
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W10 slide 1

Week 7C: numpy (Broadcasting, Slicing,
Boolean indexing)

ENGG1811 Computing for Engineers

Key topics

• Broadcasting

• Slicing

• Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

Broadcasting rules
• You have seen that you can use numpy elementwise

arithmetic operators +, -, *, / and ** for
– Two arrays of the same shape
– An array and a scalar

• In general, numpy arithmetic operators can be used on
two arrays as long as their shapes are compatible
– Informal view: Next slide
– Formally, compatibility is defined according to the numpy

broadcasting rules

• The broadcasting rules were modified from:
– https://jakevdp.github.io/PythonDataScienceHandbook/02.05

-computation-on-arrays-broadcasting.html
• You may wish to read the examples in this document to

further understand the broadcasting rulesENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arrays-broadcasting.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arrays-broadcasting.html

Broadcast: informal view

Source: https://scipy-lectures.org/intro/numpy/operations.html#broadcasting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

https://scipy-lectures.org/intro/numpy/operations.html

Broadcasting Rule 1
• Rule 1: If the two arrays differ in their number of

dimensions, the shape of the one with fewer dimensions
is padded with ones on its leading (left) side.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 5

• Dimension of b1 is 1
• After Rule 1, the shape of

b1 goes from (3,) to
(1,3)

• Dimension of a1 is 2
– a1.ndim shows the

dimension

Broadcasting Rule 2
• Rule 2: If the shape of the two arrays does not match in

any dimension, the axes whose shape is 1 are stretched
to match the shape of the other array.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

• Shape of a1 is (2,3)
• Shape of b1 after Rule 1 is

(1,3)
• Axis 0 of b1 is 1, it is

stretched to 2 to match a1

• After Rule 2, the shape of
b1 becomes (2,3)

Broadcasting Rule 3
• Rule 3: If the two arrays have the same shape, then they

are compatible; otherwise, they are not.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 7

• Example:
• Shape of a1 is (2,3)
• Shape of b1 after Rule 2

is (2,3)

• Identical shape, hence
compatible

Operating on broadcast compatible arrays (1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]] Broadcast

b1 to shape
(2,3)

b1 is
[10, 20, 30]

The result of a1 + b1 is

[[10, 20, 30],
[10, 20, 30]]

[[11.1, 22.2, 33.3],
[13.1, 23.2, 33.3]]

+

See numpy_broadcast.py

10 20 30

3.1 3.2 3.3

Informal view

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

1.1 1.2 1.3

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

b1 is
[10, 20, 30]

Broadcast rule 1 makes b1 goes from
(3,) to (1,3). Intuitively, for the
purpose of broadcasting, a 1-d array
should be thought of a 2-d array with
one row

10 20 30+

3.1 3.2 3.3

1.1 1.2 1.3 10 20 30+=

Operating on broadcast compatible arrays (2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

Broadcast c1
to shape (2,3)

c1 is
10

The result of a1 + c1 is

[[10, 10, 10],
[10, 10, 10]]

[[11.1, 12.2, 13.3],
[13.1, 13.2, 13.3]]

+

See numpy_broadcast.py

Broadcasting rules

• You can generalise the example in the previous
slide to show that a scalar is compatible to numpy
array of any shape

• Broadcast rules are general and they cover the
two special cases we mentioned earlier
– Two arrays of identical shape
– A scalar and an array of any shape

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

Exercise 1

a1 = np.array([[1.1, 2.2, 3.3],[3.1, 3.2, 3.3]])
d1 = np.array([[100], [200]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

Predict what a1 + d1 should be without running the code
in numpy_broadcast.py. The informal view is on the next
page.

We will run the cell in numpy_broadcast.py later so you
can check your prediction

• Given

2003.1 3.2 3.3

Informal view

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

1.1 1.2 1.3

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

d1 is
np.array([[100], [200]])

100+

2003.1 3.2 3.3

1.1 1.2 1.3 100+
200

100

200

100=

Compatible arrays

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 14

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

Rule 2:
Stretching

d1 is np.array([[100], [200]])
Its shape is (2,1)

Shape (2,1)

Step 1: No
change

Shape (2,3)

Shape (2,3)

[[100, 100, 100],
[200, 200, 200]]

Compatible

Exercise 2

a1 = np.array([[1.1, 2.2, 3.3],[3.1, 3.2, 3.3]])
e1 = np.array([100, 200])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

Are the arrays a1 and e1 compatible?

Informal view on the next page.

We will run the cell in numpy_broadcast.py later so you
can check your prediction

• Given

3.1 3.2 3.3

Informal view

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 16

1.1 1.2 1.3

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

e1 is
np.array([100, 200])

100 200+

Incompatible arrays

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 17

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

Rule 2:
Stretching

e1 has shape (2,)

Shape (1,2)

See numpy_broadcast.py

Rule 1: Padding
on the left

Shape (2,3)

Shape (2,2)

Broadcast – exercise

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 18

Tensile force (pound force) 0 1650 3400 5200

Length (inches) 2.000 2.002 2.004 2.006

You want to use
SI unit instead:

numpy_broadcast_prelim.py

Data:

Stored in a
numpy array:

1 pound force = 4.45 N
1 inch = 2.54 cm

Exercise:
Use load_length and broadcast to obtain load_length_SI

Long winded method:

Key topics

• Broadcasting

• Slicing

• Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 19

numpy slicing

• Slicing is a very useful method to select a portion of data
- E.g., You have a 2-dimension array where each column

contains the data for a day of the week. You may want to
study the data over the weekdays. This means you need a
way to extract 5 columns of the data

• You have learnt to use the : notation to slicing a list
(Week 3B) and to slice numpy arrays (Week 5B)

• We will look at some addition methods for numpy

• Examples in:
– numpy_slicing_1.py for one dimensional arrays
– numpy_slicing_2.py for two dimensional arrays

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 20

numpy :: notation

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 21

Same as extracting
a[1], a[3], a[5], a[7], a[9]

Indices 0 1 2 3 4 5 6 7 8 9 10 11

• You can slice numpy arrays in a way similar to using the
Python range function with 3 inputs
– Ex: range(1,10,2) generates the integers 1, 3, 5, 7 and 9

numpy_slicing_1.py

numpy start:stop:step ⇔ range(start, stop, step)

Numpy :: Default
value

start 0
stop Array length
step 1

Examples:

a[:5:] # a[0:5:1], a[:5]
a[4::2] # a[4:len(a):2]

1-D array: select specific elements

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 22

numpy_slicing_1.py

indices
0 1 2 3 4 5 6

• You can use:
– the : notation to slice out a continuous section
– the :: notation to select regularly spaced elements

• How about specific or non-regularly spaced elements?

2-D array: rectangular block or
regularly spaced slicing

Examples:
c[1::2, ::2]
c[::2, -3:]

numpy_slicing_2.py

array_name[,]

: for a continuous section
:: for regularly spaced

2-D array: Slicing with np.ix_
Column index
2 3 6

Row index

1

3

From column: 3 6 2

From row:
1
3

[[c[1,3], c[1,6], c[1,2]] ,
[c[3,3], c[3,6], c[3,2]]] numpy_slicing_2.py

Put specific elements in a 1-D array

[c[3,-2], c[2,2], c[0,3]]

numpy_slicing_2.py

Key topics

• Broadcasting

• Slicing

• Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 26

Boolean indexing

• This indexing method which select elements with some
specific property in an array
– The property is specified by a Boolean expression

• Useful for data analysis

• Example:
– numpy_boolean_indexing_1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 27

Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 28

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
bool_array1 [False, True, True, False, True]

array1[bool_array1] [0.4, 1.4, 0.1]
Note: array1 and bool_array1 have the same shape

This example is in
numpy_boolean_indexing_1.py

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
bool_array2 [True, False, False, False, True]

array1[bool_array2] [0.3, 0.1]

If True, then the entry is selected.
Identical shape requirement.

Boolean indexing
(Quiz 1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 29

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
array1 >= 1 [False, False, True, True, False]

Think about what the following would give before
trying it out
array1[array1 >= 1] array([1.4, 1.7])

This quiz is in
numpy_boolean_indexing_1.py

Boolean indexing
(Quiz 2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 30

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
array1 >= 1 [False, False, True, True, False]

array2 [1.1, 0.1, 0.8, 0.3, 1.5]

Think about what the following would give before
trying it out
array2[array1 >= 1] array([0.8, 0.3])

This quiz is in
numpy_boolean_indexing_1.py

Boolean indexing
(Quiz 3)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 31

temp_array contains 8 temperature measurements

[24.5, 31.5, 27.4, 34.1, 33.2, 28.9, 27.9, 34.8]

This quiz is in
numpy_boolean_indexing_1.py

week_array [1, 2, 3, 4, 5, 6, 7, 8]
Temperature in Week 1 is 24.5
Temperature in Week 2 is 31.5

Use Boolean indexing to find the week numbers that have
temperature >= 30
Expect: [2, 4, 5, 8]
 week_array[temp_array >= 30]

Boolean indexing (Further examples)

• numpy_boolean_indexing_2.py for 1-d arrays
• The Boolean expression being used for

indexing can contain: &, |, ~ (which are logical
and, or, not in numpy)

• Using assignment with Boolean indexing

• numpy_boolean_indexing_3.py for 2-d arrays
– There is also a quiz
– Quiz answer:
 days[np.mean(temp_array, axis=0) >= 0.7]

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 32

Forum exercise

• This is a forum exercise which puts together what you
have learnt today

• Consider the following array which contains some
sensor measurements

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 33

• Each row contain the readings from a sensor
• Each column contains the readings at a specific time
• (To be continued on the next page)

Forum exercise (cont’d)

• You want to compute the average at each time from
the five sensor readings

• If you use all the data, you would use
– numpy.mean(, axis = 0)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 34

• However, you have reasons to believe the sensor readings
which are >= 1 are due to faulty sensors and you want to
exclude them when you compute the average

• (To be continued on the next page)

Forum exercise (cont’d)

• The array on yellow background shows the final result that you
want

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 35

[0.38, 0.425, 0.72, 0.38, 0.78, 0.75, 0.82, 0.46, 0.1, 0.65]

Average all
5 readings

Average
of 0.8
and 0.7

Average
of 0.0,
0.1 and
0.2

Forum exercise (Hint)

• Hint: For each column, sum only entries that are less 1
• I used 5 lines of code to do that (no loops) but some students

needed only 1 line of code

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 36

[0.38, 0.425, 0.72, 0.38, 0.78, 0.75, 0.82, 0.46, 0.1, 0.65]

Average all
5 readings

Average
of 0.8
and 0.7

Average
of 0.0,
0.1 and
0.2

Summary

• Broadcasting
– Elementwise computation of arrays of compatible

dimensions
• Element selection with

– A continuous section with :
– Regularly spaced elements with ::
– Specific elements
– Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 37

