
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W9 slide 1

Week 4B:
Errors; Program testing and
debugging; Exception handling

ENGG1811 Computing for Engineers

• Errors, program testing and debugging
• Exception handling

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

Introduction

• By now, you have been writing programs for a number
of weeks, you probably have experienced:
– Getting programs to run J
– Getting error messages L
– Getting the code to run but it doesn’t do what you intended

it to do L

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

Error types

• There are two types of errors that stop your program
from running:
– Syntax error
– Runtime error

• Language analogy
– A syntax error is analogous to a grammatically incorrect

sentence, e.g., sentences with spelling and/or punctuation
error

– A runtime error is analogous to a grammatically correct
instruction that cannot be carried out. For example,

• Fly to the centre of the sun and come back

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

Syntax errors

• Syntax errors violate the rules of how Python
statements are written

• Some examples:
– Misspelt keywords
– Forget to use colon with if/else/elif/for/while/def
– Wrong usage of or missing (), [], {}
– Improper indentation

• The Spyder editor catches many of these errors

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 5

Quiz

• Can you tell what the syntax errors are?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

Print(Good day mate!)

i_am_a_list = [2 3 5]

Runtime errors

• Terminology: Runtime is the time from the beginning of
executing a program till the program terminates

• Runtime errors mean the computer is unable to execute
the instructions

• Examples:
– Forgot to import libraries
– Used the wrong data types
– Forgot to initialise a variable before using it

• Quiz: What are the errors in the following code?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 7

b = 21
b = a + b

c = [4, 10, 17]
d = c[2] + c[3]

More runtime errors

• You can also get run-time errors from doing operations
that are not permitted

• Let us look at an example in runtime_error_ex.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

Runtime error

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

• When you see an error message, don’t panic
• There are two important pieces of information

– Where the error occurs
– What the error is

Now your program runs ..

• A program that runs doesn’t mean that your program is
correct

• The instructions you give to the computer may not solve
the problem you intend it to solve

• A real-life analogy: The room is really hot and you want
to cool the room down. You issue the instruction:

“Turn the heater on”
– The instruction is grammatically correct = No syntax errors
– The instruction can be executed = No runtime errors
– But the instruction does not solve your problem

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

Program testing

• This is to test whether your program is doing what you
intend the program to do

• We will first discuss a number of concepts
– Unit testing
– Black-box testing
– Glass-box testing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

Unit testing

• This refers to testing of the various components of
a piece of software

• You may have written a program with a number of
different functions

• You want to test all these functions to ensure that
each function works properly

• Recall that we talk about incremental development
– You should develop, test, develop, test

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

An example testing procedure

• Let us assume that you have developed a function to
compute the maximum value in a Python list of numbers

• You can come out with a number of test cases that you
know the expected answers

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

Test cases Expected output
[2, 5, 8] 8
[3, 17, 19, 24] 24
[23, 1, 51, 19, 107, 123] 123

For each test case
Does the function output match the expected output?

• You can write a testing program

An example testing procedure (cont’d)

• The function to be tested is in my_max.py

• The testing program is in the file test_my_max.py

• Let us go through the testing program and run it
– We won’t open my_max.py

• A few remarks:
– You may be surprised to see that we are writing a program

to test another program. Yes, this is additional work but it is
absolutely necessary.

– If you write a test program, you can re-use the test cases
for the future versions of the software if needed

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 14

Different test methods

• The method that we were using is known as black-
box testing
– We didn’t look at the code
– We simply applied the test cases and compared

against the expected output

• There is also glass-box testing where tests are
derived by looking at the code

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

Choosing test cases (1)

• It’s important that you choose test cases in a diverse
way to cover as many possibilities as possible

• What limitations do you see in the test cases we’ve
used? How can you improve it?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 16

Test cases Expected output
[2, 5, 8] 8
[3, 17, 19, 24] 24
[23, 1, 51, 19, 107, 123] 123

Choosing test cases (1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 17

• Only positive integers
• The maximum always occurs in the last position
• List not empty
• Modifications:

– List with +/- float/int
– Rotate the positions of the maximum

Test cases Expected output
[2, 5, 8] 8
[3, 17, 19, 24] 24
[23, 1, 51, 19, 107, 123] 123

Choosing test cases (2)

• It is important that you choose tests as diverse as
possible

• In order to test how robust a software is, you may
also want to consider
– Empty list
– Lists with a mixture of numerals and non-numeral

types

• Many software companies test their software with
random inputs in addition to using the expected
inputs

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 18

Using different test cases
• Some new test cases are now included in the file

test_my_max_v2.py. We now use:

• Let us run it and see

• It failed one test L

• There is a logic error in the code
– This example came from a past ENGG1811 assignment

submission

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 19

Debugging

• Now the test has revealed that the program does not do
what you intended it to do, you need to debug the program

• Sometimes you may be able to deduce the error by looking
at the test cases that the program passes and fails

• “Code does not do what you intended” errors are harder
because they are caused by a mismatch between:

• What we want the program to do
• The instructions we gave the computers

• Computers faithfully execute the instructions we give them
– The instructions we gave to the computers are incorrect

(swallow our pride 😔) and adjust our mindset

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 20

Some debugging strategies

• Isolate the error
– What is the smallest input that produces the error?
– What is the smallest code that produces the error?

• Isolate the part of the code that produces the error
– Selectively commenting out part of the code to locate the

part of the code that produces the error

• Use print() statements to help you
– Place print() in your code near where you think the error

occurs
– Check the values of the variables are what you expect at

that point of the program
– Don’t forget to remove these print() statements once you

have fixed the errors

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 21

Debugger to trace programs

• Another debugging strategy is to trace the program
– This is similar to the web visualisation tool that we have been

using
• Spyder has a debugging tool
• These buttons are for debugging

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 22

Start debugger Stop debugger

Spyder debugger
• The Spyder debugger allows you to step through your

program in a few different ways
• You can step through the program one line at a time by

running the current line
• If a line contains a function call, there are two options

– The “step into” option: Stepping through the lines of the
function

– The “run until … returns ” option: Execute the function
without stepping through the lines of the function

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 23

Run current
line

Step into

Run until current
function returns

Variable explorer

• The debugger is very often used in conjunction with
the variable explorer so that you can observe
changes in variables

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 24

• It’s best to clear the variables so that the existing
variables won’t confuse the debugging process
– Spyder automatically clears the variables when the

debugger is invoked

Demonstration

• We will use the files debug_my_max.py and my_max.py
to demonstrate these functions

• We will try
– Stepping through one line at a time
– Step into
– Run until the current function returns

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 25

Breakpoint

• Very often you want to skip a block of code instead of
running a line at a time

• You can set breakpoint and run the program until the
line before the breakpoint has been executed

• To set a breakpoint at a line, click on the space
immediately to the right of the line number
– A solid red circle indicates a breakpoint
– Click on the red circle to remove the breakpoint

• Demonstration

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 26

Run till breakpoint

Quiz: poor choice of variable name

• The program my_max.py has a poor choice of
variable name. What is it?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 27

Spyder debugger buttons (older version)

• The CSE labs has an older version of Spyder.
The debugger buttons looked slightly different
but they are arranged in the same order

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 28

• From left to right
– Start debugging
– One line at a time / Run current line
– Step into
– Step return / Run until current function returns
– Run until breakpoints
– Stop debugging

Updated:
It is now possible
to run Spyder 5.3.3
on the CSE system.
The instructions are
provided on the
course forum.
We haven’t thoroughly
tested so if there are
any problems, please
let us know.

• Errors, program testing and debugging
• Exception handling

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 29

Error handling

• Let us consider the program for calculating the roots of
quadratic equation
– We used that in Week 1
– Code in quadratic_v1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 30

Expected usage

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 31

Unexpected usage

• You can’t always expect the users to know the limitation
of your software

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 32

Error or exception handling

• You want to make sure that your program can
handle unexpected user input

• Two methods:
– if/else if/elif/else
– try except

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 33

Avoiding errors
• You can try to avoid programs running into problem by

considering possible errors in your program
• The modified code is in quadratic_v2.py. It checks:

– The leading coefficient is not zero
– The discriminant is not negative

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 34

Python try … except
• Instead of using if/elif/else to handle the special cases,

you can also use try … except
• The code under try will be run first, if it results in an

error, the code under except will be run

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 35

try:
Code under the try block

except:
Code under the except block

try … except
• Example: Modify quadratic_try_v1_prelim.py to:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 36

Python try … except

• You can make the exception handling more precise by
handling each type of exception

• Code in quadratic_try_v2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 37

Summary

• Running code does not mean correct code
• Test, test, test
• Writing test code
• Debugging

– Useful skills for your assignment
• Exception handling

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 38

