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(continued from previous page)
return Fraction(a.numerator * b.denominator +

b.numerator * a.denominator,
a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

# ...

9.2 math—Mathematical functions

This module provides access to the mathematical functions defined by the C standard.
These functions cannot be used with complex numbers; use the functions of the same name from the cmathmodule
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the
first place.
The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

9.2.1 Number-theoretic and representation functions

math.ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.
__ceil__(), which should return an Integral value.

math.comb(n, k)
Return the number of ways to choose k items from n items without repetition and without order.
Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n.
Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial ex-
pansion of the expression (1 + x) ** n.
Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the argu-
ments are negative.
New in version 3.8.

math.copysign(x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed
zeros, copysign(1.0, -0.0) returns -1.0.

math.fabs(x)
Return the absolute value of x.

math.factorial(x)
Return x factorial as an integer. Raises ValueError if x is not integral or is negative.

math.floor(x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x.
__floor__(), which should return an Integral value.

math.fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod(x, y) be exactly (mathematically;
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to infinite precision) equal to x - n*y for some integer n such that the result has the same sign as x and
magnitude less than abs(y). Python’s x % y returns a result with the sign of y instead, and may not be
exactly computable for float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but the
result of Python’s -1e-100 % 1e100 is 1e100-1e-100, which cannot be represented exactly as a float,
and rounds to the surprising 1e100. For this reason, function fmod() is generally preferred when working
with floats, while Python’s x % y is preferred when working with integers.

math.frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x == m
* 2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

math.fsum(iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition
and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.
For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.

math.gcd(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the value of
gcd(a, b) is the largest positive integer that divides both a and b. gcd(0, 0) returns 0.
New in version 3.5.

math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.
Whether or not two values are considered close is determined according to given absolute and relative toler-
ances.
rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tolmust be greater
than zero.
abs_tol is the minimum absolute tolerance – useful for comparisons near zero. abs_tol must be at least zero.
If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)),
abs_tol).
The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close to
themselves.
New in version 3.5.
See also:
PEP 485 – A function for testing approximate equality

math.isfinite(x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered finite.)
New in version 3.2.

math.isinf(x)
Return True if x is a positive or negative infinity, and False otherwise.
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math.isnan(x)
Return True if x is a NaN (not a number), and False otherwise.

math.isqrt(n)
Return the integer square root of the nonnegative integer n. This is the floor of the exact square root of n, or
equivalently the greatest integer a such that a² ≤ n.
For some applications, it may be more convenient to have the least integer a such that n ≤ a², or in other words
the ceiling of the exact square root of n. For positive n, this can be computed using a = 1 + isqrt(n -
1).
New in version 3.8.

math.ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().

math.modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.perm(n, k=None)
Return the number of ways to choose k items from n items without repetition and with order.
Evaluates to n! / (n - k)! when k <= n and evaluates to zero when k > n.
If k is not specified or is None, then k defaults to n and the function returns n!.
Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the argu-
ments are negative.
New in version 3.8.

math.prod(iterable, *, start=1)
Calculate the product of all the elements in the input iterable. The default start value for the product is 1.
When the iterable is empty, return the start value. This function is intended specifically for use with numeric
values and may reject non-numeric types.
New in version 3.8.

math.remainder(x, y)
Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the
difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x / y is
exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r =
remainder(x, y) thus always satisfies abs(r) <= 0.5 * abs(y).
Special cases follow IEEE 754: in particular, remainder(x, math.inf) is x for any finite x, and
remainder(x, 0) and remainder(math.inf, x) raise ValueError for any non-NaN x. If the
result of the remainder operation is zero, that zero will have the same sign as x.
On platforms using IEEE 754 binary floating-point, the result of this operation is always exactly representable:
no rounding error is introduced.
New in version 3.7.

math.trunc(x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__().

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).
For the ceil(), floor(), and modf() functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs(x) >= 2**52 necessarily has no fractional bits.
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9.2.2 Power and logarithmic functions

math.exp(x)
Return e raised to the power x, where e = 2.718281… is the base of natural logarithms. This is usually more
accurate than math.e ** x or pow(math.e, x).

math.expm1(x)
Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the
subtraction in exp(x) - 1 can result in a significant loss of precision; the expm1() function provides a
way to compute this quantity to full precision:

>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05

New in version 3.2.
math.log(x[, base])

With one argument, return the natural logarithm of x (to base e).
With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).

math.log1p(x)
Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near
zero.

math.log2(x)
Return the base-2 logarithm of x. This is usually more accurate than log(x, 2).
New in version 3.3.
See also:
int.bit_length() returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.log10(x)
Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).

math.pow(x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN.
If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises
ValueError.
Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use ** or the
built-in pow() function for computing exact integer powers.

math.sqrt(x)
Return the square root of x.

9.2.3 Trigonometric functions

math.acos(x)
Return the arc cosine of x, in radians.

math.asin(x)
Return the arc sine of x, in radians.

math.atan(x)
Return the arc tangent of x, in radians.
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math.atan2(y, x)
Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan2() is that the signs of
both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan(1) and
atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

math.cos(x)
Return the cosine of x radians.

math.dist(p, q)
Return the Euclidean distance between two points p and q, each given as a sequence (or iterable) of coordinates.
The two points must have the same dimension.
Roughly equivalent to:

sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

New in version 3.8.
math.hypot(*coordinates)

Return the Euclidean norm, sqrt(sum(x**2 for x in coordinates)). This is the length of the
vector from the origin to the point given by the coordinates.
For a two dimensional point (x, y), this is equivalent to computing the hypotenuse of a right triangle using
the Pythagorean theorem, sqrt(x*x + y*y).
Changed in version 3.8: Added support for n-dimensional points. Formerly, only the two dimensional case was
supported.

math.sin(x)
Return the sine of x radians.

math.tan(x)
Return the tangent of x radians.

9.2.4 Angular conversion

math.degrees(x)
Convert angle x from radians to degrees.

math.radians(x)
Convert angle x from degrees to radians.

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.
math.acosh(x)

Return the inverse hyperbolic cosine of x.
math.asinh(x)

Return the inverse hyperbolic sine of x.
math.atanh(x)

Return the inverse hyperbolic tangent of x.
math.cosh(x)

Return the hyperbolic cosine of x.
math.sinh(x)

Return the hyperbolic sine of x.
math.tanh(x)

Return the hyperbolic tangent of x.
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9.2.6 Special functions

math.erf(x)
Return the error function at x.
The erf() function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

def phi(x):
'Cumulative distribution function for the standard normal distribution'
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.
math.erfc(x)

Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf(x). It is used for large values of x where a subtraction from one would cause a loss of significance.
New in version 3.2.

math.gamma(x)
Return the Gamma function at x.
New in version 3.2.

math.lgamma(x)
Return the natural logarithm of the absolute value of the Gamma function at x.
New in version 3.2.

9.2.7 Constants

math.pi
The mathematical constant π = 3.141592…, to available precision.

math.e
The mathematical constant e = 2.718281…, to available precision.

math.tau
The mathematical constant τ = 6.283185…, to available precision. Tau is a circle constant equal to 2π, the
ratio of a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video Pi is (still)
Wrong, and start celebrating Tau day by eating twice as much pie!
New in version 3.6.

math.inf
A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float('inf').
New in version 3.5.

math.nan
A floating-point “not a number” (NaN) value. Equivalent to the output of float('nan').
New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt(-1.0) or log(0.0) (where C99 An-
nex F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow
(for example, exp(1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F)
there are some exceptions to this rule, for example pow(float('nan'), 0.0) or hypot(float('nan'),
float('inf')).
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Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.
See also:
Module cmath Complex number versions of many of these functions.

9.3 cmath—Mathematical functions for complex numbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept
integers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
either a __complex__() or a __float__()method: these methods are used to convert the object to a complex
or floating-point number, respectively, and the function is then applied to the result of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z.real and its imaginary part z.imag. In other words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.
The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase(x)
Return the phase of x (also known as the argument of x), as a float. phase(x) is equivalent to math.
atan2(x.imag, x.real). The result lies in the range [-π, π], and the branch cut for this operation lies
along the negative real axis, continuous from above. On systems with support for signed zeros (which includes
most systems in current use), this means that the sign of the result is the same as the sign of x.imag, even
when x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.141592653589793
>>> phase(complex(-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs() function.
There is no separate cmath module function for this operation.

cmath.polar(x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar(x) is equivalent to (abs(x), phase(x)).
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