
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W10 slide 1

Week 7B: numpy elementwise arithmetic
operations

ENGG1811 Computing for Engineers

Topic to be covered

• Elementwise arithmetic operations

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

Arithmetic operators

• You can use +, -, *, /, ** on two numpy arrays
– They perform elementwise operations
– See the next two slides for illustration

• The shapes of these arrays are required to be
compatible.

• We will first consider the case where both arrays
have the same shape
– Code in numpy_arith_1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

Elementwise multiplication

array1 = np.array([[-3.2, 0, 0.5, 5.8],
 [6, -4, 6.2, 7.1],
 [3.8, 5, 2.7, 3.7]])

array2 = np.array([[-1.2, 2, -3.1, 0.0],
 [4, -5, 3.5, 7.1],
 [2.7, 2, 1.7, 3.4]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

array_mul = array1 * array2 # NOT matrix multiplication

array([[3.84, 0. , -1.55, 0.],
 [24. , 20. , 21.7 , 50.41],
 [10.26, 10. , 4.59, 12.58]])

Elementwise division

array1 = np.array([[-3.2, 0, 0.5, 5.8],
 [6, -4, 6.2, 7.1],
 [3.8, 5, 2.7, 3.7]])

array2 = np.array([[-1.2, 2, -3.1, 0.0],
 [4, -5, 3.5, 7.1],
 [2.7, 2, 1.7, 3.4]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 5

array_div = array1 / array2

array([[2.667, 0. , -0.161, inf],
 [1.5 , 0.8 , 1.771, 1.],
 [1.407, 2.5 , 1.8, 1.088]])

Example on using elementwise arithmetic operations (1)

• You work in a company and every day you take product samples
to determine their quality. The results on Monday were:
– 16 devices passed
– 4 devices failed

• You can calculate the percentage of devices passing the test by

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

numpy_arith_1_example.py

calculates

Example on using elementwise arithmetic operations (2)
• You store the test results for

Monday to Wednesday in two
arrays

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 7

numpy_arith_1_example.py

num_devices_passed = np.array([16, 28, 35])
num_devices_failed = np.array([4, 2, 5])

P F
M 16 4
T 28 2
W 35 5

• You can compute the percentages of devices passing the tests
over Mon-Wed by:

percentage_passed = \

num_devices_passed / (num_devices_passed + num_devices_failed)

calculates

Discussion

• That’s why elementwise computation is useful!
• However, some method of storing data will make using

elementwise computation difficult

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

• Observation: We can use the same Python expression for
scalar and array computations

percentage_passed = \

num_devices_passed / (num_devices_passed + num_devices_failed)

Works:
num_devices_passed = np.array([16, 28, 35])
num_devices_failed = np.array([4, 2, 5])

Does not work: [16, 4], [28, 2], [35, 5]

P F
M 16 4
T 28 2
W 35 5

• Forum exercise: Use 2-D array

More on numpy arithmetic operators

• You have seen that you can use the numpy arithmetic
operators on two arrays of the same shape

• You can also use the numpy arithmetic operators on two
arrays when
– One array is a scalar
– The other is a numpy array of any shape

• Let us look at the examples in numpy_arith_2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

Elementwise division: an array and a scalar

array1 = np.array([[-3.2, 1, 0.5, 5.8],
 [6, -4, 6.2, 7.1],
 [3.8, 5, 2.7, 3.7]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

array_div_1 = array1 / 2.0
array([[-1.6 , 0.5 , 0.25, 2.9],
 [3. , -2. , 3.1 , 3.55],
 [1.9 , 2.5 , 1.35, 1.85]])

array_div_2 = 2.0 / array1
array([[-0.625, 2., 4., 0.345],
 [0.333, -0.5, 0.322, 0.282],
 [0.526, 0.4, 0.741, 0.541]])

Exercise: Obtaining an array from another array
• If you drop an object from a height of h0 and if the air

resistance is small, then the height of the object at time t
is

h0 – 0.5 * g * t2

where g is the acceleration due to gravity

• Assume g = 9.81. Let h0 = 1000.
• Given: time_array = np.array([0, 2, 4, 6, 8])

• Determine the height of the objects at the time instants in
time array and store the results in an array
– Hint: Next page

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

Exercise: Hint
• The following hint for array [0, 2, 4]

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

[0 , 2 , 4]

= [h0 – 0.5 * g * 02 , h0 – 0.5 * g * 22 , h0 – 0.5 * g * 42]

File: numpy_arith_2_prelim.py

= h0 - [0.5 * g * 02 , 0.5 * g * 22 ,, 0.5 * g * 42]

Start
from

= [1000. , 980.38. , 921.52]
final
result
wanted
.

⬆ Work backwards

⬆ Keep working backwards until you use [0,2,4]

= h0 – 0.5 * g * [02 , 22 , 42]

Mathematical functions

• The numpy mathematical functions are documented here:
– https://docs.scipy.org/doc/numpy/reference/routines.math.html

• Example: sin, cos, asin, log, exp, sqrt, absolute

• Notes:
– You need to append the library name, say you import numpy

as np, then np.cos etc.
– They are different to those in the math library
– They are elementwise operation. The output is an array of

the same size as input and the operation is applied to each
element (illustrated on the next slide)

• Code in numpy_math_func.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

https://docs.scipy.org/doc/numpy/reference/routines.math.html

Elementwise operation
array2 = np.array([[-1.2, 2. , -3.1, 4.5],

 [4. , -5. , 3.5, 7.1],

 [2.7, 9. , 1.7, 3.4]])

array2_sin = np.sin(array2)

array([[-0.93203909, 0.90929743, -0.04158066, -0.97753012],

 [-0.7568025 , 0.95892427, -0.35078323, 0.72896904],

 [0.42737988, 0.41211849, 0.99166481, -0.2555411]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 14

sin(1.7)

sin(4.5)

sin(2.7)

Summary

• Numpy elementwise operations
• Main application:

– To produce a new array from the given arrays
• Elementwise operations allow you to use the same

Python expression for scalars as well as for arrays
• You used loops to create a new list from an existing

list. In numpy, loops are not necessary.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

