
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W9 slide 1

Week 4A: For-loops, list of lists

ENGG1811 Computing for Engineers

This week

• For-loops
• In-class project: Counting the number of heartbeats
• List of lists

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

Recap of for-loops

• You learnt about for-loops last week. An example that
we went through was:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

num_list = [2, -3, 4, -5]

new_list_1 = [8, -27, 64, -124]

Cubing each
element

Doing more with for-loops

• So far, you’ve used a for-loop to apply the same
operation to each element individually

• You can do more by ”memorising” some
intermediate results

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

Summing a sequence of numbers

• I will roll a 12-sided die 100 times
• You are not allowed to write any of the numbers down

(Hopefully you are not a mnemonist!)
• I want you to tell me what the sum of those 100

numbers are
• How will you do it?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 5

https://openclipart.org/detail/92041/dice

– Write down the steps that you take to
sum up the sequence of numbers

– In particular, I want you to think
whether you find yourselves doing a
number of steps repeatedly. If yes,
make a note of that in your answer
too.

Let us have a go

• We will use an online die to help us

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 6

Algorithm

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 7

(Roll 1st time)
Remember the number from the die

(Roll 3rd time)
Add the number from the die to the number you have
remembered. Remember the new total

(Roll 2nd time)
Add the number from the die to the number you have
remembered. Remember the new total.

(Roll 4th time)
Add the number from the die to the number you have
remembered. Remember the new total

Quiz

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 8

• Let us assume that you use a variable called
running_total to remember the total so far

Add the number from the die to the number you have
remembered (i.e., running_total)

Update the value of the variable running_total

• Question: How will you write the above task
 using one line of pseudo-code

running_total = running_total + number_from_the_die

Summing up the numbers in a list

num_list = [5,6,-2,3]
running_total = 0
for k in num_list:
 running_total += k

print(running_total)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

running_total += k
running_total = running_total + k

is a short hand forNote 1:

We will copy the code to
Python tutor

http://pythontutor.com/

You could have used sum(num_list) but it’s
good to learn what is behind it

Note 2:

http://pythontutor.com/

Remark

• In addition to +=, Python also has
 -= *= /= //= **= %=

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

Maximum in a sequence of numbers

• I will tell you 100 numbers one by one
• You are not allowed to write any of the numbers

down
• After I have told you all the 100 numbers, I want you

to tell me what the maximum of those 100 numbers
are.

• How will you do it?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 11

678

67

21551

555

629

289 459

49

59

159259
39

678

67

21

551

555
689

459

59

39

31

99

689

589629

679
699

489 551

478

555

555

555589

629

619

219

639

68

686

576 355

• I want to find the largest number in the rectangle
1. If the largest number behind the circle is 699, what is the

largest number in the rectangle?
2. What if the largest number behind the circle is 934?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W5 slide 12

725
Puzzle

Finding the maximum

Pseudo code:
If new_number > max_so_far then
 Update max_so_far to be new_number

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 13

num_list = [4, 2, 6, 12, -3, 17]

Define a variable called max_so_far which is the maximum
found so far

max_so_far is 6 new_number is 12

Let us finish it in find_max_prelim.py

Counting heart beat automatically

Pulse oximetry sensor

We will use list and for
loop to understand how
to count heart beat
automatically

http://pulsesensor.com

Counting the number of heart beats
• We will count the number of heart beats by counting the

number of tall peaks
– The tall peaks are marked with green dots

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

This is a
peak but it
is not a tall
peak

Is it a peak?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 16

3.73

To determine
whether a point is
a peak, you need
to look at that
point and its two
neighbours. Given
3 points, there are
4 possible ways to
arrange them

3.76

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

Is it a peak?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 17

Can you come out with a logical condition
that says whether 3 consecutive points
form a peak or not?

2.20 1.87 1.661.82 3.76 3.09

1.66 1.79 1.86 1.87 1.66 1.79

Peak = value at
the point is
greater than its
two neighbours’

Middle point is
a peak

Middle point is NOT a peak

Let us complete the code and check

• Code in heart_beat_prelim.py
• Complete line 41 with the condition to detect a peak

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 18

Tall or not tall?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 19

3.73

We can set a
threshold and
require the value
at the peak must
be greater than or
equal to this
threshold

3.76

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

2.20

How to count?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 20

3.73

Consider a small
section of data.
Each voltage
value in the list
below
corresponds to a
‘x’ in the graph.

3.76

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

We will consider 2 methods.
• Method 1 creates a list of marking. Similar to creating a list from

another list that we used in Week 3

• Method 2 memorises the result.

How to count?

E1GG1811 © U1SW, CRICOS Provider 1o: 00098G W9 slide 21

• We can count the number of tall peaks by
counting the number of Y’s

• How can you mark a list? The list is stored in the
computer memory and is not accessible by a pen

• If you stare at this line of markings for a while,
you may have an idea

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

Let us say we mark a tall peak with Y and non-tall peak with N
– Note: We won’t mark the two ends because there is not enough

information to tell they are peaks or not

N N N N N N NN N N YY

A list of markings

E1GG1811 © U1SW, CRICOS Provider 1o: 00098G W9 slide 22

• The markings ‘Y’ and ‘N’ is a sequence so we can
store them in a list

• Python has a function to count the occurrence of a
certain value in a list. We can do this.

• Let us explore an alternative

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

N N N N N N NN N YYN

An alternative way to mark the list

E1GG1811 © U1SW, CRICOS Provider 1o: 00098G W9 slide 23

• Instead of using ‘Y’ and ‘N’ to mark the list, I would like
to ask you to mark the list in a different way
– I want you to use numbers to mark the list
– If you choose the numbers in a certain way, then the sum of

the sequence of numbers is also the number of tall peaks
• Any suggestions?

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

N N N N N N NN N YYN

An alternative way to mark the list (cont’d)

E1GG1811 © U1SW, CRICOS Provider 1o: 00098G W9 slide 24

• You can mark with the integers 1 and 0
– 1 means the point is a tall peak
– 0 means it is not

• If you can come out such a list of 1’s and 0’s, then you
can find the number of tall peaks

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

0 0 0 0 0 0 00 0 0 11

Need to sweep through the list

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

0 0 0 0 0 0 0][0 0 0 11

Given list

Want to create

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

0 0 0 0 0 0 0][0 0 0 11

Method 1: Create a list of marking

Fill in Lines 70, 71 so that the code will create the list of marking.
Hint: The aim of the loop is to check:
is_a_tall_peak(voltage_list[0], voltage_list[1], voltage_list[2])
is_a_tall_peak(voltage_list[1], voltage_list[2], voltage_list[3])
is_a_tall_peak(voltage_list[2], voltage_list[3], voltage_list[4])

…
ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 26

• Similar to creating a list from another list in Week 3, except
– You use 3 consecutive elements at a time
– The new list is shorter list compared to the given list

heart_beat_prelim.py

Method 2: ”Memorise” some result

[1.55 1.82 3.76 3.09 2.09 2.20 1.87 1.66 1.79 1.86 3.33 3.73 2.48 2.23]

0 0 0 0 0 0 0][0 0 0 11

• You can get the number of heart beats by summing up this
list

• You summed up a list of numbers on p.9 using a for-loop
• Here, you only need to sum up the 1’s and you can ignore

the zeros

Method 2: Memorise the result

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 28

• File: heart_beat_prelim.py
• Fill in Lines 88 and 89 in the same way as you did for

method 1
• Complete Line 90 so that the variable

num_heart_beat_so_far will contain the number of
heart beats at the end of the loop
– Consult p.9 if you need

What wrong with this code?

• Let us have a look at the code in mean_abs_bad.py

• What the code wants to do is:
– For each list

• Compute the absolute value of each element
• Sum up the absolute values
• Divide the sum by the number of elements to obtain the

mean

• Why do you think the code is bad?
– How would you fix it?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 29

Avoid repeating code

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 30

The code for
computing the
average of the
absolute value is
repeated a few times:
Lines 18-22, 25-29
32-36, 39-43

Why repeating code
is bad? Say you want
to compute mean
rather than mean of
absolute value, you
need to edit all the
code.

Using function to hide details

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 31

All the
computation of
mean absolute
value now goes in
a function

The code looks
less messy and is
easier to
understand.

We can improve
this code further.

Code in mean_abs_improved1.py

List of lists

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 32

Using list of lists to improve the code (1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 33

This part is
repetitive. In
order to use the
for-loop, we need
to use list of lists
for the original
data.

Lesson: How you
store your data
can make your
code cleaner!

We will do this in class. Improved code on the next page.

Using list of lists to improve the code (2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 34

Changes

Function reuse

• There are two reasons why functions are important. You
can reuse them and abstraction.

• You have developed the function mean_abs() and you
can re-use it in any of your program by simply importing
it

• This is the beauty of software. Code once and use
forever and whenever.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 35

Abstraction

• Abstraction hides details
• It allows us to use a piece of software of code as if

it were a black box, i.e. something whose interior
details we cannot see, don’t need to see or
shouldn’t even want to see
– For example, many of us use math.cos(), math.sin()

etc. as a black box

• Quoted from: John V. Guttage, “Introduction to
Computation and Programming Using Python”, MIT
Press. [Note: The code in the book is written in
Python 2.]

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 36

Graph plotting is abstraction in action!

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 37

• You can view Lines 17-25 as commands for plotting graphs
• It’s important to realise that each line calls a function

– Line 18: The plot function has two inputs. The first is the data
in the x-axis. The second input is the data in the y-axis.

• Where is the output of this function?
– Line 21: The input is a string which is the text of the title of the

graph
• You are using the fruit of abstraction and don’t you love it!

Summary

• For-loops
– Remembering intermediate results
– Applications: sum, max

• Counting heart beats
– An example of using programming to solve a

computational problem
– An example of processing a data sequence which

puts together a few skills that you’ve learnt: list, for-
loop, conditional, logical expression

• List of lists
– Moral: Use data type to reduce replications

• Function reuse and abstraction

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 38

