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Week 8A: Simulation

ENGG1811 Computing for Engineers



Wright brothers

Invented and built the world’s first powered airplane
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Pictures from http://en.wikipedia.org/wiki/Wright_brothers

 



Crumpled gilder, Oct 1900
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http://www.theatlantic.com/photo/2014/08/first-flight-with-the-wright-brothers/100796/



Glider (i.e. no power) (1902)
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First powered flight (17 Dec 1903)
(Added: Propeller, engine) 
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Classical engineering design iteration

1. Design 
– This step may use calculations, physical laws, 

chemistry or biology, experimental data, intuition 
and guesses 

2. Build
3. Test 
4. If it doesn’t work, go back to design (Step 1). 
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Engineering design iteration – with computers
1. Design on computers 

a) Derive mathematical model of the design 
b) Perform calculations, simulations or optimisation to 

understand or improve design
c) Reject designs with poor performance. If none of the 

designs is good, go back to (a) for a new design or (b) to 
try to optimise the design. 

d) Choose one or more candidates for prototyping or building 
the actual design  

2. Build
3. Test 
4. If it doesn’t work, go back to design (Step 1). 

Mathematical model can be derived from science (maths, 
physics, chemistry, biophysics) or data 
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Design challenge: Balancing an inverted 
pendulum

• Can you balance a stick on your finger tip/palm
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• An inverted pendulum 
is sitting on a cart. 

• The aim of the design 
is to balance the 
inverted pendulum by 
applying an 
appropriate force on 
the cart. 

Picture: http://en.wikipedia.org/wiki/Inverted_pendulum 



Applications of inverted pendulum

• Segway
• Rocket/spaceship attitude control

– i.e., orientation control
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Picture http://www.segway.com/

http://www.qrg.northwestern.edu/projects/vss/docs/propulsion/2-what-is-attitude-control.html

http://www.segway.com/


This week

• Simulation

• Python components
– Some new numpy functions

• Mathematical / physics / chemistry concepts 
– Mathematical modelling 
– Numerical approximation of derivatives
– Ordinary differential equations 
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More on numpy

• Before looking at simulation, we will first go through a 
number of numpy functions which are related to our 
discussion this week 

• The numpy functions are:
– arange(), linspace(), zeros(), ones(), zeros_like()

• The file is in numpy_ex.py
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Notation in the lecture notes 

• We will be using both mathematical variables and Python 
variables in this lecture 

• We may say the position of an object at time t is x(t)
– For example, x(0.3) = 5 says that the object is at the 

position 5 at time 0.3 

• We may store the position of the object in a numpy array 
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Notation
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• Mathematical variable : x(0.4)

• Numpy array: position[5]

Real number with
interpretation of time

Zero or positive integers only
An index to an array
We assume we don’t use –ve 
indexing here

• A simple way to remember:
– Mathematical variables: ()
– Numpy array: []



Simulation on paper – the setup

• An object is constrained to move along a straight line
• Time starts at 0 unit. The initial position of the object is 

x(0) = 1
• The velocity v(t) at time t is:

– v(t) =  2 if 0 ≤ t <0.4
– v(t) = -5 if 0.4 ≤ t

• Determine the position of the object at t = 0.1,0.2, …, 0.6
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At position 1 at time 0



Calculating positions on paper 

• Given:
– Initial position x(0) = 1
– Velocity in time interval [0,0.1] is 2 

• Aim: Find the position at time 0.1 = x(0.1) 
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• x(0.1) = x(0) + 2 * 0.1 = 1.2 

• How about position at time 0.2 = x(0.2) 
– Velocity in time interval [0.1,0.2] is 2 

• x(0.2) = x(0.1) + 2 * 0.1 = 1.4 



Quiz: Position at time 0.3  

• Given 
– x(0.2) = 1.4 
– Velocity in time interval [0.2,0.3] is 2
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• What is the position at time 0.3?
– Equivalently: What is x(0.3)? 



Python variable for time instances

• Our aim is to compute the position of the object at time 
instances 0, 0.1, 0.2, … , 0.6

• We want to create a numpy array whose elements are:
– [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

– Python variable name for this numpy array: time_array

– We can generate this array by using either arange() or 
linspace()
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Python variable for positions

• time_array = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

• pos_array =  [1, 1.2, 1.4,    …                    ] 

• pos_array and time_array have the same shape
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• Note:
– pos_array[0] = position at time 0 = position at time time_array[0]
– pos_array[1] = position at time 0.1 = position at time time_array[1]

• Generally:
– pos_array[k] = position at time 0.1*k = position at time time_array[k]



Mapping on paper simulation to Python code 

• On paper calculations:
– x(0) = position at time 0
– x(0.1) = position at time 0.1
– The calculation is: 
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x(0.1) = x(0) + 2 * 0.1 = 1.2 

• Python code:
– pos_array[0] stores the position at time 0
– pos_array[1] stores the position at time 0.1
– Python code is:

pos_array[1] = pos_array[0] + 2 * 0.1 



Simulation on paper – the setup (repeat)

• An object is constrained to move along a straight line
• Time starts at 0 unit. The initial position of the object is  

x(0) = 1
• The velocity v(t) at time t is:

– v(t) =  2 if 0 ≤ t <0.4
– v(t) = -5 if 0.4 ≤ t

• Determine the position of the object for t = 0.1,0.2,…, 0.6
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At position 1 at time 0



Simulation on paper

Let us complete the Python implementation in 
simulate_1d_prelim.m 
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Index k time_array[k] Velocity 
at the

current 
time

Position pos_array[k+1]

Note: pos_array[0] = 1
0 0.0 2 pos_array[1] = pos_array[0] +  2 * 0.1 = 1.2

1 0.1 2 pos_array[2] = pos_array[1] +  2 * 0.1 = 1.4

2 0.2 2 pos_array[3] = pos_array[2] +  2 * 0.1 = 1.6

3 0.3 2
4 0.4 -5
5 0.5 -5
6 0.6



simulate_1d.py (simulation loop only)
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for k in range(len(time_array)-1):     
    #  Current time 
    time_now = time_array[k]
    
    #  Velocity at the current time 
    if time_now < TIME_LIMIT_1: 
        velocity_now = VELOCITY_1
    else:
        velocity_now = VELOCITY_2
        
    # Compute pos_array[k+1] 
    pos_array[k+1] = pos_array[k] + velocity_now * dt 



Week 3’s in-lecture project (1)

• Speed of an object in freefall 
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• You created a list of time instants

[0,  0.5,  1,  1.5,  2,  2.5,                           39.5,  40]

• We just wrote a simulation program to determine the
position of a block over time, you used a different
method to determine the speed of an object over time in
Week 3.



Week 3’s in-lecture project (2)
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• You use for-loops to create a list of speeds
– Time is 0. Use the Speed formula. Speed = 0.
– Time is 0.5. Use the speed formula. Speed = 4.692400935
– Time is 1. Use the speed formula. Speed = 8.98399681455

– Time is 40. Use the speed formula. Speed = 54.8885179036



Contrasting two methods to do simulation
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By increment By Formula

pos_array[k+1]
= 
pos_array[k] + 
velocity * dt

Methods
Problems



Simulation by 
formula

• A parachutist jumps from 
the plane, we want to 
calculate their speed over 
time and plot the speed 
profile 
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Jump at 
time 0
Speed = 0

Parachute 
deployed after
6 seconds  

freefall

Retarded 
fall



The parachutist’s speed profile
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• We will need two 
formulas
– One before the 

parachute is 
deployed: freefall

– One after the 
parachute is 
deployed 

Time at which the 
parachute is deployed



Formula #1: Before the parachute is deployed

• Notation:
– m is the mass of the parachutist

– g is acceleration due to gravity (m s−2)

– cair is the drag coefficient in air (in kg s−1)
– tc is the time the parachute is deployed

• The speed of the parachutist before the parachute is 
deployed is given by the formula:
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If t < tc
Free fall part
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Some intuition

The exponential factor decays in magnitude, so the 
speed asymptotically approaches g m/ cair

For a free-falling 70kg parachutist with cair = 12.5, this 
terminal speed is ~55 ms−2 (200km/hr)



Formula #2: After the parachute is deployed
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If t ≥ tc

v(t) = vp0e
�

cdp
m (t�tc) +

gm

cdp
(1� e�

cdp
m (t�tc))

Speed at the moment 
parachute is deployed

tc = the time at which the parachute is deployed

A larger drag coefficient cdp, i.e., cdp > cair
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Parachutist simulation
• We’ve written a function that, given all parameters, 

calculates the speed at any time t
• The algorithm, expressed in pseudocode, is

for t in time_array
if t < tc # still in free-fall

Calculate the speed using the freefall formula
else # parachute has been deployed

Calculate velocity at time of deployment 
Calculate velocity using the parachute formula

Code in para_speed_by_formula.py and para_formula_lib.py 



Comparing object moving in 1D and parachutist
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By increment By Formula

pos_array[k+1] 
= 
pos_array[k] + 
velocity * dt

• If 0 ≤ t ≤ 0.4, x(t)= 1+2t

• If 0.4 ≤ t, x(t) = 1.8 – 5 (t 
– 0.4) 

? plus others.

Methods
Problems



An inconvenient truth

• Solving problems by deriving a formula
– Mathematically elegant; exact solution
– Formulas may provide insight 
– Convenient to use: simply perform substitution
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Bad news!

Most advanced engineering 
problems do not have an exact 
solution in the form of a formula

Good news!

You can solve these problems 
numerically and approximately 
by computers and programming



Non-formula solution to the parachutist problem

• v(t) = speed at time t 
• c(t) = drag coefficient at time t 
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dv(t)

dt
= g � c(t)

m
v(t)

• The velocity of the parachutist obeys the following 
ordinary differential equations (ODE)

• We will look at how you can solve this equation 
numerically and approximately. 



Approximating derivatives 

• From the definition of derivatives, we know
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dv(t)

dt
= lim

�!0

v(t+�)� v(t)

�

• If Δ is small enough, then 

dv(t)

dt
⇡ v(t+�)� v(t)

�



Approximating derivatives – 
numerical illustration

• f(x) = x3

• Derivative of f(x) = f’(x) = 3 x2

• At x = 2, f’(2) = 12

• Approximate method

• Let us try different values of Δ
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(2 +�)3 � 23

�

Code: approximate_derivative.py

Δ
0.1000 12.61000000
0.0100 12.06010000
0.0010 12.00600100
0.0001 12.00060001

<latexit sha1_base64="09Zh2rK+z5dz8ud4f2Qh4zcjX10="></latexit>

lim
�!0

(2 +�)3 � 23

�



Solving ODE numerically (1)

1) Starting from the ODE
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dv(t)

dt
= g � c(t)

m
v(t)

2) Replace the derivative 
by its approximation

dv(t)

dt
⇡ v(t+�)� v(t)

�

We obtain: v(t+�)� v(t)

�
⇡ g � c(t)

m
v(t)



Solving ODE numerically (2)

3) Make v(t + Δ) the subject: 
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From last 
slide: 

v(t+�)� v(t)

�
⇡ g � c(t)

m
v(t)

v(t+�) ⇡ v(t) + (g � c(t)

m
v(t))�



Solving ODE numerically (3)
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From last
slide: v(t+�) ⇡ v(t) + (g � c(t)

m
v(t))�

New speed Current speed

• For simulation, let us assume speed is stored in the 
array speed_array

• Identify
v(t+Δ) with speed_array[k+1]

 v(t) with speed_array[k]



The analogy …
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pos_array[4] = pos_array[3] + 2 * 0.1 = 1.6 

x(0.3) = x(0.2) + 2 * 0.1 = 1.6 

Position at 
time 0.2

Position after 
0.1 time units

Next element
in the array

Current 
element
in the array



para_ODE_lib.py (simulation loop only)
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for k in range(len(time_array)-1):
        # Current time 
        time_now = time_array[k]   

        # Determine the drag coefficient at time_now
        if time_now <= time_deploy: 
            drag_coeff_now = drag_air
        else:
            drag_coeff_now = drag_para
            
        # Compute speed_array[k+1]
        speed_array[k+1] = speed_array[k] + \
            (g - drag_coeff_now * speed_array[k] / mass) * dt



Python code: approx ODE versus formula
• A Python function to solve the ODE numerically for the 

parachutist problem
– Solution in the function: para_ODE_lib.py

• Note
– Formula is exact 
– Numerical solution to ODE is an approximation 

• Python script para_speed_by_ODE.py compares the 
formula against the approximate numerical solution 

• We will vary the value of Δ, we expect
– Small Δ, small difference between the two methods
– And vice versa  
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Where did the ODE come from?

ODE we used. Multiply
both sides by m.  
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dv(t)

dt
= g � c(t)

m
v(t)

m
dv(t)

dt
= mg � c(t)v(t)

Let us look at what 
this means. 



ODEs describe physical laws

Net downward force on the 
parachutist
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m
dv(t)

dt
= mg � c(t)v(t)

mass x acceleration = 

c(t) v(t) = drag force

m g = gravitational pull

Newton’s second lawWhat physical law is this?



The big picture

• Physical law gives the ODE
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m
dv(t)

dt
= mg � c(t)v(t)

• Computers and algorithms allow you to obtain 
numerical and approximate solution

• That’s why you need to learn maths, physics, 
chemistry, your own disciplinary knowledge and 
COMPUTING!



Solving ODEs

• The method we use for solving ODE is known as 
Euler’s forward method

• Meaning of forward and backward:
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dv(t)

dt
⇡ v(t+�)� v(t)

�

dv(t)

dt
⇡ v(t)� v(t��)

�

Forward:

Backward:

• Euler’s forward method is simpler to explain but not the 
best. This is so you can focus on learning programming

• You will learn better methods in later years 



The extended parachutist problem
• What if you want to determine the height of the 

parachutist too?
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• Let h(t) = height of the parachutist at time t 
• How can you compute h(t + Δ) from h(t)? 

dh(t)

dt
= �v(t)

h(t+�) ⇡ h(t)� v(t)�

• You can formally derive this from the following ODE 
which says: derivative of height = downward speed

New height Current height



Python implementation

• Essentially, two updates in the for loop
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v(t+�) ⇡ v(t) + (g � c(t)

m
v(t))�

h(t+�) ⇡ h(t)� v(t)�

• Python function: para_ODE_ext_lib.py
• Python script: para_speed_height_by_ODE.py

• The script also illustrates how to plot with two different 
scales for the y-axis 



para_ODE_ext_lib.py
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def para_speed_height_ODE(time_array, mass, speed0, 
               height0, drag_air, time_deploy, drag_para):

    height_array = np.zeros_like(time_array)
    
    height_array[0] = height0
    
    # simulation loop 
    for k in range(len(time_array)-1):

        height_array[k+1] = height_array[k] - \  
                            speed_array[k] * dt

Note: The changes, relative to para_ODE_lib.py is indicated in red. 



Summary

• We have introduced the basics of simulation, which 
is a key tool in modern engineering and science
– A formula solution is rare for modern day complex  

engineering problems
– Numerical solution, approximation solution and 

simulation are important methods 
• The basic method to do simulation is to set up an 

iteration step which can be obtained from ordinary 
differential equations
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