
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W9 slide 1

Week 3A: for, list processing, range,
project

ENGG1811 Computing for Engineers

Lecture 3A

• The key topic today is the for-loop

• We will also do an in-class project which makes use of a
few topics that you have learnt so far. These topics are:
– List, for-loop, function, plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

Why using loops in programming?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

• Let us hear from Mark Zuckerberg (founder of Facebook)
on why you need loops in programming

• https://www.youtube.com/watch?v=mgooqyWMTxk

https://www.youtube.com/watch?v=mgooqyWMTxk

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 4

Iteration (Repetition)

• Often need to execute statements repeatedly

• Loops are statements that can do this

• Process is called iteration

• Kinds of loop:
– For (iterate a fixed number of times)

– While (iterate as long as something is True)
• We will spend a part of the lecture in the next few

weeks to learn about loops

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 5

G’day, mate!

• I wish to say G’day to the students in an ENGG1811 class

• I’ve created a list of names. There are 259 names.

We can use the following code:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

There are still 241 lines L

The enlightened way

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 7

These two lines of code
print out the 259 G’day

• The code is in gday.py

Writing for-loop
• End result wanted

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

• Long code

The same for
each line

Vary for
each line

• For loop
A list containing what is to be varied for each line

For loop

for name in ["Charlie", "Hannah", "Olivia", "Usman"]:
print("G'day, ",name)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

• The code is in gday_explained.py

• Let us copy the code to Python Tutor and see how it is
executed

• http://pythontutor.com/

http://pythontutor.com/

The for-loop explained

• The variable name is called the loop variable
• Code under for-loop is indented
• The loop variable is assigned to the first item in the list
• name is now the string "Charlie”. The code in the for-loop is

executed with the variable name having the value of “Charlie“
• After executing the code under the for-loop, the execution returns

to the for-line. The computer checks whether there is a next item
in the list. Yes, there is and the computer assigns "Hannah" to the
variable name. The code in the for-loop is executed assuming this
value of name

• This is repeated until all items in the list have been used
ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

for name in ["Charlie", "Hannah", "Olivia", "Usman"]:
 print("G'day, ",name)

Flowchart

http://interactivepython
.org/runestone/static/thi
nkcspy/PythonTurtle/Flo
wofExecutionoftheforLoo
p.html

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/FlowofExecutionoftheforLoop.html
http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/FlowofExecutionoftheforLoop.html
http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/FlowofExecutionoftheforLoop.html
http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/FlowofExecutionoftheforLoop.html
http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/FlowofExecutionoftheforLoop.html

Exercise

• The file is for_exercise_prelim.py
• Use a for loop to replace the following five statements:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

• To get started:

Using for-loops to create a list from another list

• Very often you may need to create a list from another
list

• For example, you are given the list
[2, -3, 4, -5]

and you want to compute the cube of each
number and store the results in a new list, which is:

[8, -27, 64, -125]

• There are two methods you can do this. We will use
.append() today.

• Let us first understand what .append() does first

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

Appending an element to a list

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 14

Example: Create a list from another list (1)

• Use the list [2, -3, 4, -5] to create the new list
[8, -27, 64, -125] using .append()

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

num_list = [2, -3, 4, -5]

new_list_1 = [] # An empty list

for num in num_list:
 new_num = num**3
 new_list_1.append(new_num)

• Code in the first cell in create_list_from_list_prelim.py
• Visualize with Python tutor http://pythontutor.com/

http://pythontutor.com/

Cells in Spyder
• Spyder allows us to divide the code into cells

– Cells are separated by a line of # %%

• and we can run the code in each cell independently
– Good for testing and debugging code
– To run a cell, make sure your mouse cursor is in that cell

and click ”Run Current Cell”

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 16

A cell

Example: Create a list from another list (2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 17

for num in num_list:
 new_num = num**3
 new_list_1.append(new_num)

• The operation
performed on each
element of the list.

• We can make it more
complicated.
– Example: If num > 0,

compute its cube;
otherwise, square it

for num in num_list:
 if num > 0:
 new_num = num**3
 else:
 new_num = num**2
 new_list_2.append(new_num)

• Code in the second cell in create_list_from_list_prelim.py

Example: Create a list from another list (3)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 18

• We can move these
lines of code into a
function and call the
function within the
loop

for num in num_list:
 if num > 0:
 new_num = num**3
 else:
 new_num = num**2
 new_list_3.append(new_num)

• Code in the third cell in create_list_from_list_prelim.py
– Will complete it in class

Operations on list
• You know how to append an element to a list
• There are other operations that you can do on a list

– Finding the maximum or minimum element in a list
– Sum the elements in a list
– Determining the number of elements in a list

• Terminology: length of a list = number of elements in a list

– See list_processing.py

– There are many other operations:
• E.g. sort, count the occurrence of a value etc.
• See https://www.programiz.com/python-

programming/methods/list

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 19

https://www.programiz.com/python-programming/methods/list
https://www.programiz.com/python-programming/methods/list

range()

• You may want to create a list of square numbers
[0,1,4,9,16,25,36]. You can use

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 20

sq_list = []
for k in [0,1,2,3,4,5,6]:
 sq_list.append(k**2)

Is there a faster way than
to write [0,1,2,3,4,5,6]?

sq_list = []
for k in range(7):
 sq_list.append(k**2)

range(7) produces 7
integers starting from 0

Code: range_ex.py

range()

• range() is a Python function that generates a sequence of
integers

• The function can take 1 to 3 inputs and its behaviour depends
on the number of inputs

• Examples in range_ex.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 21

range() expression sequence explanation
range(5) 0,1,2,3,4 One input. Starting from 0. Keep

increasing by 1. Does not including the
number specified by the input.

range(2,8) 2,3,4,5,6,7 Two inputs.
1st number in list = 1st input

• With 2 inputs, the function has the form range(start,stop)
– range(0,stop) is the same as range(stop)

• #elements in the list = stop - start

range()

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 22

range()
expression

sequence explanation

range(2,20,4) 2,6,10,14,18 The first input (=2 in this example) is the starting
value of the sequence. The last input (= 4 in this
example) is the increment. The next element of
the sequence is obtained by adding the increment
to the element before:

2, 2 + 4, 2 + 4 + 4

Keep incrementing until a number >= the last
input (= 20 in this case) is reached. Stop but don’t
include the last number generated.

• The general form is range(start,stop,inc)
• #elements in the list = ceil ((stop-start)/inc)

– ceil(x) = smallest integer greater than or equal to x

Some notes on range()

• The output of range() is not a list

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 23

• The function range() only accepts integers as its inputs
– If any one of the inputs to range() is not an integer, you get

an error.
– There is function in a Python package which is similar to

range() but allows non-integral inputs. You will learn that in
a few weeks’ time.

Some notes on range() (continued)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 24

sq_list = []
for k in range(7):
 sq_list.append(k**2)

• Typically, we use range() together with a for-loop to
produce another list, e.g.

Project: goal

• If you drop an object of mass m in a medium with
drag coefficient d and acceleration due to gravity g,
then the object’s speed v(t) at time t is given by:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 25

• Given the numerical value of m, g and d, the goal of
the project is to plot v(t) against t
– for t = 0, 0.5, 1, 1.5, …., 39.5, 40

• You certainly know how to do this by using pen,
paper and calculator. You may also need a bit of
perseverance because it does get a bit repetitive

Project: end product

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 26

• You will do it
in Python

• The end
product

Part 1: Write a function
• mass m, drag coefficient d, acceleration due to gravity g
• speed v(t) at time t is:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 27

• We want a function which computes the speed v(t) for a given t

– Open the file project_prelim.py
– The function called free_fall() computes v(t)

• The def line of the function is given in Line 16:

• We have done this for you already!

def free_fall(t, mass, drag):

Part 2: Producing the graph

• You want to plot a graph of the free fall speed against time
• In order to produce the graph, you need to create two lists

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 28

List of time instants

• There are 81 numbers in the list and of course you are
not going to type these 81 numbers in

• The function range() cannot be used directly because
range() can only generate a sequence of integers, it
cannot generate numbers with decimal points
– range(0,40,0.5) will give an error

• Hint on the next page

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 29

• The first list is a list of time instants (in seconds). We ask
you to use:

[0 0.5 1 1.5 2 2.5 39.5 40]

Hint

• The hint is:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 30

• You can use range() to help you to produce this list:

[0 0.5 1 1.5 39.5 40]

time_list = []
for k in range():
 time_list.append(* k)

Need a number here

Need a number here

0 1 2 3

[0 0.5 1 1.5 2 2.5 39.5 40]

range() gives:

You want:

List of speeds

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 31

• The second list is a list of speeds
• If you do this manually, you will do:

– Time is 0. Use the speed formula. Speed = 0.
– Time is 0.5. Use the speed formula. Speed = 4.692400935
– Time is 1. Use the speed formula. Speed = 8.98399681455

– Time is 40. Use the speed formula. Speed = 54.8885179036

• Of course, you aren’t going to do the manual way since
you have seen the trick

End results: two lists

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 32

• You should use the list of times and the function
free_fall()

• File project prelim.py
– Lines 26-27: Complete the code for calculating time_list
– Lines 32-33: Add the code for calculating speed list

[0 0.5 1 … 40]time_list

speed_list [0 4.7 9.0 … 54.8]

speed
at
time 0.5

speed
at
time 1

speed
at
time 40

Summary

• for-loop
– To repeatedly do some actions

• List processing
• range()

• The time-speed trajectory project as an example
of using programming to automate a mundane
task

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 33

