
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W9 slide 1

Week 9A: Mutable and immutable data
types

ENGG1811 Computing for Engineers

You can modify part of a list

• You can modify the elements in a list by assigning
new values to them

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

String as a sequence of characters

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

But you can’t modify part of a string

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

← Error

← You can’t change part of
a string but you can assign
an entirely new string

Tuples
• A tuple is a sequence of elements enclosed in ()
• For example, the numpy where () function returns a tuple, the

shape of a numpy function is given in a tuple
• Tuples are in many ways similar to lists
• But you can’t modify tuples

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 5

Mutable and immutable data types

• The data types in Python are divided into 2 kinds
– Mutable
– Immutable

• Lists, numpy arrays (and dictionaries) are mutable
– You can change the individual elements

• Strings are immutable
– So are int, float, bool, tuples

• Note: dictionaries is a datatype in Python
– We won’t be covering dictionaries in this course

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

Simplified mental picture on variables
[From Week 1]

• Variables are stored in computer memory
• A variable has a name and a value
• A mental picture is:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 7

A program manipulates variables to achieve its goal

y 5
Variable name Value of variable

Note: This is a simplified view. We will introduce the
more accurate view later in the course.

How Python really stores variables

Variable x is associated with
an identifier

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

x 4728505688

4728505688
float
5.5

• In order to understand mutability, we need to understand
how Python stores variables

The identifier is associated with the
data type and a value.
For a list, a sequence of values

Indirect association

Variable x is
associated with
an identifier

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

x 4728505688

4728505688
float
5.5

The most important concept
that you need to know is that a
variable name is associated
with its value via an identifier

The identifier is associated with the
datatype and a value.
For a list, a sequence of values

Copying a mutable type

• We will look at and run the code in mut_1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

list1 4728419656
4728419656

list
10,11,12,13

list2 4728419656

Note: You will not get the same id shown above when you
run the program. The essence is whether list1 or list2 have
the same or different id not

Lessons learnt

• The key lessons learnt from mut_1.py are
– There are two different ways to copy lists

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

list2 = list1

list4 = list3[:]

Note: Both variable names are
associated with the SAME list

Note: The variable names are
associated with different list

You can visualise the code on Python tutor.
See the screenshot from Python tutor on the next page.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

Pass by value / reference

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

• Python function treats its input according to whether it is
mutable or immutable

• E.g., consider a function with 2 inputs
– x is of immutable type
– y is of mutable type

x = 2
y = [1,3]

z = func(x,y)

• For an input of mutable type,
you can choose to tell the
function the input’s identifier

• E.g. func() will be told the
identifier of y

• Pass by reference

• For an input of immutable
type, the function will be
told its value

• E.g. func() will be told that
the value of x is 2

• Pass by value

x 4728505688 4728505688

int
2y 4728419656

4728419656

list
1,3

Modifying list using functions

• We say in Week 2 that the scope of the variables in a
function is local. This is true for immutable objects.
– See the next slide

• For mutable data type, you can modify them by using
functions
– This is a consequence of pass by reference

• Let us look at the examples in mut_2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 14

Pass by value (immutable type)
• In the example below, the values 4 and 2 are passed to the

function
• The function does not modify the variables a and b
• Separate memory spaces for the variables within the function

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

def my_power(x,n):
y = x ** n
return y

a = 4; b = 2
z = my_power(a, b)

print('y = ' ,y)
print('z = ' ,z)

x ← 4
n ← 2

Memory
space

Memory space of the
function extend

Pass by reference

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 16

def extend(input_list):
input_list.append(-1)

list0 = [5, 11, 12, 13]
extend(list0)

list0 4728419656 4728419656
list
…

Input_list 4728419656

When the function extend is called,
this identifier is passed to the
function. With the identifier, the
function can locate the list. The
identifier refers to the list, hence
the name pass by reference.

↓ From mut_2.py

Memory requirement: passing list by reference

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 17

def extend(input_list):
input_list.append(-1)

list0 = [5, 11, 12, 13]
extend(list0)

← Need memory to store
list0 only

Memory requirement: passing list by value

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 18

def extend(input_list):
input_list.append(-1)

list0 = [5, 11, 12, 13]
extend(list0[:])

Need memory to store list0 and
memory for a copy of list0 in the
function.

Double the memory requirement

The list is now
passed by
value.

Why mutable data types?

• Allow pass by reference
– Lower memory requirement. Saves time to locate vacant

memory and to duplicate the list.
– Beneficial if the list is long
– More data is collected than in the past, so large data sets

become more prevalent

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 19

numpy arrays

• numpy arrays are mutable

• If you want to copy the contents of an array into another
without associating them, you need to use the numpy
function copy()
– See mut_3.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 20

Beware

• Need to remember that lists and numpy arrays (in
general mutable types) can be modified by your
functions

• Sometimes you may find that your lists or arrays
have been changed (mysteriously) even though you
have not worked on them directly.

• This can be because you have modified them
unknowingly in some functions

• The example on the next page shows you how you
can identify whether your function is the culprit

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 21

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 22

• Check your function to
see whether a mutable
input appears on the
left-hand side of an
assignment operation
– list1 will be modified by

the function
• From mut_2.py →

• To avoid this problem:
– Use pass by value →
– Make an independent

copy of the array ↓

Summary

• Immutable: int, float, bool, str, tuple
• Mutable: list, numpy array

• Different ways to copy mutable types

• Pass by value, pass by reference

• Passing by reference for list, numpy arrays
– Beware that the function can modify the list/array
– Memory requirement

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 23

