ENGG1811 Computing for Engineers

Week 7B: numpy elementwise arithmetic
operations

ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W10 slide 1

Topic to be covered

e Elementwise arithmetic operations

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

ENGG1811

Arithmetic operators

You can use +, -, *, /, ** on two numpy arrays

— They perform elementwise operations
— See the next two slides for illustration

The shapes of these arrays are required to be
compatible.

We will first consider the case where both arrays
have the same shape

— Code in numpy_arith_1.py

© UNSW, CRICOS Provider No: 00098G

W9 slide 3

Elementwise multiplication

arrayl = np.array([[-3.2, ©, 0.5, 5.8],
6, -4, , ,

. 3.8, 5, , 11)
array2 = np.array([[-1.2, 2, -3.1, 0.0],
4, -5, 3.5, 7.1],

2.7, 2, 1.7, 3.4])])

array_mul = arrayl * array2 # NOT matrix multiplication

array([[3.84, ©. , -1.55, 0.],
[24. , 20. , 21.7 , 50.41],
[10.26, 10. , 4.59, 12.58]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

arrayl

array2

array_div

array([[

ENGG1811

Elementwise division

np.array([[-3.2, O,
6, -4, 6.2,
3.8, 5, 7,

np.array([[-1.2, 2, -3.1,
4, -5, 3.5,
2.7, 2, 1.7,

= arrayl / array2

2.667, O. , -0.161,
1.5 , 0.8 , 1.771,
[1.407, 2.5 , 1.8,

© UNSW, CRICOS Provider No: 00098G

9.5, 5.8

0.0]
7.1]
3.4]

inf]

1.088

49

J

1)

W9 slide 5

Example on using elementwise arithmetic operations (1)

e You work in @a company and every day you take product samples
to determine their quality. The results on Monday were:

— 16 devices passed
- 4 devices failed

e You can calculate the percentage of devices passing the test by

%% For Monday

The quality check results for Monday
num_devices_passed 16
num_devices_failed = 4

Percentages of devices passed
percentage_passed = \

num_devices_passed / (num_devices_passed + num_devices_failed)

WS_) 16

16 +4

numpy_arith_1_example.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

numpy_arith_1_example.py

Example on using elementwise arithmetic operations (2)

e You store the test results for -n
M 16 4

Monday to Wednesday in two
arrays T 28
W 35

2
3}

num_devices passed = np.array([16, 28, 35])

num _devices failed = np.array([4, 2, 5])

e You can compute the percentages of devices passing the tests

over Mon-Wed by:

percentage _passed = \

num_devices passed / (num_devices passed + num_devices failed)

Ws_)- 16 28

30

16 +47 28

ENGG1811 © UNSW, CRICOS Provider No: 00098G

2735

D

WO slide 7

Discussion

e Observation: We can use the same Python expression for
scalar and array computations

percentage _passed = \

num_devices passed / (num_devices passed + num_devices failed)

e That's why elementwise computation is useful!

e However, some method of storing data will make using
elementwise computation difficult

BEEEEE vorks:

Mo 184 hum_devices_passed = np.array([16, 28, 35])
T 28 2 d . failed = 4, 2, 5
RN num_devices failed = np.array([4, 2, 5])

Does not work: [16, 4], [28, 2], [35, 5]

e Forum exercise: Use 2-D array

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

More on numpy arithmetic operators

e You have seen that you can use the numpy arithmetic
operators on two arrays of the same shape

e You can also use the numpy arithmetic operators on two
arrays when

— One array is a scalar
— The other is a numpy array of any shape

e Let us look at the examples in numpy_arith_2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

Elementwise division: an array and a scalar

arrayl = np.array([[-3.2, 1,
. 6, -4,
3.8, 5,
array _div_1 = arrayl / 2.0
array([[-1.6 , ©.5 , 0.25,
3., -2. , 3.1,
1.9, 2.5, 1.35,
array _div 2 = 2.0 / arrayl
array([[-0.625, 2., 4.,
©.333, -0.5, 0.322,
0.526, 0.4, 0.741,

ENGG1811

9.5, 5.8

2.9 °
3.55]

1.85

J

J

J

J

1)

9.345],
0.282],
9.54111)

© UNSW, CRICOS Provider No: 00098G

W9 slide 10

Exercise: Obtaining an array from another array

e If you drop an object from a height of h0O and if the air

resistance is small, then the height of the object at time t
IS

hO - 0.5 * g * t2
where g is the acceleration due to gravity

e Assume g = 9.81. Let hO = 1000.
e Given: time_array = np.array([0, 2, 4, 6, 8])

e Determine the height of the objects at the time instants in
time array and store the results in an array

- Hint: Next page

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

File: numpy_arith_2_prelim.py

Exercise: Hint

e The following hint for array [0, 2, 4]

Start [O ’ 2
from 1

—A

=h0-05*g*[ez 22, 4]

@ Keep working backwards until you use [0,2,4]

hO - [05%g*02 ,0.5%g*22,0.5*q*42]

© Work backwards

= [h0o-05*%g*02 ,h0-0.5%g*22 , h0 - 0.5 * g * 42]
final
resut = [1000. , 980.38. , 921.52]
wanted

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

Mathematical functions

e The numpy mathematical functions are documented here:
- https://docs.scipy.org/doc/numpy/reference/routines.math.html
e Example: sin, cos, asin, log, exp, sqgrt, absolute

Notes:

— You need to append the library name, say you import numpy
as np, then np.cos etc.

- They are different to those in the math library

— They are elementwise operation. The output is an array of
the same size as input and the operation is applied to each
element (illustrated on the next slide)

Code in numpy_math_func.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

https://docs.scipy.org/doc/numpy/reference/routines.math.html

Elementwise operation

array2 = np.array([[-1.2, 2. , -3.1, 4.5],
[4. , -5. , 3.5, 7.1],
[2.7, 9., 1.7, 3.4]1])

array2 sin =
array([[-0.93203909,
[-0.7568025
[©.42737988,

/

sin(2.7)

ENGG1811

np.sin(array2)

/ sin(4.5)

9.90929743,
9.95892427,
9.41211849,

-0.04158066,
-9.35078323,
9.99166481,

/

sin(1.7)

-0.97753012],
9.72896904],
-0.2555411 11)

© UNSW, CRICOS Provider No: 00098G W9 slide 14

Summary

e Numpy elementwise operations

e Main application:
— To produce a new array from the given arrays

e Elementwise operations allow you to use the same
Python expression for scalars as well as for arrays

e You used loops to create a new list from an existing
list. In numpy, loops are not necessary.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

