{array} 1=n p \cdot \operatorname{array}(& {[-3.2,0,0.5,5.8], } \\
& {[8,-4,6.2,7.1], } \\
& {[3.8,5,2.7,3.7]]) } \\
\operatorname{array2}=\mathrm{np} . \operatorname{array}([& {[-1.2,2,-3.1,0.0], } \\
& {[4,-5,3.5,7.1], } \\
& {[2.7,2,1.7,3.4]]) }
\end{aligned}
$$

array_div = array1 / array2
$\left.\left.\left.\begin{array}{rlr}\operatorname{array}\left(\left[\begin{array}{cc}{[2.667, ~ 0 .} & ,-0.161,\end{array}\right.\right. \\ {\left[\begin{array}{c}\text { inf }], \\ {[1.5, ~ 0.8}\end{array}\right.} & , 1.771, & 1 .], \\ {[1.407,2.5} & , & 1.8,\end{array} 1.088\right]\right]\right)$

Exercise: A simple survey

- You have conducted a survey.
- The survey has 3 questions.
- Each question has only two possible choices: Yes and No.
- Each respondent can answer any number of questions.
- The results are in the table below. You want to determine the fraction of Yes votes for each question.

	\mathbf{Y}	\mathbf{N}
Q1	21	15
Q2	34	23
Q3	17	31

- Define the following two numpy arrays yes_votes = np.array ($[21,34,17])$
no_votes $=$ np. $\operatorname{array}([15,23,31])$
- Use these two arrays and numpy elementwise computation to compute the fraction of Yes votes. The expected answer is:

File:
numpy_arith_1_prelim.py

$$
\left[\frac{21}{21+15}, \frac{34}{34+23}, \frac{17}{17+31}\right]
$$

Exercise: A simple survey (Discussion)

- Lesson learnt: If you put the data in the right way, then you can use elementwise computation to simplify the code

	\mathbf{Y}	\mathbf{N}
Q1	21	15
Q2	34	23
Q3	17	31

```
Good way:
yes_votes = np.array([21,34,17])
no_votes = np.array([15, 23,31])
```

Need only one line of code!

Bad way:
ם× [21,15],[34,23],[17,31]

More on numpy arithmetic operators

- You have seen that you can use the numpy arithmetic operators on two arrays of the same shape
- You can also use the numpy arithmetic operators on two arrays when
- One array is a scalar
- The other is a numpy array of any shape
- Let us look at the examples in numpy_arith_2.py

Elementwise division: an array and a scalar

array_div_1 = array1 / 2.0
array ([[-1.6 , 0.5 , 0.25, 2.9],

$$
[3 .,-2 ., 3.1,3.55],
$$

$$
[1.9,2.5,1.35,1.85]])
$$

array_div_2 = 2.0 / array1

$$
\begin{array}{r}
\operatorname{array}([[-0.625,2 ., \\
{[\quad 4 .,} \\
{[0.333,-0.5,} \\
{[0.345]}
\end{array}
$$

$$
\begin{aligned}
& \text { array1 = np.array }\left(\left[\begin{array}{l}
-3.2, ~ 1, ~ 0.5, ~ 5.8], ~
\end{array}\right.\right. \\
& \text { [6, -4, 6.2, 7.1], } \\
& \text { [3.8, 5, 2.7, 3.7]]) }
\end{aligned}
$$

Exercise

- If you drop an object from a height of h0 and if the air resistance is small, then the height of the object at time t is

$$
h 0-0.5 * g * t^{2}
$$

where g is the acceleration due to gravity

- For given h0 and g, you want to compute the height of the object at $\mathrm{t}=0,2,4,6,8$

Exercise: Hint

- Numpy array
- time_array $=$ np. $\operatorname{array}([0,2,4,6,8])$
- The following hint for array [0,2,4]
$\stackrel{[0}{1}$

$\left[\mathrm{ho}-0.5 * \mathrm{~g} * 0^{2}\right.$

$$
, \mathrm{ho}-0.5 * \mathrm{~g} * 2^{2}
$$

$$
\left., \mathrm{ho}-0.5 * \mathrm{~g} * 4^{2}\right]
$$

® final result wanted
刁 Work backwards.

$$
=\mathrm{h} 0-\left[0.5 * \mathrm{~g} * 0^{2}, 0.5 * \mathrm{~g} * 2^{2}, 0.5 * \mathrm{~g} * 4^{2}\right]
$$

Until you use [0,2,4]

- Complete the exercise in numpy_arith_2_prelim.py

Mathematical functions

- The numpy mathematical functions are documented here:
- https://docs.scipy.org/doc/numpy/reference/routines.math.ht ml
- Example: sin, cos, asin, log, exp, sqrt, absolute
- Notes:
- You need to append the library name, say you import numpy as np, then np.cos etc.
- They are different to those in the math library
- They are elementwise operation. The output is an array of the same size as input and the operation is applied to each element (illustrated on the next slide)
- Code in numpy_math_func.py

Elementwise operation

```
array2 = np.array([[-1.2, 2. , -3.1, 4.5],
    [ 4. , -5. , 3.5, 7.1],
    [ 2.7, 9. , 1.7, 3.4]])
array2_sin = np.sin(array2)
array([[-0.93203909, 0.90929743, -0.04158066, -0.97753012],
    [-0.7568025 , 0.95892427, -0.35078323, 0.72896904],
    [ 0.42737988, 0.41211849, 0.99166481, -0.2555411 ]])
        sin(2.7)
```

$\sin (1.7)$

Recap: numpy

- numpy has a lot of useful functions for data analysis
- E.g., mean(), sum() etc.
- Many numpy functions allow you to do computation without using loops
- Reason: numpy functions are implemented with speed in mind so they are often faster than the equivalent Python code that you can write to do the same task
- The maxim: Use numpy function as much as possible

Key topics

- Broadcasting

- Slicing
- Boolean indexing

Broadcasting rules

- You have seen that you can use numpy elementwise arithmetic operators $+,-, *, /$ and $* *$ for
- Two arrays of the same shape
- An array and a scalar
- In general, numpy arithmetic operators can be used on two arrays as long as their shapes are compatible
- Informal view: Next slide
- Formally, compatibility is defined according to the numpy broadcasting rules
- The broadcasting rules were modified from:
- https://jakevdp.github.io/PythonDataScienceHandbook/02.05 -computation-on-arrays-broadcasting.html
- You may wish to read the examples in this document to further understanditherbroadcasting rules

Broadcast: informal view

Source: https://scipy-lectures.org/intro/numpy/operations.html\#broadcasting

Broadcasting Rule 1

- Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side.

```
In [32]: a1
Out[32]:
array([[[ 1.1,
```

In [33]: a1.shape Out [33]: $(2,3)$

In [34]: b1
Out [34]: $\operatorname{array}([10,20,30])$
In [35]: b1.shape Out [35]: $(3$,

- Dimension of a1 is 2
- a1.ndim shows the dimension
- Dimension of b1 is 1
- After Rule 1, the shape of b1 goes from (3,) to $(1,3)$

Broadcasting Rule 2

- Rule 2: If the shape of the two arrays does not match in any dimension, the axes whose shape is equal to 1 are stretched to match the shape of the other array.

```
In [32]: a1
Out[32]:
array([[[ 1.1,
```

In [33]: a1.shape Out [33]: $(2,3)$

In [34]: b1
Out [34]: $\operatorname{array}([10,20,30])$

- Shape of a1 is $(2,3)$
- Shape of b1 after Rule 1 is $(1,3)$
- Axis 0 of b1 is 1 , it is stretched to 2 to match a1
- After Rule 2, the shape of b1 becomes $(2,3)$

In [35]: b1.shape Out [35]: (3,)

Broadcasting Rule 3

- Rule 3: If the two arrays have the same shape, then they are compatible; otherwise they are not.

```
In [32]: a1 Out [32]: \(\operatorname{array}\left(\left[\begin{array}{lll}\left.\left[\begin{array}{lll}1.1, & 2.2, & 3.3] \\ {[3.1,} & 3.2, & 3.3\end{array}\right]\right)\end{array}\right.\right.\)
```

In [33]: a1.shape Out [33]: $(2,3)$

- Example:
- Shape of a1 is $(2,3)$
- Shape of b1 after Rule 2 is $(2,3)$
- Identical shape, hence compatible

In [34]: b1
Out [34]: array([10, 20, 30])

In [35]: b1.shape Out [35]: (3,)

Operating on broadcast compatible arrays (1)

a 1 is
$\left[\begin{array}{lll}1.1, & 2.2, & 3.3], \\ {[3.1,} & 3.2, & 3.3]]\end{array}\right.$
b1 is
[10, 20, 30]

Broadcast b1 to shape $(2,3)$

$$
\begin{gathered}
{[[10,20,30],} \\
[10,20,30]]
\end{gathered}
$$

The result of $a 1+b 1$ is $[[11.1,22.2,33.3]$,

$$
[13.1,23.2,33.3]]
$$

See numpy_broadcast.py

Informal view

$$
\begin{aligned}
& \text { a1 is } \\
& {\left[\begin{array}{lll}
{[1.1,} & 2.2, & 3.3], \\
{[3.1,} & 3.2, & 3.3]
\end{array}\right.}
\end{aligned}
$$

b1 is
[10, 20, 30]
Broadcast rule 1 makes b1 goes from $(3$,$) to (1,3)$. Intuitively, for the purpose of broadcasting, a 1-d array should be thought of a 2-d array with one row

1.1	1.2	1.3
3.1	3.2	3.3

Operating on broadcast compatible arrays (2)

$$
\begin{array}{ll}
\text { a1 is } & \mathrm{c} 1 \text { is } \\
{[[1.1,2.2,3.3],} & 10 \\
[3.1,3.2,3.3]] &
\end{array}
$$

Broadcast c1

to shape $(2,3)$
[[10, 10, 10],
[10, 10, 10]]

The result of $a 1+c 1$ is

$$
\begin{array}{r}
{\left[\begin{array}{lll}
11.1, & 12.2, & 13.3] \\
{[13.1,} & 13.2, & 13.3]]
\end{array}, ~\right.}
\end{array}
$$

See numpy_broadcast.py

Broadcasting rules

- You can generalise the example in the previous slide to show that a scalar is compatible to numpy array of any shape
- Broadcast rules are general and they cover the two special cases we mentioned earlier
- Two arrays of identical shape
- A scalar and an array of any shape

Exercise 1

- Given

$$
\begin{aligned}
& \mathrm{a} 1=\mathrm{np} . \operatorname{array}([[1.1,2.2,3.3],[3.1,3.2,3.3]]) \\
& \mathrm{d} 1=\mathrm{np} . \operatorname{array}([[100],[200]])
\end{aligned}
$$

Predict what a1 +d 1 should be without running the code in numpy_broadcast.py

We will run the cell in numpy_broadcast.py later so you can check your prediction

Informal view

$$
\begin{aligned}
& \begin{array}{l}
\text { a1 is } \\
\text { [[1.1, } 2.2, \\
{[3.3],}
\end{array} \\
& \begin{array}{|l|l|l|}
\hline 1.1 & 1.2 & 1.3 \\
\hline 3.1 & 3.2 & 3.3 \\
\hline
\end{array}
\end{aligned}
$$

Compatible arrays

d1 is np.array([[100], [200]]) Its shape is $(2,1)$
a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]
Shape (2,3)
Shape $(2,1)$

Rule 2:

Stretching

Shape $(2,3)$
[[100, 100, 100],
[200, 200, 200]]

Exercise 2

- Given

$$
\begin{aligned}
& \mathrm{a} 1=\mathrm{np} . \operatorname{array}([[1.1,2.2,3.3],[3.1,3.2,3.3]]) \\
& \mathrm{e} 1=\mathrm{np} . \operatorname{array}([100,200])
\end{aligned}
$$

Are the arrays a1 and e1 compatible?

We will run the cell in numpy_broadcast.py later so you can check your prediction

Informal view

$$
\begin{aligned}
& a 1 \text { is } \\
& {\left[\begin{array}{lll}
1.1, & 2.2, & 3.3], \\
{[3.1,} & 3.2, & 3.3]]
\end{array}\right.}
\end{aligned}
$$

e1 is
np.array ([100, 200])

1.1	1.2	1.3
3.1	3.2	3.3

$+100200$

Incompatible arrays

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]
Shape (2,3)

e1 has shape (2,)

Rule 1: Padding on the left

Shape (1,2)
Rule 2:
Stretching

See numpy_broadcast.py
ValueError: operands could not be broadcast together with shapes $(2,3)(2$,

Broadcast - round up

- There is one additional example in the last cell of numpy_broadcast.py
- There is an exercise in numpy_broadcast_prelim.py

Key topics

- Broadcasting
- Slicing

- Boolean indexing

numpy slicing

- Slicing is a very useful method to select a portion of data
- E.g. You have a 2-dimension array where each column contains the data for a day of the week. You may want to study the data over the weekdays. This means you need a way to extract 5 columns of the data
- You have learn about slicing a list
- You can use the list slicing methods on numpy array too
- numpy has some additional methods to select elements
- Examples in:
- numpy_slicing_1.py for one dimensional arrays
- numpy_slicing_2.py for two dimensional arrays

1-D array: select specific elements

numpy_slicing_1.py

2-D array: Slicing out a rectangular block (1)

```
In [34]: c
Out[34]:
array([[11, 23, 7, 5, 29, 37, 43],
    [13, 57, 71, 26, 31, 47, 53],
    [17, 67, 73, 3, 2, 19, 31],
    [41, 53, 59, 61, 91, 79, 83]])
In [35]: c[:,2:4] # columns with indices 2 and 3
Out[35]:
array([[ 7, 5],
[71, 26],
    [73, 3],
    [59, 61]])
```

numpy_slicing_2.py

2-D array: Slicing out a rectangular block (2)

In [25]: c Out[25]: array([[11, 23, 7, 5, 29, 37, 43], [13, 57, 71, 26, 31, 47, 53], [17, 67, 73, 3, 2, 19, 31], [41, 53, 59, 61, 91, 79, 83]])

In [26]: c[-2:,-3:] \# Last 2 rows and last 3 columns Out[26]: array([[2, 19, 31],
[91, 79, 83]])

You can use :: notation too
E.g. Try c[1::2,0::2]
numpy_slicing_2.py

2-D array: Slicing with np.ix_

In [7]: c Out[7]: array ([[11, 23, 7, 5, 29, 37, 43], Row index $[13,57,71,26,31,47,53], 1$ $[17,67,73,3,2,19,31]$, [41, 53, 59, 61, 91, 79, 83]]) 3

In [8]: c[np.ix_([1,3],[3, 6, 2])] Out[8]: $\operatorname{array}([[26,53,71], \quad$ From row:
[61, 83, 59]]) $\frac{1}{3}$
From column: 36
[[c[1,3], c[1,6], c[1,2]], [c[3,3], c[3,6], c[3,2]]]

Put specific elements in a 1-D array

In [37]: c
Out[37]:
$\operatorname{array}([[11,23,7,4,29,37,43]$,
[13, 57, 71, 26, 31, 47, 53],
[17, 67, 73, 3, 2, 19, 31],
[41, 53, 59, 61, 91, 79, 83]])
In [38]: c[[3,2,0],[-2,2,3]] \# array([c[3,-2], c[2,2], c[0,3]]) Out[38]: array([79, 73, 5])

$$
[c[3,-2], c[2,2], c[0,3]]
$$

numpy_slicing_2.py

Exercise: Counting heart beats

- In the lab in Week 5, you counted the number of heart beats by counting the number of times the voltage crosses the 3 V threshold and is increasing
- How can you do this in numpy without using for?

Template is in numpy_heart_prelim.py

Pulse oximeter data

Exercise: Counting heart beats (Hint)

Voltage data

than 3 ?
Is it bigger $\quad[1.84,1.68,2.52,4.68,3.37,2.39, \ldots$ than 3 ?
[False, False, False, True, False, False,...

Key topics

- Broadcasting
- Slicing
- Boolean indexing

Boolean indexing

- This indexing method uses Boolean expressions to select elements in an array
- Useful for data analysis
- Example:
- numpy_boolean_indexing_1.py

Boolean indexing

This example is in

 numpy_boolean_indexing_1.pyarray1
boo_array1

[0.3, $0.4, ~ 1.4$,
[False, True, True, F
[0.4, 1.4, 0.1]
array1[boo_array1] [0.4, 1.4, 0.1]
\# Note: array1 and boo_array1 have the same shape

array1	$[0.3$,	0.4,	1.4,	1.7,
boo_array2	[True, False, False, False,	True]		

array1[boo_array2] [0.3, 0.1]
If True, then the entry is selected.
Identical shape requirement.

Boolean indexing (Quiz 1)

This quiz is in numpy_boolean_indexing_1.py

array1
[0.3,
0.4,
1.4,
1.7,
0.1]
array1 >= 1
[False, False, True, True, False]
\# Think about what the following would give before \# trying it out array1[array1 >= 1]

Boolean indexing (Quiz 2)

This quiz is in

numpy_boolean_indexing_1.py
array1
[0.3, $0.4, \quad 1.4,1.7,0.1]$
array1 >= 1
[False, False, True, True, False]
array2
[1.1, 0.1,
$0.8,0.3,1.5]$
\# Think about what the following would give before \# trying it out array2[array1 >= 1]

Boolean indexing (Quiz 3)

This quiz is in

numpy_boolean_indexing_1.py
temp_array contains temperature measurements
[24.5, 31.5, 27.4, 34.1, 33.2, 28.9, 27.9, 34.8]
week_array $\quad[1,2,3,4,5,6,7,8]$
\# Temperature in Week 1 is 24.5
\# Temperature in Week 2 is 31.5

Use Boolean indexing to find the week numbers that have temperature >= 30
Expect: [2, 4, 5, 8]

Boolean indexing (Further examples)

- numpy_boolean_indexing_2.py for 1 dimensional arrays
- This introduces Boolean operators:
- \& I, ~ (for AND, OR and NOT respectively)
- Using assignment with Boolean indexing
- numpy_boolean_indexing_3.py for 2 dimensional arrays
- There is also a quiz
- Quiz answer:

Forum exercise

- This is a forum exercise which puts together what you have learnt today
- Consider the following array which contains some sensor measurements

$$
\begin{aligned}
& \text { np.array(}
\end{aligned}
$$

$$
\begin{aligned}
& \text {) }
\end{aligned}
$$

- Each row contain the readings from a sensor
- Each column contains the readings at a specific time
- (To be continued on the next page)

Forum exercise (cont'd)

- You want to compute the average at each time from the five sensor readings
- If you use all the data, you would use
- numpy.mean(, axis = 0)

$$
\begin{aligned}
& \text { np.array(}
\end{aligned}
$$

- However, you have reasons to believe the sensor readings which are >= 1 are due to faulty sensors and you want to exclude them when you compute the average
- (To be continued on the next page)

Forum exercise (cont'd)

- The array on yellow background shows the final result that you want

ay(
[[0.4,	0.4,	0.6,	0.5 ,	0.7,	0.8,	0.8 ,	0.5,	0.0,	0.7],
0.4,	0.4,	0.8 ,	0.4,	0.8 ,	1.1,	0.9 ,	0.4,	1.1,	1.1],
0.4,	1.1,	0.8 ,	0.3,	0.7 ,	1.1,	0.9 ,	0.5 ,	1.1,	0.6],
0.4,	0.5 ,	0.6,	0.4 ,	0.9 ,	1.2,	0.8 ,	0.5 ,	0.1 ,	0.6],
[0.3,	0.4,	0.8,	0.3 ,	0.8 ,	0.7 ,	0.7,	0.4 ,	0.2 ,	0.7]]

> Average of 0.0, 0.1 and 0.2
[0.38, 0.425, 0.72, 0.38, 0.78, 0.75, 0.82, 0.46, 0.1, 0.65]

Forum exercise (Hint)

- Hint: For each column, sum only entries that are less 1
- I used 5 lines of code to do that (no loops)

Average all	Average of 0.8 and 0.7

Average of 0.0, 0.1 and 0.2
[0.38, 0.425, 0.72, 0.38, 0.78, 0.75, 0.82, 0.46, 0.1, 0.65]

Mutable and immutable data types

You can modify part of a list

- You can modify the elements in a list by assigning new values to them

In [11]: $x=[11,22,33,43,55]$
In [12]: $x[3]=44$
In [13]: x
Out [13]: [11, 22, 33, 44, 55]
In [14]: $x[2: 4]=[37,47]$
In [15]: x Out [15]: [11, 22, 37, 47, 55]

String as a sequence of characters

```
In [12]: word = 'silly'
In [13]: word[0]
Out[13]: 's'
In [14]: word[1]
Out[14]: 'i'
In [15]: word[2]
Out[15]: 'l'
In [16]: word[3]
Out[16]: 'l'
In [17]: word[4]
Out[17]: 'y'
```


But you can't modify part of a string

In [16]: word = 'silly'
In [17]: word[0] = 'b'
\leftarrow Error
Traceback (most recent call last):

$$
\begin{aligned}
& \text { File "<ipython-input-17-3b299587d77e>", line 1, in <module> } \\
& \text { word }[0]=\text { 'b' }
\end{aligned}
$$

TypeError: 'str' object does not support item assignment

In [18]: word = 'billy'
\leftarrow You can't change part of a string but you can assign an entirely new string

Tuples

- A tuple is a sequence of elements enclosed in ()
- For example, the numpy where () function returns a tuple, the shape of a numpy function is given in a tuple
- Tuples are in many ways similar to lists
- But you can't modify tuples

```
In [16]: t = (3,7,21) # A tuple with 3 elements
In [17]: t[1]
Out[17]: 7
In [18]: t[0:2]
Out[18]: (3, 7)
In [19]: t[1] = 10
Traceback (most recent call last):
```

File "<ipython-input-19-5a9388635924>", line 1, in <module>
$\mathrm{t}[1]=10$

TypeError: 'tuple' object does not support item assignment

Mutable and immutable data types

- The data types in Python are divided into 2 kinds
- Mutable
- Immutable
- Lists, numpy arrays (and dictionaries) are mutable
- You can change the individual elements
- Strings are immutable
- So are int, float, bool, tuples
- Note: dictionaries is a datatype in Python
- E.g. We won't be covering dictionaries in this course

Simplified mental picture on variables [From Week 1]

- Variables are stored in computer memory
- A variable has a name and a value
- A mental picture is:

A program manipulates variables to achieve its goal

Note: This is a simplified view. We will introduce the more accurate view later in the course.

How Python really stores variables

- In order to understand mutability, we need to understand how Python stores variables

In [100]: $x=5.5$
Variable x is associated with
In [101]: type(x) Out [101]: float

In [102]: id(x) Out[102]: 4728505688
x 4728505688

4728505688
The identifier is associated with the data type and a value. For a list, a sequence of values
float
5.5

Indirect association

The most important concept that you need to know is that a variable name is associated with its value via an identifier

Variable x is associated with an identifier
x 4728505688

The identifier is associated with the data type and a value.
For a list, a sequence of values

4728505688 float
5.5

Copying a mutable type

- We will look at and run the code in mut_1.py

```
14 list1 = [10,11,12,13]
15 list2 = list1
id of list1 = 4728419656
id of list2 = 4728419656
```

list1 4728419656
list2 4728419656

Note: You will not get the same id shown above when you run the program. The essence is whether list1 or list2 have the same or different id

Lessons learnt

- The key lessons learnt from mut_1.py are
- There are two different ways to copy lists

$$
\text { list2 }=\text { list1 }
$$

Note: Both variable names are associated with the SAME list
list4 = list3[:]

Note: The variable names are associated with different list

You can visualise the code on Python tutor.
See the screenshot from Python tutor on the next page.

1 list1 $=[10,11,12,13]$
2 list2 = list1

4 list3 $=[10,11,12,13]$
5 list4 = list3[:]
Frames Objects

Modifying list using functions

- We say in Week 2 that the scope of the variables in a function is local. This is true for immutable objects.
- For mutable data type, you can modify them by using functions
- Let us look at the examples in mut_2.py

How functions interact with parameters

- There are two ways that functions treat the parameters
- Functions that do not modify the parameters
- Pass by value
- Functions that do modify the parameters
- Pass by reference

Pass by value

- In the example below, the values 4 and 2 are passed to the function
- The function does not modify the variables a and b
- Separate memory spaces for the variables within the function
def my_power(x,n):

$$
a=4 ; b=2
$$

$$
z=\text { my_power }(a, b) \quad x \leftarrow 4
$$

$$
\mathrm{n} \leftarrow 2
$$

Pass by reference

\downarrow From mut_2.py

Memory requirement: passing list by reference

def extend(input_list): input_list.append(-1)
\leftarrow Need memory to store list0 only

```
list0 = [5, 11, 12, 13]
extend(list0)
Objects
```


Memory requirement: passing list by value

def extend(input_list): input_list.append(-1)
list0 $=[5,11,12,13]$ extend(list0[:])

The list is now passed by value.

Why mutable data types?

- Allow pass by reference
- Lower memory requirement. Saves time to locate vacant memory and to duplicate the list.
- Beneficial if the list is long
- More data is collected than in the past, so large data sets become more prevalent

numpy arrays

- numpy arrays are mutable
- If you want to copy the contents of an array into another without associating them, you need to use the numpy function copy()
- See mut_3.py

Summary

- Numpy elementwise operations allow you to do computation with arrays without using for-loops
- Loops generally require more lines of code
- numpy topics covered
- Broadcasting
- Element selection with
- Slicing
- The :: notation
- Boolean indexing

Summary

- Immutable: int, float, bool, str, tuple
- Mutable: list, numpy array
- Different ways copy mutable types
- Pass by value, pass by reference
- Passing by reference for list, numpy arrays
- Beware that the function can modify the list/array
- Memory requirement

