
The Python Library Reference, Release 3.8.14

(continued from previous page)
return Fraction(a.numerator * b.denominator +

b.numerator * a.denominator,
a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

...

9.2 math—Mathematical functions

This module provides access to the mathematical functions defined by the C standard.
These functions cannot be used with complex numbers; use the functions of the same name from the cmathmodule
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the
first place.
The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

9.2.1 Number-theoretic and representation functions

math.ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.
__ceil__(), which should return an Integral value.

math.comb(n, k)
Return the number of ways to choose k items from n items without repetition and without order.
Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n.
Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial ex-
pansion of the expression (1 + x) ** n.
Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the argu-
ments are negative.
New in version 3.8.

math.copysign(x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed
zeros, copysign(1.0, -0.0) returns -1.0.

math.fabs(x)
Return the absolute value of x.

math.factorial(x)
Return x factorial as an integer. Raises ValueError if x is not integral or is negative.

math.floor(x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x.
__floor__(), which should return an Integral value.

math.fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod(x, y) be exactly (mathematically;

280 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.8.14

to infinite precision) equal to x - n*y for some integer n such that the result has the same sign as x and
magnitude less than abs(y). Python’s x % y returns a result with the sign of y instead, and may not be
exactly computable for float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but the
result of Python’s -1e-100 % 1e100 is 1e100-1e-100, which cannot be represented exactly as a float,
and rounds to the surprising 1e100. For this reason, function fmod() is generally preferred when working
with floats, while Python’s x % y is preferred when working with integers.

math.frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x == m
* 2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

math.fsum(iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition
and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.
For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.

math.gcd(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the value of
gcd(a, b) is the largest positive integer that divides both a and b. gcd(0, 0) returns 0.
New in version 3.5.

math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.
Whether or not two values are considered close is determined according to given absolute and relative toler-
ances.
rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tolmust be greater
than zero.
abs_tol is the minimum absolute tolerance – useful for comparisons near zero. abs_tol must be at least zero.
If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)),
abs_tol).
The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close to
themselves.
New in version 3.5.
See also:
PEP 485 – A function for testing approximate equality

math.isfinite(x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered finite.)
New in version 3.2.

math.isinf(x)
Return True if x is a positive or negative infinity, and False otherwise.

9.2. math—Mathematical functions 281

https://code.activestate.com/recipes/393090/
https://code.activestate.com/recipes/393090/
https://www.python.org/dev/peps/pep-0485

The Python Library Reference, Release 3.8.14

math.isnan(x)
Return True if x is a NaN (not a number), and False otherwise.

math.isqrt(n)
Return the integer square root of the nonnegative integer n. This is the floor of the exact square root of n, or
equivalently the greatest integer a such that a² ≤ n.
For some applications, it may be more convenient to have the least integer a such that n ≤ a², or in other words
the ceiling of the exact square root of n. For positive n, this can be computed using a = 1 + isqrt(n -
1).
New in version 3.8.

math.ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().

math.modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.perm(n, k=None)
Return the number of ways to choose k items from n items without repetition and with order.
Evaluates to n! / (n - k)! when k <= n and evaluates to zero when k > n.
If k is not specified or is None, then k defaults to n and the function returns n!.
Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the argu-
ments are negative.
New in version 3.8.

math.prod(iterable, *, start=1)
Calculate the product of all the elements in the input iterable. The default start value for the product is 1.
When the iterable is empty, return the start value. This function is intended specifically for use with numeric
values and may reject non-numeric types.
New in version 3.8.

math.remainder(x, y)
Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the
difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x / y is
exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r =
remainder(x, y) thus always satisfies abs(r) <= 0.5 * abs(y).
Special cases follow IEEE 754: in particular, remainder(x, math.inf) is x for any finite x, and
remainder(x, 0) and remainder(math.inf, x) raise ValueError for any non-NaN x. If the
result of the remainder operation is zero, that zero will have the same sign as x.
On platforms using IEEE 754 binary floating-point, the result of this operation is always exactly representable:
no rounding error is introduced.
New in version 3.7.

math.trunc(x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__().

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).
For the ceil(), floor(), and modf() functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs(x) >= 2**52 necessarily has no fractional bits.

282 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.8.14

9.2.2 Power and logarithmic functions

math.exp(x)
Return e raised to the power x, where e = 2.718281… is the base of natural logarithms. This is usually more
accurate than math.e ** x or pow(math.e, x).

math.expm1(x)
Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the
subtraction in exp(x) - 1 can result in a significant loss of precision; the expm1() function provides a
way to compute this quantity to full precision:

>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05

New in version 3.2.
math.log(x[, base])

With one argument, return the natural logarithm of x (to base e).
With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).

math.log1p(x)
Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near
zero.

math.log2(x)
Return the base-2 logarithm of x. This is usually more accurate than log(x, 2).
New in version 3.3.
See also:
int.bit_length() returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.log10(x)
Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).

math.pow(x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN.
If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises
ValueError.
Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use ** or the
built-in pow() function for computing exact integer powers.

math.sqrt(x)
Return the square root of x.

9.2.3 Trigonometric functions

math.acos(x)
Return the arc cosine of x, in radians.

math.asin(x)
Return the arc sine of x, in radians.

math.atan(x)
Return the arc tangent of x, in radians.

9.2. math—Mathematical functions 283

https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.8.14

math.atan2(y, x)
Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan2() is that the signs of
both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan(1) and
atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

math.cos(x)
Return the cosine of x radians.

math.dist(p, q)
Return the Euclidean distance between two points p and q, each given as a sequence (or iterable) of coordinates.
The two points must have the same dimension.
Roughly equivalent to:

sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

New in version 3.8.
math.hypot(*coordinates)

Return the Euclidean norm, sqrt(sum(x**2 for x in coordinates)). This is the length of the
vector from the origin to the point given by the coordinates.
For a two dimensional point (x, y), this is equivalent to computing the hypotenuse of a right triangle using
the Pythagorean theorem, sqrt(x*x + y*y).
Changed in version 3.8: Added support for n-dimensional points. Formerly, only the two dimensional case was
supported.

math.sin(x)
Return the sine of x radians.

math.tan(x)
Return the tangent of x radians.

9.2.4 Angular conversion

math.degrees(x)
Convert angle x from radians to degrees.

math.radians(x)
Convert angle x from degrees to radians.

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.
math.acosh(x)

Return the inverse hyperbolic cosine of x.
math.asinh(x)

Return the inverse hyperbolic sine of x.
math.atanh(x)

Return the inverse hyperbolic tangent of x.
math.cosh(x)

Return the hyperbolic cosine of x.
math.sinh(x)

Return the hyperbolic sine of x.
math.tanh(x)

Return the hyperbolic tangent of x.

284 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Hyperbolic_function

The Python Library Reference, Release 3.8.14

9.2.6 Special functions

math.erf(x)
Return the error function at x.
The erf() function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

def phi(x):
'Cumulative distribution function for the standard normal distribution'
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.
math.erfc(x)

Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf(x). It is used for large values of x where a subtraction from one would cause a loss of significance.
New in version 3.2.

math.gamma(x)
Return the Gamma function at x.
New in version 3.2.

math.lgamma(x)
Return the natural logarithm of the absolute value of the Gamma function at x.
New in version 3.2.

9.2.7 Constants

math.pi
The mathematical constant π = 3.141592…, to available precision.

math.e
The mathematical constant e = 2.718281…, to available precision.

math.tau
The mathematical constant τ = 6.283185…, to available precision. Tau is a circle constant equal to 2π, the
ratio of a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video Pi is (still)
Wrong, and start celebrating Tau day by eating twice as much pie!
New in version 3.6.

math.inf
A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float('inf').
New in version 3.5.

math.nan
A floating-point “not a number” (NaN) value. Equivalent to the output of float('nan').
New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt(-1.0) or log(0.0) (where C99 An-
nex F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow
(for example, exp(1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F)
there are some exceptions to this rule, for example pow(float('nan'), 0.0) or hypot(float('nan'),
float('inf')).

9.2. math—Mathematical functions 285

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://tauday.com/

The Python Library Reference, Release 3.8.14

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.
See also:
Module cmath Complex number versions of many of these functions.

9.3 cmath—Mathematical functions for complex numbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept
integers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
either a __complex__() or a __float__()method: these methods are used to convert the object to a complex
or floating-point number, respectively, and the function is then applied to the result of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z.real and its imaginary part z.imag. In other words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.
The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase(x)
Return the phase of x (also known as the argument of x), as a float. phase(x) is equivalent to math.
atan2(x.imag, x.real). The result lies in the range [-π, π], and the branch cut for this operation lies
along the negative real axis, continuous from above. On systems with support for signed zeros (which includes
most systems in current use), this means that the sign of the result is the same as the sign of x.imag, even
when x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.141592653589793
>>> phase(complex(-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs() function.
There is no separate cmath module function for this operation.

cmath.polar(x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar(x) is equivalent to (abs(x), phase(x)).

286 Chapter 9. Numeric and Mathematical Modules

	Introduction
	Notes on availability

	Built-in Functions
	Built-in Constants
	Constants added by the site module

	Built-in Types
	Truth Value Testing
	Boolean Operations — and, or, not
	Comparisons
	Numeric Types — int, float, complex
	Iterator Types
	Sequence Types — list, tuple, range
	Text Sequence Type — str
	Binary Sequence Types — bytes, bytearray, memoryview
	Set Types — set, frozenset
	Mapping Types — dict
	Context Manager Types
	Other Built-in Types
	Special Attributes
	Integer string conversion length limitation

	Built-in Exceptions
	Base classes
	Concrete exceptions
	Warnings
	Exception hierarchy

	Text Processing Services
	string — Common string operations
	re — Regular expression operations
	difflib — Helpers for computing deltas
	textwrap — Text wrapping and filling
	unicodedata — Unicode Database
	stringprep — Internet String Preparation
	readline — GNU readline interface
	rlcompleter — Completion function for GNU readline

	Binary Data Services
	struct — Interpret bytes as packed binary data
	codecs — Codec registry and base classes

	Data Types
	datetime — Basic date and time types
	calendar — General calendar-related functions
	collections — Container datatypes
	collections.abc — Abstract Base Classes for Containers
	heapq — Heap queue algorithm
	bisect — Array bisection algorithm
	array — Efficient arrays of numeric values
	weakref — Weak references
	types — Dynamic type creation and names for built-in types
	copy — Shallow and deep copy operations
	pprint — Data pretty printer
	reprlib — Alternate repr() implementation
	enum — Support for enumerations

	Numeric and Mathematical Modules
	numbers — Numeric abstract base classes
	math — Mathematical functions
	cmath — Mathematical functions for complex numbers
	decimal — Decimal fixed point and floating point arithmetic
	fractions — Rational numbers
	random — Generate pseudo-random numbers
	statistics — Mathematical statistics functions

	Functional Programming Modules
	itertools — Functions creating iterators for efficient looping
	functools — Higher-order functions and operations on callable objects
	operator — Standard operators as functions

	File and Directory Access
	pathlib — Object-oriented filesystem paths
	os.path — Common pathname manipulations
	fileinput — Iterate over lines from multiple input streams
	stat — Interpreting stat() results
	filecmp — File and Directory Comparisons
	tempfile — Generate temporary files and directories
	glob — Unix style pathname pattern expansion
	fnmatch — Unix filename pattern matching
	linecache — Random access to text lines
	shutil — High-level file operations

	Data Persistence
	pickle — Python object serialization
	copyreg — Register pickle support functions
	shelve — Python object persistence
	marshal — Internal Python object serialization
	dbm — Interfaces to Unix “databases”
	sqlite3 — DB-API 2.0 interface for SQLite databases

	Data Compression and Archiving
	zlib — Compression compatible with gzip
	gzip — Support for gzip files
	bz2 — Support for bzip2 compression
	lzma — Compression using the LZMA algorithm
	zipfile — Work with ZIP archives
	tarfile — Read and write tar archive files

	File Formats
	csv — CSV File Reading and Writing
	configparser — Configuration file parser
	netrc — netrc file processing
	xdrlib — Encode and decode XDR data
	plistlib — Generate and parse Mac OS X .plist files

	Cryptographic Services
	hashlib — Secure hashes and message digests
	hmac — Keyed-Hashing for Message Authentication
	secrets — Generate secure random numbers for managing secrets

	Generic Operating System Services
	os — Miscellaneous operating system interfaces
	io — Core tools for working with streams
	time — Time access and conversions
	argparse — Parser for command-line options, arguments and sub-commands
	getopt — C-style parser for command line options
	logging — Logging facility for Python
	logging.config — Logging configuration
	logging.handlers — Logging handlers
	getpass — Portable password input
	curses — Terminal handling for character-cell displays
	curses.textpad — Text input widget for curses programs
	curses.ascii — Utilities for ASCII characters
	curses.panel — A panel stack extension for curses
	platform — Access to underlying platform’s identifying data
	errno — Standard errno system symbols
	ctypes — A foreign function library for Python

	Concurrent Execution
	threading — Thread-based parallelism
	multiprocessing — Process-based parallelism
	multiprocessing.shared_memory — Provides shared memory for direct access across processes
	The concurrent package
	concurrent.futures — Launching parallel tasks
	subprocess — Subprocess management
	sched — Event scheduler
	queue — A synchronized queue class
	contextvars — Context Variables
	_thread — Low-level threading API
	_dummy_thread — Drop-in replacement for the _thread module
	dummy_threading — Drop-in replacement for the threading module

	Networking and Interprocess Communication
	asyncio — Asynchronous I/O
	socket — Low-level networking interface
	ssl — TLS/SSL wrapper for socket objects
	select — Waiting for I/O completion
	selectors — High-level I/O multiplexing
	asyncore — Asynchronous socket handler
	asynchat — Asynchronous socket command/response handler
	signal — Set handlers for asynchronous events
	mmap — Memory-mapped file support

	Internet Data Handling
	email — An email and MIME handling package
	json — JSON encoder and decoder
	mailcap — Mailcap file handling
	mailbox — Manipulate mailboxes in various formats
	mimetypes — Map filenames to MIME types
	base64 — Base16, Base32, Base64, Base85 Data Encodings
	binhex — Encode and decode binhex4 files
	binascii — Convert between binary and ASCII
	quopri — Encode and decode MIME quoted-printable data
	uu — Encode and decode uuencode files

	Structured Markup Processing Tools
	html — HyperText Markup Language support
	html.parser — Simple HTML and XHTML parser
	html.entities — Definitions of HTML general entities
	XML Processing Modules
	xml.etree.ElementTree — The ElementTree XML API
	xml.dom — The Document Object Model API
	xml.dom.minidom — Minimal DOM implementation
	xml.dom.pulldom — Support for building partial DOM trees
	xml.sax — Support for SAX2 parsers
	xml.sax.handler — Base classes for SAX handlers
	xml.sax.saxutils — SAX Utilities
	xml.sax.xmlreader — Interface for XML parsers
	xml.parsers.expat — Fast XML parsing using Expat

	Internet Protocols and Support
	webbrowser — Convenient Web-browser controller
	cgi — Common Gateway Interface support
	cgitb — Traceback manager for CGI scripts
	wsgiref — WSGI Utilities and Reference Implementation
	urllib — URL handling modules
	urllib.request — Extensible library for opening URLs
	urllib.response — Response classes used by urllib
	urllib.parse — Parse URLs into components
	urllib.error — Exception classes raised by urllib.request
	urllib.robotparser — Parser for robots.txt
	http — HTTP modules
	http.client — HTTP protocol client
	ftplib — FTP protocol client
	poplib — POP3 protocol client
	imaplib — IMAP4 protocol client
	nntplib — NNTP protocol client
	smtplib — SMTP protocol client
	smtpd — SMTP Server
	telnetlib — Telnet client
	uuid — UUID objects according to RFC 4122
	socketserver — A framework for network servers
	http.server — HTTP servers
	http.cookies — HTTP state management
	http.cookiejar — Cookie handling for HTTP clients
	xmlrpc — XMLRPC server and client modules
	xmlrpc.client — XML-RPC client access
	xmlrpc.server — Basic XML-RPC servers
	ipaddress — IPv4/IPv6 manipulation library

	Multimedia Services
	audioop — Manipulate raw audio data
	aifc — Read and write AIFF and AIFC files
	sunau — Read and write Sun AU files
	wave — Read and write WAV files
	chunk — Read IFF chunked data
	colorsys — Conversions between color systems
	imghdr — Determine the type of an image
	sndhdr — Determine type of sound file
	ossaudiodev — Access to OSS-compatible audio devices

	Internationalization
	gettext — Multilingual internationalization services
	locale — Internationalization services

	Program Frameworks
	turtle — Turtle graphics
	cmd — Support for line-oriented command interpreters
	shlex — Simple lexical analysis

	Graphical User Interfaces with Tk
	tkinter — Python interface to Tcl/Tk
	tkinter.ttk — Tk themed widgets
	tkinter.tix — Extension widgets for Tk
	tkinter.scrolledtext — Scrolled Text Widget
	IDLE
	Other Graphical User Interface Packages

	Development Tools
	typing — Support for type hints
	pydoc — Documentation generator and online help system
	doctest — Test interactive Python examples
	unittest — Unit testing framework
	unittest.mock — mock object library
	unittest.mock — getting started
	2to3 - Automated Python 2 to 3 code translation
	test — Regression tests package for Python
	test.support — Utilities for the Python test suite
	test.support.script_helper — Utilities for the Python execution tests

	Debugging and Profiling
	Audit events table
	bdb — Debugger framework
	faulthandler — Dump the Python traceback
	pdb — The Python Debugger
	The Python Profilers
	timeit — Measure execution time of small code snippets
	trace — Trace or track Python statement execution
	tracemalloc — Trace memory allocations

	Software Packaging and Distribution
	distutils — Building and installing Python modules
	ensurepip — Bootstrapping the pip installer
	venv — Creation of virtual environments
	zipapp — Manage executable Python zip archives

	Python Runtime Services
	sys — System-specific parameters and functions
	sysconfig — Provide access to Python’s configuration information
	builtins — Built-in objects
	__main__ — Top-level script environment
	warnings — Warning control
	dataclasses — Data Classes
	contextlib — Utilities for with-statement contexts
	abc — Abstract Base Classes
	atexit — Exit handlers
	traceback — Print or retrieve a stack traceback
	__future__ — Future statement definitions
	gc — Garbage Collector interface
	inspect — Inspect live objects
	site — Site-specific configuration hook

	Custom Python Interpreters
	code — Interpreter base classes
	codeop — Compile Python code

	Importing Modules
	zipimport — Import modules from Zip archives
	pkgutil — Package extension utility
	modulefinder — Find modules used by a script
	runpy — Locating and executing Python modules
	importlib — The implementation of import
	Using importlib.metadata

	Python Language Services
	parser — Access Python parse trees
	ast — Abstract Syntax Trees
	symtable — Access to the compiler’s symbol tables
	symbol — Constants used with Python parse trees
	token — Constants used with Python parse trees
	keyword — Testing for Python keywords
	tokenize — Tokenizer for Python source
	tabnanny — Detection of ambiguous indentation
	pyclbr — Python module browser support
	py_compile — Compile Python source files
	compileall — Byte-compile Python libraries
	dis — Disassembler for Python bytecode
	pickletools — Tools for pickle developers

	Miscellaneous Services
	formatter — Generic output formatting

	MS Windows Specific Services
	msilib — Read and write Microsoft Installer files
	msvcrt — Useful routines from the MS VC++ runtime
	winreg — Windows registry access
	winsound — Sound-playing interface for Windows

	Unix Specific Services
	posix — The most common POSIX system calls
	pwd — The password database
	spwd — The shadow password database
	grp — The group database
	crypt — Function to check Unix passwords
	termios — POSIX style tty control
	tty — Terminal control functions
	pty — Pseudo-terminal utilities
	fcntl — The fcntl and ioctl system calls
	pipes — Interface to shell pipelines
	resource — Resource usage information
	nis — Interface to Sun’s NIS (Yellow Pages)
	syslog — Unix syslog library routines

	Superseded Modules
	optparse — Parser for command line options
	imp — Access the import internals

	Undocumented Modules
	Platform specific modules

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Bibliography
	Python Module Index
	Index

