
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W9 slide 1

Week 8A: Simulation

ENGG1811 Computing for Engineers

Wright brothers

Invented and built the world’s first powered airplane

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

Pictures from http://en.wikipedia.org/wiki/Wright_brothers

Crumpled gilder, Oct 1900

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3
http://www.theatlantic.com/photo/2014/08/first-flight-with-the-wright-brothers/100796/

Glider (i.e. no power) (1902)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

First powered flight (17 Dec 1903)
(Added: Propeller, engine)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 5

Classical engineering design iteration

1. Design
– This step may use calculations, physical laws,

chemistry or biology, experimental data, intuition
and guesses

2. Build
3. Test
4. If it doesn’t work, go back to design (Step 1).

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

Engineering design iteration – with computers
1. Design on computers

a) Derive mathematical model of the design
b) Perform calculations, simulations or optimisation to

understand or improve design
c) Reject designs with poor performance. If none of the

designs is good, go back to (a) for a new design or (b) to
try to optimise the design.

d) Choose one or more candidates for prototyping or building
the actual design

2. Build
3. Test
4. If it doesn’t work, go back to design (Step 1).

Mathematical model can be derived from science (maths,
physics, chemistry, biophysics) or data

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 7

Design challenge: Balancing an inverted
pendulum

• Can you balance a stick on your finger tip/palm

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

• An inverted pendulum
is sitting on a cart.

• The aim of the design
is to balance the
inverted pendulum by
applying an
appropriate force on
the cart.

Picture: http://en.wikipedia.org/wiki/Inverted_pendulum

Applications of inverted pendulum

• Segway
• Rocket/spaceship attitude control

– i.e., orientation control

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

Picture http://www.segway.com/

http://www.qrg.northwestern.edu/projects/vss/docs/propulsion/2-what-is-attitude-control.html

http://www.segway.com/

This week

• Simulation

• Python components
– Some new numpy functions

• Mathematical / physics / chemistry concepts
– Mathematical modelling
– Numerical approximation of derivatives
– Ordinary differential equations

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

More on numpy

• Before looking at simulation, we will first go through a
number of numpy functions which are related to our
discussion this week

• The numpy functions are:
– arange(), linspace(), zeros(), ones(), zeros_like()

• The file is in numpy_ex.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

Notation in the lecture notes

• We will be using both mathematical variables and Python
variables in this lecture

• We may say the position of an object at time t is x(t)
– For example, x(0.3) = 5 says that the object is at the

position 5 at time 0.3

• We may store the position of the object in a numpy array

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

Notation

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

• Mathematical variable : x(0.4)

• Numpy array: position[5]

Real number with
interpretation of time

Zero or positive integers only
An index to an array
We assume we don’t use –ve
indexing here

• A simple way to remember:
– Mathematical variables: ()
– Numpy array: []

Simulation on paper – the setup

• An object is constrained to move along a straight line
• Time starts at 0 unit. The initial position of the object is

x(0) = 1
• The velocity v(t) at time t is:

– v(t) = 2 if 0 ≤ t <0.4
– v(t) = -5 if 0.4 ≤ t

• Determine the position of the object at t = 0.1,0.2, …, 0.6

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 14

At position 1 at time 0

Calculating positions on paper

• Given:
– Initial position x(0) = 1
– Velocity in time interval [0,0.1] is 2

• Aim: Find the position at time 0.1 = x(0.1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

• x(0.1) = x(0) + 2 * 0.1 = 1.2

• How about position at time 0.2 = x(0.2)
– Velocity in time interval [0.1,0.2] is 2

• x(0.2) = x(0.1) + 2 * 0.1 = 1.4

Quiz: Position at time 0.3

• Given
– x(0.2) = 1.4
– Velocity in time interval [0.2,0.3] is 2

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 16

• What is the position at time 0.3?
– Equivalently: What is x(0.3)?

Python variable for time instances

• Our aim is to compute the position of the object at time
instances 0, 0.1, 0.2, … , 0.6

• We want to create a numpy array whose elements are:
– [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

– Python variable name for this numpy array: time_array

– We can generate this array by using either arange() or
linspace()

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 17

Python variable for positions

• time_array = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

• pos_array = [1, 1.2, 1.4, …]

• pos_array and time_array have the same shape

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 18

• Note:
– pos_array[0] = position at time 0 = position at time time_array[0]
– pos_array[1] = position at time 0.1 = position at time time_array[1]

• Generally:
– pos_array[k] = position at time 0.1*k = position at time time_array[k]

Mapping on paper simulation to Python code

• On paper calculations:
– x(0) = position at time 0
– x(0.1) = position at time 0.1
– The calculation is:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 19

x(0.1) = x(0) + 2 * 0.1 = 1.2

• Python code:
– pos_array[0] stores the position at time 0
– pos_array[1] stores the position at time 0.1
– Python code is:

pos_array[1] = pos_array[0] + 2 * 0.1

Simulation on paper – the setup (repeat)

• An object is constrained to move along a straight line
• Time starts at 0 unit. The initial position of the object is

x(0) = 1
• The velocity v(t) at time t is:

– v(t) = 2 if 0 ≤ t <0.4
– v(t) = -5 if 0.4 ≤ t

• Determine the position of the object for t = 0.1,0.2,…, 0.6

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 20

At position 1 at time 0

Simulation on paper

Let us complete the Python implementation in
simulate_1d_prelim.m

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 21

Index k time_array[k] Velocity
at the

current
time

Position pos_array[k+1]

Note: pos_array[0] = 1
0 0.0 2 pos_array[1] = pos_array[0] + 2 * 0.1 = 1.2

1 0.1 2 pos_array[2] = pos_array[1] + 2 * 0.1 = 1.4

2 0.2 2 pos_array[3] = pos_array[2] + 2 * 0.1 = 1.6

3 0.3 2
4 0.4 -5
5 0.5 -5
6 0.6

simulate_1d.py (simulation loop only)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 22

for k in range(len(time_array)-1):
 # Current time
 time_now = time_array[k]

 # Velocity at the current time
 if time_now < TIME_LIMIT_1:
 velocity_now = VELOCITY_1
 else:
 velocity_now = VELOCITY_2

 # Compute pos_array[k+1]
 pos_array[k+1] = pos_array[k] + velocity_now * dt

Week 3’s in-lecture project (1)

• Speed of an object in freefall

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 23

• You created a list of time instants

[0, 0.5, 1, 1.5, 2, 2.5, 39.5, 40]

• We just wrote a simulation program to determine the
position of a block over time, you used a different
method to determine the speed of an object over time in
Week 3.

Week 3’s in-lecture project (2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 24

• You use for-loops to create a list of speeds
– Time is 0. Use the Speed formula. Speed = 0.
– Time is 0.5. Use the speed formula. Speed = 4.692400935
– Time is 1. Use the speed formula. Speed = 8.98399681455

– Time is 40. Use the speed formula. Speed = 54.8885179036

Contrasting two methods to do simulation

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 25

By increment By Formula

pos_array[k+1]
=
pos_array[k] +
velocity * dt

Methods
Problems

Simulation by
formula

• A parachutist jumps from
the plane, we want to
calculate their speed over
time and plot the speed
profile

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 26

Jump at
time 0
Speed = 0

Parachute
deployed after
6 seconds

freefall

Retarded
fall

The parachutist’s speed profile

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 27

• We will need two
formulas
– One before the

parachute is
deployed: freefall

– One after the
parachute is
deployed

Time at which the
parachute is deployed

Formula #1: Before the parachute is deployed

• Notation:
– m is the mass of the parachutist

– g is acceleration due to gravity (m s−2)

– cair is the drag coefficient in air (in kg s−1)
– tc is the time the parachute is deployed

• The speed of the parachutist before the parachute is
deployed is given by the formula:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 28

If t < tc
Free fall part

ENGG1811 © UNSW, CRICOS Provider No: 00098G W5 slide 29

Some intuition

The exponential factor decays in magnitude, so the
speed asymptotically approaches g m/ cair

For a free-falling 70kg parachutist with cair = 12.5, this
terminal speed is ~55 ms−2 (200km/hr)

Formula #2: After the parachute is deployed

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 30

If t ≥ tc

v(t) = vp0e
�

cdp
m (t�tc) +

gm

cdp
(1� e�

cdp
m (t�tc))

Speed at the moment
parachute is deployed

tc = the time at which the parachute is deployed

A larger drag coefficient cdp, i.e., cdp > cair

ENGG1811 © UNSW, CRICOS Provider No: 00098G W5 slide 31

Parachutist simulation
• We’ve written a function that, given all parameters,

calculates the speed at any time t
• The algorithm, expressed in pseudocode, is

for t in time_array
if t < tc # still in free-fall

Calculate the speed using the freefall formula
else # parachute has been deployed

Calculate velocity at time of deployment
Calculate velocity using the parachute formula

Code in para_speed_by_formula.py and para_formula_lib.py

Comparing object moving in 1D and parachutist

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 32

By increment By Formula

pos_array[k+1]
=
pos_array[k] +
velocity * dt

• If 0 ≤ t ≤ 0.4, x(t)= 1+2t

• If 0.4 ≤ t, x(t) = 1.8 – 5 (t
– 0.4)

? plus others.

Methods
Problems

An inconvenient truth

• Solving problems by deriving a formula
– Mathematically elegant; exact solution
– Formulas may provide insight
– Convenient to use: simply perform substitution

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 33

Bad news!

Most advanced engineering
problems do not have an exact
solution in the form of a formula

Good news!

You can solve these problems
numerically and approximately
by computers and programming

Non-formula solution to the parachutist problem

• v(t) = speed at time t
• c(t) = drag coefficient at time t

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 34

dv(t)

dt
= g � c(t)

m
v(t)

• The velocity of the parachutist obeys the following
ordinary differential equations (ODE)

• We will look at how you can solve this equation
numerically and approximately.

Approximating derivatives

• From the definition of derivatives, we know

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 35

dv(t)

dt
= lim

�!0

v(t+�)� v(t)

�

• If Δ is small enough, then

dv(t)

dt
⇡ v(t+�)� v(t)

�

Approximating derivatives –
numerical illustration

• f(x) = x3

• Derivative of f(x) = f’(x) = 3 x2

• At x = 2, f’(2) = 12

• Approximate method

• Let us try different values of Δ

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 36

(2 +�)3 � 23

�

Code: approximate_derivative.py

Δ
0.1000 12.61000000
0.0100 12.06010000
0.0010 12.00600100
0.0001 12.00060001

<latexit sha1_base64="09Zh2rK+z5dz8ud4f2Qh4zcjX10=">AAACJ3icbVDLSgMxFM34rPVVdekmWISKWGbqcyVFXbisYB/QqSWTZtrQzIPkjlKG+Rs3/oobQUV06Z+YtrPQ1gMJh3PuIbnHCQVXYJpfxszs3PzCYmYpu7yyurae29isqSCSlFVpIALZcIhigvusChwEa4SSEc8RrO70L4d+/Z5JxQP/FgYha3mk63OXUwJaaufObcG9dmxfMQEE25J3e0CkDB6wmWDblYTGhdL+2N67O8QHuKTvJA0k7VzeLJoj4GlipSSPUlTauVe7E9DIYz5QQZRqWmYIrZhI4FSwJGtHioWE9kmXNTX1icdUKx7tmeBdrXSwG0h9fMAj9XciJp5SA8/Rkx6Bnpr0huJ/XjMC96wVcz+MgPl0/JAbCQwBHpaGO1wyCmKgCaGS679i2iO6HNDVZnUJ1uTK06RWKlonxeObo3z5Iq0jg7bRDiogC52iMrpGFVRFFD2iZ/SG3o0n48X4MD7HozNGmtlCf2B8/wC2vqSU</latexit>

lim
�!0

(2 +�)3 � 23

�

Solving ODE numerically (1)

1) Starting from the ODE

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 37

dv(t)

dt
= g � c(t)

m
v(t)

2) Replace the derivative
by its approximation

dv(t)

dt
⇡ v(t+�)� v(t)

�

We obtain: v(t+�)� v(t)

�
⇡ g � c(t)

m
v(t)

Solving ODE numerically (2)

3) Make v(t + Δ) the subject:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 38

From last
slide:

v(t+�)� v(t)

�
⇡ g � c(t)

m
v(t)

v(t+�) ⇡ v(t) + (g � c(t)

m
v(t))�

Solving ODE numerically (3)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 39

From last
slide: v(t+�) ⇡ v(t) + (g � c(t)

m
v(t))�

New speed Current speed

• For simulation, let us assume speed is stored in the
array speed_array

• Identify
v(t+Δ) with speed_array[k+1]

 v(t) with speed_array[k]

The analogy …

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 40

pos_array[4] = pos_array[3] + 2 * 0.1 = 1.6

x(0.3) = x(0.2) + 2 * 0.1 = 1.6

Position at
time 0.2

Position after
0.1 time units

Next element
in the array

Current
element
in the array

para_ODE_lib.py (simulation loop only)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 41

for k in range(len(time_array)-1):
 # Current time
 time_now = time_array[k]

 # Determine the drag coefficient at time_now
 if time_now <= time_deploy:
 drag_coeff_now = drag_air
 else:
 drag_coeff_now = drag_para

 # Compute speed_array[k+1]
 speed_array[k+1] = speed_array[k] + \
 (g - drag_coeff_now * speed_array[k] / mass) * dt

Python code: approx ODE versus formula
• A Python function to solve the ODE numerically for the

parachutist problem
– Solution in the function: para_ODE_lib.py

• Note
– Formula is exact
– Numerical solution to ODE is an approximation

• Python script para_speed_by_ODE.py compares the
formula against the approximate numerical solution

• We will vary the value of Δ, we expect
– Small Δ, small difference between the two methods
– And vice versa

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 42

Where did the ODE come from?

ODE we used. Multiply
both sides by m.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 43

dv(t)

dt
= g � c(t)

m
v(t)

m
dv(t)

dt
= mg � c(t)v(t)

Let us look at what
this means.

ODEs describe physical laws

Net downward force on the
parachutist

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 44

m
dv(t)

dt
= mg � c(t)v(t)

mass x acceleration =

c(t) v(t) = drag force

m g = gravitational pull

Newton’s second lawWhat physical law is this?

The big picture

• Physical law gives the ODE

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 45

m
dv(t)

dt
= mg � c(t)v(t)

• Computers and algorithms allow you to obtain
numerical and approximate solution

• That’s why you need to learn maths, physics,
chemistry, your own disciplinary knowledge and
COMPUTING!

Solving ODEs

• The method we use for solving ODE is known as
Euler’s forward method

• Meaning of forward and backward:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 46

dv(t)

dt
⇡ v(t+�)� v(t)

�

dv(t)

dt
⇡ v(t)� v(t��)

�

Forward:

Backward:

• Euler’s forward method is simpler to explain but not the
best. This is so you can focus on learning programming

• You will learn better methods in later years

The extended parachutist problem
• What if you want to determine the height of the

parachutist too?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 47

• Let h(t) = height of the parachutist at time t
• How can you compute h(t + Δ) from h(t)?

dh(t)

dt
= �v(t)

h(t+�) ⇡ h(t)� v(t)�

• You can formally derive this from the following ODE
which says: derivative of height = downward speed

New height Current height

Python implementation

• Essentially, two updates in the for loop

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 48

v(t+�) ⇡ v(t) + (g � c(t)

m
v(t))�

h(t+�) ⇡ h(t)� v(t)�

• Python function: para_ODE_ext_lib.py
• Python script: para_speed_height_by_ODE.py

• The script also illustrates how to plot with two different
scales for the y-axis

para_ODE_ext_lib.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 49

def para_speed_height_ODE(time_array, mass, speed0,
 height0, drag_air, time_deploy, drag_para):

 height_array = np.zeros_like(time_array)

 height_array[0] = height0

 # simulation loop
 for k in range(len(time_array)-1):

 height_array[k+1] = height_array[k] - \
 speed_array[k] * dt

Note: The changes, relative to para_ODE_lib.py is indicated in red.

Summary

• We have introduced the basics of simulation, which
is a key tool in modern engineering and science
– A formula solution is rare for modern day complex

engineering problems
– Numerical solution, approximation solution and

simulation are important methods
• The basic method to do simulation is to set up an

iteration step which can be obtained from ordinary
differential equations

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 50

