
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W9 slide 1

Week 9B: Algorithms

ENGG1811 Computing for Engineers

An engineering challenge

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 2

http://www.zdnet.com/sydneys-harbour-bridge-gets-sensor-tech-7000000296/
http://www.engineeringchallenges.org/cms/8996/9136.aspx

http://www.zdnet.com/sydneys-harbour-bridge-gets-sensor-tech-7000000296/

Maintenance and monitoring aging infrastructure
is a grand research challenge

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

http://www.zdnet.com/sydneys-harbour-bridge-gets-sensor-tech-7000000296/

Limitations of computation

• Your computer can do almost 100 billion
multiplications in one second

• Tiny computers can do far less
– Need efficient or new algorithms

• In any case, we want efficient algorithms

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 4

This lecture

• Efficiency in algorithms

• Python programming
– while
– More numpy functions

• Computer science concepts
– Efficient algorithms/computational complexity

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 5

Algorithms
• A sequence of instructions for the computation

• Two important criteria
– Correctness
– Efficiency

• Example: An algorithm for multiplying 2 integers
– Correctness means the algorithm returns the correct

answer all the time
– Efficiency: How many multiplications the algorithm can do

in a given amount of time

• An efficient algorithm takes a shorter time to arrive at
the correct outcome

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 6

Challenge: Derive an efficient algorithm to locate
a name in a sorted list of names

• You are given:
– A list of names arranged in alphabetical order
– Names are indexed with 0, 1, 2 etc. in their order

• Rules:
– You are not allowed to see the list
– You can choose an index and query what the name at that

index is
• The challenge:

– Given a name, what is the minimum number of indices that
you need to query to locate that name?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 7

0. Abraham
1. Adam
2. Eve
3. Sarah

Algorithm: Simple Scan

0. Henry
1. John
2. Michael
3. Peter
4. Tinker
5. Wendy

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 8

• Example:
– There is a list with 6 names on the left
– Given Peter is one of the names, you

want to find which index it is at
• A simple algorithm is to scan the name

one by one from the beginning until
you have found the name

• Quiz: If the name that you want to locate has the index
k, how many queries do you need to locate the name
using simple scan? k+1

• Which type of loop will you use to implement a simple
scan? while / for with break

Other possible algorithms

• Make a guess of where the name is
and then start from there
– Example: 6 names on the left. The

name to locate is Yvonne. Since this
name is near the end of the alphabet
so we scan from the last index.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 9

0. Ava
1. Yvonne
2. Zac
3. Zoe
4. Zorina
5. Zwi • Comment: This algorithm assumes

that names are distributed in the
usual way but sometimes you can get
an unusual data set

• What will be an efficient algorithms?
• Can you get an efficient algorithm independent of the

data set?

Towards a general principle
• Consider this game:

– I think of a living person in this world
– To win this game, you need to guess who this person is in as

few questions as possible
• Consider two sets of questions below, which one will you

ask and why?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 10

• Is the person from Zambia?
• Is the person from Fiji?
• Is the person a current

student of UNSW?

• Is the person a he or she?
• Is the person from Asia?
• Is the person from South

America?

Question set 1 Question set 2

• Narrow down the possibilities as quickly as possible

• How can you use this principle to locate a name
quickly in a sorted list?

Name search using binary search

• The purpose of the query is to narrow down the
possibilities as much as possible
– Idea: Eliminate half of the possibilities with each query

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 11

• Binary search:
– Initialization: Query the name in the middle of the list
– Eliminate nearly half of the possibilities with each

additional query
– Stop when the name is found

Binary search example: Problem set up

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 12

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Given a list of 10
names arranged in
alphabetical order

• Aim: Use binary
search to locate the
name Peter

Binary search example (1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 13

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• To eliminate half of
the possibilities,
pick the name in
the middle

• Middle of 0 and 9 =
(0+9)/2 = 4.5

• Let us round up
• Initialisation: Query

5

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search example (2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 14

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Where should we
look next?

• Can forget indices
0-5

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search example (3)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 15

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Search between 6-9
• Middle of 6 and 9

= (6+9)/2 = 7.5
• Let us round up
• Query index 8

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search example (4)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 16

• Which section can we
forget now?

Binary search example (5)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 17

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Can forget 8-9
• Quiz: What is the

next index to query?
– (6+7)/2 = 6.5
– Round up to 7
– Query index 7

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search: A detail

• Note that when we select the mid-point, we have
chosen to round up

• We can also choose to round down
• As long as one consistent rounding method is used

throughout the algorithm, that’s fine

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 18

Algorithmic complexity

• Computer scientists are very interested
in the complexity of algorithms
– Roughly speaking, higher complexity

translates to a longer run time on the
same computer

• Computer scientists like to derive
efficient algorithms

• For the name search example earlier:
– Binary search needs 3 queries
– Simple scan needs 8 queries

• The difference does not appear to be a
lot for this example, but let us increase
the size of the list

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 19

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

?

Demo
• I took all the first names of the all students enrolled in

ENGG1811 in 16s2
• Remove all duplicates and sort the names
• There are 484 unique names
• A Python program

– Will randomly pick 10 names
– Uses simple scan and binary search to locate those 10

names
– The function will also report the number of queries made by

each method
• There are a number of points that I’d like you to think

about when you watch the demo (next slide)
• Note: We haven’t given you the source code for this

demo because the exercise on the forum is to write
Python code for simple scan and binary search

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 20

A number of questions

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 21

• Is binary search always better?
• What is the largest number of queries required by

– simple scan
– binary search

Number of queries required by binary search

• Each query reduces the number of possibilities by half

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 22

queries Remaining # possibilities after the query
1 484 * (1/2)
2
3

484 * (1/2) * (1/2)

484 * (1/2) * (1/2) * (1/2)

• After n queries, # possibilities = 484 * (1/2)n

• Finished when only one possibility left

 484 * (1/2)n ≤ 1 è n ≥ log2(484) è n ≥ 9

• Maximum queries needed = 9

Worst case complexity

• A way to measure the efficiency of an algorithm is to
look at its worst case complexity

• For the problem of locating a name in a sorted list of
n names
– Worst case complexity = maximum number of queries

ever needed to locate the name
– Worst case complexity for

• Simple scan is n
• Binary search log2(n)

• Computer scientists also use other ways to measure
complexity, such as average complexity

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 23

Quiz: Which is more efficient?

Binary: query one name
and eliminate half of the
names at a time

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 24

“Quad”-nary: query three
names and eliminate 3
quarters of the names at a
time

✗

✗

✗

✗

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 25

round / ceil / floor

• Python has 3 functions for rounding
– round(x): round to the nearest integer of x

• Note: round(x) is not part of math library
– math.ceil(x): round to the nearest integer bigger than

or equal to x
– math.floor(x): : round to the nearest integer smaller

than or equal to x

round(1.4) # = 1
round(1.5) # = 2

math.ceil(1.4) # 2
math.ceil(1.5) # 2
math.ceil(1) # 1

math.floor(1.4) # = 1
math.floor(1.5) # = 1

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 26

numpy.random.randint()

• Python numpy function numpy.random.randint()
generates random intergers

• For example: The following command generates a
random integer in the interval [0,10), i.e. 10 not
included

np.random.randint(0,10)

• See the manual page for more examples

Summary
• Algorithms play a very important role in computer science.

Two key issues: Correctness and efficiency
• Algorithms are behind many great computing innovations

– Computers, Internet, Face and speech recognition etc.
• Algorithms are everywhere in engineering too. Examples:

– Autopilot, satellite navigation, traffic control, automation of
mining, chemical and food production, power grid, robotics,
control of combustion engines and many others

– You may wish to watch the following two videos produced
especially for ENGG1811 on application of algorithms in
transport (1st video) and human hip tissue map (2nd video)

• https://youtu.be/CR-bwYiT-IM
• https://youtu.be/ZV3_ckI_4xw

• Next frontiers for algorithms: Reverse engineering the
brain, personalised education, algorithms of living cells etc.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 27

https://youtu.be/CR-bwYiT-IM
https://youtu.be/ZV3_ckI_4xw

