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Abstract—The extensive use of libraries in modern software1

impedes the scalability of pointer analysis. To address this issue,2

library summarization can be beneficial, but only if the resulting3

summary-based pointer analysis is faster without sacrificing4

much precision in the application code. However, currently, no5

library summarization approaches exist that meet this design6

objective. This paper presents a novel approach that solves this7

problem by using k-object-sensitive pointer analysis, k-obj, for8

Java. The approach involves applying k-obj, along with a set of9

summary-based inference rules, to generate a k-object-sensitive10

library summary. By replacing the program’s library with this11

summary and applying k-obj, the efficiency of the program can12

be significantly improved while maintaining nearly the same13

or better precision in the application code. We validate our14

approach with an implementation in SOOT and an evaluation15

using representative Java programs.16

I. INTRODUCTION17

Programs are built increasingly on multi-level library de-18

pendencies. When performing pointer analysis on a program,19

which consists of the application code and the library (referred20

to as the aggregate of both the standard library and the third-21

party libraries in this paper), its overall precision and efficiency22

are dependent increasingly on the precision and efficiency23

achieved in analyzing the library.24

Library summarization is known to improve the efficiency25

of pointer analysis on application code by pre-analyzing the26

library code and replacing it with a summary that represents27

its side effects on the application code. This approach avoids28

repeatedly analyzing the same library methods invoked from29

different applications or even the same application. However,30

the effectiveness of library summarization depends on whether31

it can improve performance without sacrificing precision in the32

application code. Currently, it is unclear how to do this auto-33

matically. In [1], the same summary is obtained for a library by34

merging the analysis information from all the library pointers35

into a single set, without considering the different precision36

needs of downstream analyses, including pointer analysis. As37

reported in [2], using this imprecise summarization technique38

can result in an average precision drop of 59% in a cast-39

check client analysis and a null-pointer client analysis. While40

users appreciate the performance benefits of summary-based41

analysis, they still expect the same high level of precision can42

be achieved in the application code.43

We present a novel library summarization approach that44

improves the efficiency of pointer analysis without sacrificing45

precision in the application code. Our approach is instantiated46

by applying the k-objective-sensitive pointer analysis (k-obj) 47

for Java, which is widely regarded as the best practice for ana- 48

lyzing object-oriented languages [3]–[7], flow-insensitively but 49

context-sensitively by modeling context-sensitivity in terms of 50

object-sensitivity [8]. The key innovation is to enhance k-obj 51

(with a given k value) by augmenting it with a set of summary- 52

based inference rules. These rules are applied to pre-analyze 53

all methods in the library (L) and derive a k-object-sensitive 54

library summary (k-L∗) tailored to the precision requirements 55

of k-obj for the given k value. Given k-L∗, applying k-obj 56

to analyze different programs by reusing k-L∗ (in place of 57

the library itself) gives rise to the so-called summary-based 58

k-obj (s-k-obj). In practice, s-k-obj runs faster than k-obj 59

(by avoiding re-analyzing the library code in L repeatedly) 60

while yielding better precision overall (albeit slightly poorer 61

precision in some special-case scenarios) in the application 62

code (due to a deeper heap abstraction in k-L∗ achieved by 63

method inlining performed due to library summarization). 64

In reality, various applications undergo a variety of pro- 65

gram analyses on a daily basis [9]. However, the process of 66

upgrading their libraries can extend over several months or 67

even years. Therefore, it is a logical approach to automatically 68

generate accurate library summaries through a pointer analysis 69

algorithm. These summaries can then be reused across multiple 70

applications. 71

In this paper, we make the following major contributions: 72

• We present a new approach to generating precise library 73

summaries for supporting pointer analysis. 74

• We instantiate it by accelerating k-object-sensitive pointer 75

analysis (k-obj) for Java programs and provide a prototyp- 76

ing open-source implementation (https://www.cse.unsw. 77

edu.au/∼corg/codesum/) in SOOT [10]. 78

• We demonstrate its feasibility in accelerating k-obj while 79

achieving even higher precision in the application code 80

for a set of popular Java programs evaluated. 81

II. MOTIVATION 82

In k-obj (k ⩾ 1), each method is analyzed with its receiver 83

objects used as its calling contexts, and an object o0 is modeled 84

context-sensitively by a heap context of length k− 1, denoted 85

as [o1, · · · , ok−1], where oi is the receiver object of a method 86

in which oi−1 is allocated. Therefore, a method with o0 as its 87

receiver will be analyzed context-sensitively multiple times, 88

once for each of o0’s heap contexts [o1, · · · , ok−1], under a 89

so-called method context [o0, · · · , ok−1] of length k [8]. 90

https://www.cse.unsw.edu.au/~corg/codesum/
https://www.cse.unsw.edu.au/~corg/codesum/
https://www.cse.unsw.edu.au/~corg/codesum/
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Fig. 1: Automatic library summarization for k-obj.

A. Library Summarization91

Given k-obj, Figure 1 illustrates our approach that first92

generates a k-object-sensitive library summary, denoted k-L∗,93

for a library L, independently of any application code (Fig-94

ure 1(a)), and then applies k-obj to analyze any program with95

L replaced by k-L∗ (Figure 1(b)), resulting in the so-called96

summary-based k-obj, denoted s-k-obj. For different k-limited97

versions of k-obj (with different values of k being used),98

different k-limited library summaries k-L∗ are produced.99

• Generating k-L∗ (Figure 1(a)). There are two stages. First,100

we augment k-obj by adding a small set of summary-based101

inference rules so that we can apply the thus modified k-102

obj ( “Lib-based k-obj” (denoted lib-k-obj)) to perform a103

pointer analysis for L, by introducing summary objects to104

over-approximate the behavior of the unknown pointed-to105

information in L. Second, we invoke a side-effect analyzer106

(“Summary Generator”) to emit a k-obj-specific library107

summary (in the form of code statements), k-L∗, based on108

the points-to information obtained in the first stage.109

• Performing s-k-obj (Figure 1(b)). We apply s-k-obj to110

any program with its library L being replaced by k-L∗ to111

perform the so-called summary-based pointer analysis.112

B. Two Motivating Examples113

We use two examples to illustrate how our approach works.114

1) Over-Approximating Unknown Points-to Information115

with Summary Objects: In our first example shown in Figure 2,116

we use lib-k-obj to summarize the behavior of a library117

method called transformBy() that’s invoked from the118

application code. Our goal is to illustrate how to use summary119

objects to over-approximate the behavior of unknown objects120

received from the application code so that context-sensitivity is121

irrelevant (implying that k-L∗ remains the same even when k122

varies). We aim to generate a summary for transformBy()123

(shown in an orange box in Figure 2). Figure 3 depicts all124

the relevant value flows when transformBy() is invoked,125

with those producing cumulatively the side-effect visible to126

the application code being highlighted in blue. The behav-127

ior of transformBy() is determined mainly by the call128

t.transform(o) at line 15, whose target methods depend129

on the dynamic types of the receiver objects pointed to by t.130

Here, t may point to DT created directly in transformBy()131

1 public abstract class Transformer {
2 Object content ;
3 void setContent (Object content ) {
4 this . content = content ; }
5 Object getContent () {
6 return this . content ; }
7 Object transform (Object o) {
8 this . setContent (o );
9 this . run ();

10 return this . getContent (); }
11 abstract void run ();
12 public static Object transformBy(Transformer t , Object o) {
13 if ( t == null )
14 t = new DefaultTransformer (); // DT
15 return t . transform (o); // c } }

// k−Object−Sensitive Summary of transformBy()
public static Object transformBy(Transformer t , Object o) {

return o;
return t . transform (o); // c }

16 class DefaultTransformer extends Transformer { void run () { } }

Fig. 2: Summarizing a library method transformBy().
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Fig. 3: The value-flows contributing to the side-effect of
transformBy() for the program given in Figure 2 that may
affect the application code, where the three dashed arrows (in
blue) represent potential value-flows attributed to an unknown
target method invoked by transform() at line 15.

(line 14) or any unknown objects passed into this method 132

from the application code (line 12). Thus, this call has 133

not only a known target, transform() defined in class 134

Transformer (with the related value flows depicted in solid 135

arrows), but also many other unknown targets (with the related 136

value flows depicted in dashed arrows). In the former case, 137

the cumulative effect of the call can be summarized by one 138

statement, “return o”, with the callee transform() in 139

lines 7-10 inlined. In the latter case, we just have to keep the 140

call conservatively as it is, “return t.transform(o).” 141

To obtain the summary for transformBy(), we apply 142

lib-k-obj with transformBy() as the entry method. Let 143

tp and op be two summary objects abstracting all the un- 144

known objects pointed to by t and o (the two parameters 145

of transformBy()), respectively, and cr be a summary 146

object abstracting all the unknown objects returned at callsite 147

c (line 15). For each method m, we write retm to represent 148

its unique return variable storing its return value and thism
149

to represent its this variable. Figure 4 gives the points-to 150

information obtained, with only the two points-to relations 151

highlighted in red (rettransformBy pointing to op and cr) and 152

the call statement that is associated with an unknown object 153

cr as its return value to be summarized. The three red circles 154

mark the three summary objects thus introduced. 155



transformBy

Transformer: transform

DT

o

t

retTransformer: transformthisTransformer: transform

ret transformBy

o

op

cr

tp

setContent

content

thissetContent

setContent

content

thissetContent run

thisrun

run

thisrun

getContent

thisgetContent

retgetContent

getContent

thisgetContent

retgetContent

Fig. 4: The points-to information for summarizing
transformBy() in Figure 2 with the two points-to
relations in red (rettransformBy pointing to op and cr) and
the call at callsite c with unknown targets to be summarized.
The three summary objects used are marked by red circles.

Given the points-to information, we can obtain the summary156

for transformBy() in Figure 2 by analyzing its side-effect157

on the application code, identified by its return statement158

t.transform(o) at callsite c (line 15). Its return variable159

rettransformBy points to op and cr (determined when t points160

to DT and tp, respectively). In the former case, the cumulative161

effect of this call can be summarized (by method inlining)162

into one statement, “return o”, with all the intermediate163

points-to relations that would otherwise have to be computed164

(repeatedly) by k-obj eliminated. In the latter case, the state-165

ment “return t.transform(o)”, which may potentially166

have callbacks in the application code, is simply retained.167

2) Making Library Method Summaries k-Object-Sensitive:168

Consider our second example, where we aim to summarize169

A.goo() invoked by the application code. This example is170

designed to illustrate the importance of customizing k-L∗ for171

k-obj by making it k-object-sensitive in general, highlighting172

the relevance of context-sensitivity when k varies.173

1 public class X { void foo() { ... } }
2 class Y extends X { void foo() { ... } }
3 public class A {
4 X id(X x) { return x; }
5 public static X goo() {
6 X x = new X(); // X1
7 X y = new Y(); // Y1
8 A a1 = new A(); // A1
9 A a2 = new A(); // A2

10 X xx = a1.id(x );
11 X yy = a2.id(y );
12 return xx; } }

// Context− Insensitive Summary
public static X goo() {

return new X(); // X1
return new Y(); // Y1 }

// k−Object−Sensitive Summary
public static X goo() {

return new X(); // X1 }
// Application Code

13 X x = A.goo();
14 x.foo ();

Fig. 5: k-object-sensitive method summaries for goo().

In the two orange boxes, we give two summaries for174

A.goo(): (1) the context-insensitive summary obtained by175

applying a standard context-insensitive pointer analysis, and176

(2) the k-object-sensitive summary obtained by lib-k-obj. The177

former is less precise since it does not incorporate context-178

sensitivity in summary generation (causing the return values179

from id() to be conflated). If we want to apply s-1-obj to180

perform the summary-based pointer analysis for the program181

context-sensitively, s-1-obj achieves the same precision as the182

whole-program analysis counterpart 1-obj if the former is used,183

but loses precision if the latter is used instead.184

III. LIBRARY SUMMARIZATION 185

Our approach, as shown in Algorithm 1, takes as input (1) 186

L (a library consisting of a set of library methods) and (2) 187

k-obj (a specification of k-obj for a given value of k), and 188

produces as output k-L∗ (a k-obj-specific summary k-L∗), 189

by proceeding in the two stages given in Figure 1. For each 190

library method mtd ∈ L, we first apply lib-k-obj to perform 191

a library-based pointer analysis with mtd as the only entry 192

method. Based on the points-to information ptsmtd obtained, 193

we then invoke genSumCode() to generate a summary mtd* 194

for mtd by performing a side-effect analysis. 195

Algorithm 1: Creating k-L∗ for a library L.
Input: (L, k-obj)
Output: k-L∗

1 k-L∗ ← ∅;
2 lib-k-obj← k-obj augmented with summary-based

rules;
3 foreach mtd ∈ L do
4 Stage 1: ptsmtd ← pts returned by applying

lib-k-obj to L with mtd as the entry method;
5 Stage 2: mtd*← genSumCode(mtd,ptsmtd);
6 k-L∗ ∋ mtd*;

As is standard, we use a simplified Java language, which 196

is an IR containing eight kinds of statements in Table I, to 197

specify k-obj and formalize our summarization approach. 198

TABLE I: Intermediate representation.
Kind Statement Kind Statement
NEW x = new T ASSIGN x = y

GLOBALSTORE g = x GLOBALLOAD x = g
STORE x.f = y LOAD x = y.f
CAST x = (T )y CALL x = y.m(a1, ..., an)

As k-obj is flow-insensitive, control flow statements are 199

elided. (Instance) methods are stylized to have a single return 200

variable. Static methods are omitted as they are analyzed by 201

using the calling contexts of their closest callers that are 202

instance methods on the call stack [3]–[7]. For a method m, 203

retm denotes its return variable and pmi its i-th parameter 204

(starting from 0), with pm0 representing its this variable. 205

When summarizing a library, we distinguish between known 206

objects and unknown objects. Known objects are created 207

explicitly in the library code, while unknown objects are 208

passed into the library from the application code or created 209

by an unknown target method invoked at a call statement in 210

the library. To handle unknown objects, we introduce summary 211

objects that over-approximate the behavior of unknown points- 212

to information in the library, including the behavior of known 213

objects whose fields may point to unknown objects. By over- 214

approximating the points-to information, we ensure soundness 215

for lib-k-obj. If a known object is likely to be passed to an 216

unknown target method, it is converted into a summary object. 217

Any field of a summary object may point to unknown objects. 218

When dealing with summary objects with inferred upper type 219

bounds, downcasting is handled conservatively. 220

We will use the standard notations in Figure 6, with the
exception of those related to handling summary objects dis-



types T ∈ T
methods m ∈ M

allocation sites o ∈ O
local variables v, x, y ∈ V

global variables g ∈ G
instance fields f ∈ F

contexts c ∈ C = O0 ∪O1 ∪O2...
context-sensitive heap objects ⟨o, c⟩ ∈ O× C

summary objects s ∈ S = Spara ∪ Sglob ∪ Sload
∪ Scast ∪ Sret ∪ Sarg

abstract heap objects h ∈ H = (O× C) ∪ S
heap references h.f ∈ H× F

abstract pointers p ∈ P = (V× C) ∪ (H× F) ∪G
ctx: M ↪→ P(C)
pts: P ↪→ P(H)

typeOf: V ∪G ∪ (V× F) ∪H ↪→ T
isTypeExact: H ↪→ {true, false}

fieldRefsOf: H ↪→ P(H× F)
getParaObj: V ↪→ Spara

getGlobalObj: G ↪→ Sglob
getLoadObj: V× F× C ↪→ Sload
getCastObj: T× V× C ↪→ Scast

getRetObj: V× C ↪→ Sret

Fig. 6: The notations used.

cussed in Sections III-A and III-B. For now, we remark that
we distinguish six categories of summary objects contained
in Spara, Sglob, Sload, Scast, Sret, and Sarg, where each of the
first five contains only unknown objects (created freshly by
calling getParaObj(), getGlobalObj(), getLoadObj(), getCas-
tObj(), and getRetObj(), respectively) and the last one contains
only known objects whose fields may point to unknown
objects. When analyzing a library, a known object o ∈ O
is one that is created at an object allocation statement “... =
new T ” in the library, with an exact type T ∈ T such that
typeOf(o) = T and isTypeExact(o) = true. On the
other hand, an unknown object s ∈ S \ Sarg is one that is
passed to the library from the application code or created by
an unknown target method invoked at a call statement in the
library with an inferred upper type bound T ∈ T such that
typeOf(s) = T and isTypeExact(s) = isFinalClass(T ),
where isFinalClass is defined as follows:

isFinalClass(T ) = if T is a final class → true else→ false fi
A. Stage 1: Performing lib-k-obj221

Figure 7 gives the rules for analyzing a library L by222

applying lib-k-obj, which is obtained from k-obj (specified223

by a set of standard inference rules) by adding five addi-224

tional summary-based inference rules. To compute ptsmtd for225

mtd ∈ L (Stage 1 of Algorithm 1), we simply apply lib-k-obj226

to L with mtd as the entry of the analysis.227

1) Standard Inference Rules: This set of rules for perform-228

ing an inclusion-based k-obj for Java is standard [6], [11]–[13],229

with pts recording the points-to information found. In [NEW],230

for an object allocation statement x = new T // o, heapC-231

TXSelector(c) returns a heap context for modeling o object-232

sensitively based on the current method (calling) context c233

used for analyzing its containing method m. Specifically, if234

c = [c0, ..., ck−1], then heapCTXSelector(c) = [c0, ..., ck−2].235

In [CALL], metCTXSelector(h) returns a new method con-236

text c′′ for analyzing the new method m′′ = dispatch(h,m′)237

dispatched. Specifically, if h = ⟨o, [c0, ..., ck−2]⟩, then 238

metCTXSelector(h) = [o, c0, ..., ck−2]. 239

When these standard rules are used to analyze a program 240

without using a library summary, typeOf(h) gives the exact 241

type of h in [CAST] and isTypeExact(h) = true in 242

[CALL] due to [NEW]. However, when used to summarize 243

a library method, these standard rules will handle unknown 244

objects identically as known objects, with two caveats. First, 245

for an unknown object h ∈ S \ Sarg, [CAST] is still applied if 246

typeOf(h) <: T , i.e., the upper type bound of h is a subtype 247

of T . Otherwise, we defer to the corresponding summary- 248

based rule to handle it. Second, [CALL] is applied only if the 249

receiver h of the call statement is a known object, i.e., when 250

isTypeExact(h) = true. Otherwise, we will also leave it 251

to be handled by the corresponding summary-based rule. 252

2) Summary-Based Inference Rules: To ensure the sound- 253

ness of lib-k-obj, we use five summary-based rules for in- 254

troducing six types of summary objects (Figure 6). These 255

summary-based rules are applied when processing the (entry) 256

library method summarized ([PARAINIT]), cast statements 257

([CAST]), global loads ([GLOBALLOAD]), loads ([LOAD]), 258

and call statements ([CALL]). Note that [CALL] contains 259

two sub-rules, each introducing a different kind of summary 260

objects. For (1) object creation statements ([NEW]), (2) assign- 261

ments ([ASSIGN]), (3) global stores ([GLOBALSTORE]), and 262

(4) stores ([STORE]), no summary-based rules are needed. For 263

(1) – (3), the corresponding standard inferences rule suffice. 264

For (4), there is no need to update a field of a summary object 265

since it is known to point to unknown objects. 266

Formal Parameters (ParaObjs in Spara) When m is the entry 267

method to be summarized (i.e., mtd in line 4 of Algorithm 1), 268

we apply [PARAINIT] to capture the unknown objects received 269

from the application code and assigned to its parameters. 270

For each pmtd
i , we introduce a distinct summary object (i.e., 271

ParaObj), s = getParaObj(pmtd
i ), where s ∈ Spara, to abstract 272

all unknown objects pointed to by pmtd
i . As the entry of lib- 273

k-obj (line 4 of Algorithm 1), the context for pmtd
i is [ ]. 274

We set typeOf(s) = typeOf(pmtd
i ), i.e., the upper type 275

bound of s as the declared type of pmtd
i . In addition, we set 276

isTypeExact(s) = isFinalClass(typeOf(pmtd
i )). 277

Global Variables (GlobalObjs in Sglob) A global load x=g 278

can also be an entry into the library via an external pointer 279

from the application code. For a global variable g (handled 280

context-insensitively) by [GLOBALLOAD], we introduce a dis- 281

tinct summary object (i.e., GlobalObj), s =getGlobalObj(g), 282

where s ∈ Sglob, to abstract all unknown objects pointed to by 283

g and assign it to (x, c). We set typeOf(s) = typeOf(g) 284

and isTypeExact(s) = isFinalClass(typeOf(g)), simi- 285

larly as we do for formal parameters. 286

Loads (LoadObjs in Sload) For a load x = y.f , where 287

y points to some summary object h ∈ S, h.f may point 288

to some unknown objects. According to [LOAD], we intro- 289

duce context-sensitively a summary object (i.e., LoadObj), 290

s = getLoadObj(y, f, c), where s ∈ Sload, to abstract all the 291

unknown objects pointed to by y.f under context c and assign 292
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m = mtd is the entry method summarized
T = typeOf(pmtd

i ), 0 ≤ i ≤ n

s = getParaObj(pmtd
i ), s ∈ pts(pmtd

i , [ ])
typeOf(s) = T isTypeExact(s) = isFinalClass(T )

[PARAINIT]

x = new T // o
c ∈ ctx(m)

⟨o, heapCTXSelector(c)⟩ ∈ pts(x, c)
typeOf(o) = T isTypeExact(o) = true

[NEW]

x = y
c ∈ ctx(m)

pts(y, c) ⊆ pts(x, c)
[ASSIGN]

x = (T )y
c ∈ ctx(m) h ∈ pts(y, c) typeOf(h) <: T

h ∈ pts(x, c)
c ∈ ctx(m) h ∈ pts(y, c) typeOf(h)≮: T ¬isTypeExact(h)

s = getCastObj(T, y, c), s ∈ pts(x, c)
typeOf(s) = T isTypeExact(s) = isFinalClass(T )

[CAST]

x = g
c ∈ ctx(m)

pts(g) ⊆ pts(x, c)

c ∈ ctx(m) T = typeOf(g)

s = getGlobalObj(g), s ∈ pts(x, c)
typeOf(s) = T isTypeExact(s) = isFinalClass(T )

[GLOBALLOAD]

g = x
c ∈ ctx(m)

pts(x, c) ⊆ pts(g)
[GLOBALSTORE]

x = y.f
c ∈ ctx(m) h ∈ pts(y, c)

pts(h.f) ⊆ pts(x, c)

c ∈ ctx(m) h ∈ pts(y, c) h ∈ S T = typeOf(y.f)

s = getLoadObj(y, f, c), s ∈ pts(x, c)
typeOf(s) = T isTypeExact(s) = isFinalClass(T )

[LOAD]

x.f = y
c ∈ ctx(m) h ∈ pts(x, c)

pts(y, c) ⊆ pts(h.f)
[STORE]

x = y.m′(a1, ..., an)

c ∈ ctx(m) h ∈ pts(y, c) isTypeExact(h)
m′′ = dispatch(h,m′) c′′ = metCTXSelector(h)

c′′ ∈ ctx(m′′) h ∈ pts(pm′′

0 , c′′)

pts(ai, c) ⊆ pts(pm
′′

i , c′′), 1 ≤ i ≤ n

pts(retm′′
, c′′) ⊆ pts(x, c)

c ∈ ctx(m) h ∈ pts(y, c)
¬isTypeExact(h) T = typeOf(x)

s = getRetObj(x, c), s ∈ pts(x, c)
typeOf(s) = T

isTypeExact(s) = isFinalClass(T )

c ∈ ctx(m) h ∈ pts(y, c) ¬isTypeExact(h)
h′ ∈ pts(ai, c), 1 ≤ i ≤ n h′ /∈ S

h′ ∈ Sarg
[CALL]

Fig. 7: Rules for lib-k-obj (where mtd is the library method being summarized).

it to (x, c). We set typeOf(s) = typeOf(y.f), which is293

the declared type of field f in the declared type of y, and294

isTypeExact(s) = isFinalClass(typeOf(y.f)).295

Cast Statements (CastObjs in Scast) In a cast statement296

x = (T ) y handled by [CAST], y points to an un-297

known object h whose type is not exactly known (since298

isTypeExact(h) = false). Given typeOf(h) ≮: T , we299

cannot filter out h, as typeOf(h) is only an upper type300

bound for h. As the actual type of h may be any subtype301

of T , we introduce context-sensitively a summary object302

(i.e., CastObj), s = getCastObj(T, y, c), where s ∈ Scast,303

to abstract all the unknown objects pointed to by y under304

context c and assign it to (x, c). We set typeOf(s) = T and305

isTypeExact(s) = isFinalClass(T ).306

Call Returns (RetObjs in Sret) and Arguments (ArgObjs307

in Sarg) We apply [CALL], which consists of two sub-rules, to308

handle a call statement x = y.m′(a1, ..., an) with an unknown309

target method (e.g., a possible callback in the application310

code), denoted U here, since y points to an unknown receiver311

h whose type is not known exactly (i.e., isTypeExact(h) =312

false). In this case, the objects (1) returned from the return313

variable of U , (2) passed into U via the arguments of the314

call, and (3) pointed to by global variables may all potentially315

be modified by U . According to the first sub-rule, we handle316

(1) by introducing context-sensitively a summary object (i.e.,317

RetObj), s=getRetObj(x, c), where s ∈ Sret, to abstract all the318

unknown objects returned by U under context c and assign it319

to (x, c). According to the second sub-rule, we handle (2) by320

turning every non-summary object h′ /∈ S (i.e., every known321

object created in the library) into a summary object, where 322

h′ ∈ Sarg, if it is passed via a non-receiver-variable argument 323

into U , since its fields may now be modified by U to point 324

to unknown objects. There is no need to add any existing 325

summary object s ∈ S passed into U at such a call statement 326

via any of its arguments to Sarg (if it is not there yet), since its 327

fields are known to point to unknown objects potentially, by 328

definition. Finally, we handle (3) by doing nothing, since in 329

every global load x = g, g is known to point to an unknown 330

object represented by getGlobalObj(g) ([GLOBALLOAD]). 331

B. Stage 2: Generating k-L∗
332

Algorithm 2 emits mtd* ← genSumCode(mtd,ptsmtd), 333

where mtd* ∈ k-L∗ is a summary of mtd ∈ L so that mtd* 334

exhibits the same points-to information ptsmtd. This summary 335

consists of a sequence of statements producing the points-to 336

side-effect of mtd visible to the application code as per ptsmtd. 337

Conceptually, genSumCode() is simple. We use an aux- 338

iliary function from Algorithm 3, v = emitStmts(mtd, h), 339

where h ∈ H, to emit a sequence of statements for fetching h 340

into a local variable (with its name) stored in v. The code 341

sequence generated for h, which is uniquely identified by 342

this local variable, is responsible for defining h and its fields 343

transitively based on ptsmtd. In addition to some notations in 344

Figure 6, we also use freshLocalVar(T ), where T ∈ T, to 345

return a new local variable with T as its declared type. When 346

we write mtd* ∋ "v.f = v′;", for example, we mean that 347

we emit a store statement into mtd*, with the variable name 348



Algorithm 2: mtd*← genSumCode(mtd,ptsmtd)

Input: (mtd, ptsmtd)
Output: mtd*

1 mtd*← ∅;
2 foreach h ∈ ptsmtd(ret

mtd, [ ]) do
3 v ← emitStmts(mtd, h);
4 mtd* ∋ ‘‘return v;’’;
5 foreach g ∈ G do
6 foreach h ∈ ptsmtd(g) do
7 v ← emitStmts(mtd, h);
8 mtd* ∋ "g = v;";

9 foreach s ∈ S \ Sarg do
10 v ← emitStmts(mtd, s);
11 foreach s.f ∈ fieldRefsOf(s) do
12 foreach h ∈ ptsmtd(s.f) do
13 v′ ← emitStmts(mtd, h);
14 mtd* ∋ "v.f = v′;";

15 foreach x = y.m(a1, ..., an) analyzed under context c,
where h ∈ ptsmtd(y, c), such that
isTypeExact(h) = false do

16 s← getRetObj(x, c);
17 x′ ← emitStmts(mtd, s);
18 T ← typeOf(y);
19 y′ ← freshLocalVar(T );
20 foreach h ∈ ptsmtd(y, c) do
21 if ¬isTypeExact(h) then
22 v ← emitStmts(mtd, h);
23 mtd* ∋ "y′ = v;";

24 foreach ai ∈ {a1, ..., an} do
25 T ← typeOf(ai);
26 a′i ← freshLocalVar(T );
27 foreach h ∈ ptsmtd(ai, c) do
28 v ← emitStmts(mtd, h);
29 mtd* ∋ "a′i = v;";

30 mtd* ∋ "x′ = y′.m(a′1, ..., a
′
n);";

contained in v, the field name in f , and the variable name in349

v′ being used (as is standard in compiler code generation).350

To understand genSumCode(), it suffices to examine four351

different kinds of statements reached transitively from mtd in352

the library L (handled by its four for loops), as they produce353

the points-to side effect of mtd visible to the application code:354

• Return Values (Lines 2-4). For every object pointed to by355

retmtd of mtd, where mtd is the entry method summarized356

(line 2), we emit the code for fetching h into a unique local357

variable stored in v (line 3) and “return v” (line 4). This358

will be illustrated in Section III-C1.359

• Global Stores (Lines 5-8). If a global variable g ∈ G (line360

5) is modified in a global store “ g = ...” in the library, then361

pts(g) ̸= ∅. For each of its pointed-to objects h (line 6),362

where h ∈ Sglob, we generate the code required for fetching363

h into a unique local variable v that represents h (line 7)364

and an assignment g = v (line 8).365

• (Local) Stores into the Fields of Unknown Objects (Lines366

9-14). For an unknown object s ∈ S \ Sarg (line 9) modified367

in a local store “x.f = ...”, we have pts(s.f) ̸= ∅. We368

first generate the code for fetching s into a unique local369

variable stored in v (line 10). Then we do the following for370

Algorithm 3: emitStmts for emitting code fetching
h ∈ H into a unique local variable as per ptsmtd.
Input: (mtd, h)
Output: v

1 if code has already been generated for h then
2 v ← the unique local variable for representing h
3 else if h ∈ Spara then
4 v ← getParaObj−1(h);
5 else if h ∈ Sglob then
6 g ← getGlobalObj−1(h);
7 T ← typeOf(g);
8 v ← freshLocalVar(T );
9 mtd* ∋ "v = g;";

10 else if h ∈ Sload then
11 (x, f, c)← getLoadObj−1(h);
12 T ← typeOf(x.f);
13 v ← freshLocalVar(T );
14 T ′ ← typeOf(x);
15 v′ ← freshLocalVar(T ′);
16 mtd* ∋ "v = v′.f;";
17 foreach h′ ∈ pts(x, c) do
18 if h′ ∈ S then
19 v′′ ← emitStmts(mtd, h′);
20 mtd* ∋ "v′ = v′′;";

21 else if h ∈ Scast then
22 (T, x, c)← getCastObj−1(h);
23 v ← freshLocalVar(T );
24 T ′ ← typeOf(x);
25 v′ ← freshLocalVar(T ′);
26 mtd* ∋ "v = (T )v′;";
27 foreach h′ ∈ pts(x, c) do
28 if ¬isTypeExact(h′) then
29 v′′ ← emitStmts(mtd, h′);
30 mtd* ∋ "v′ = v′′;";

31 else if h ∈ Sret then
32 T ← typeOf(h);
33 v ← freshLocalVar(T );
34 else
35 T ← typeOf(h);
36 v ← freshLocalVar(T );
37 mtd* ∋ "v = new T;";
38 foreach h.f ∈ fieldRefsOf(h) do
39 foreach h′ ∈ pts(h.f) do
40 v′ ← emitStmts(mtd, h′);
41 mtd* ∋ "v.f = v′;";

every such a field access s.f (line 11). For each object h 371

pointed by s.f , we generate the code for fetching h into a 372

unique local variable stored in v′ and a store “v.f = v′” 373

as desired (lines 12-14). Here, we ignore the known objects 374

s ∈ Sarg since if they are accessible to the application code, 375

say, due to being pointed by the return variable retmtd of 376

mtd, then computing the side-effect of retmtd (lines 2-4 377

of Algorithm 2) will include the code responsible for its 378

definitions in mtd* due the last case of Algorithm 3. 379

• Unknown Call Target Methods (Lines 15-30). For a call 380

with an unknown target (line 15), we must preserve it in 381

mtd* and include all the associated statements that may 382

potentially modify its arguments and return values (lines 16- 383

30), as shown in Section III-C1. For x′ = y′.m(a′1, ..., a
′
n) 384

added to mtd* (line 30) under a given context c (line 15), 385



we also add to mtd* the supporting code that (1) assigns386

its return value to x′ (lines 16-17), (2) defines the receiver387

variable y′ in terms of all unknown receiver objects (lines388

18-23), and (3) defines all non-receiver-variable arguments389

(lines 24-29). Effectively, every call analyzed, with at least390

one known target method, is inlined in this entry method391

mtd context-sensitively. Such method inlining is responsible392

for the precision gain in the application code achieved by393

the summary-based pointer analysis (Section III-D2).394

Finally, v = emitStmts(mtd, h) (Algorithm 3) calls itself395

recursively to emit a series of statements for fetching h into396

a unique h-specific local variable stored in v (lines 1-2). This397

is done by distinguishing six cases, depending on whether h398

is one of the five types of unknown objects (in Spara∪ Sglob ∪399

Sload ∪ Scast ∪ Sret) or a known object (in Sarg or not).400

C. Examples401

We illustrate our approach by considering a few examples.402

1) Example 1: For our first motivating example in Fig-403

ure 2, let us obtain the summary for transformBy∗
404

(depicted in the orange box) automatically. Note that405

return t.transform(o)” is split into rettransformBy =406

t.transform(o) and return rettransformBy.407

Let us first apply lib-k-obj to obtain the points-to informa-408

tion ptstransformBy in Figure 4, where three summary objects,409

op, tp, and c1r are shown. As transformBy() is the entry,410

op :=def getParaObj(o) and tp :=def getParaObj(t). For the411

call rettransformBy = t.transform(o), its receiver vari-412

able t may point to DT and tp since ptstransformBy(t, [ ]) =413

{DT,tp}. We can now analyze it under [ ] with the receiver414

being DT by using the (original) inference rule for k-obj in415

[CALL]. We obtain op ∈ ptstransformBy(ret
transformBy, [ ]).416

Next, we analyze this call under [ ] with the receiver object417

being an unknown object, tp, by using the first summary-418

based sub-rule in [CALL]. This time, we create the third419

summary object: cr :=def getRetObj(rettransformBy, [ ]). We420

find that cr ∈ ptstransformBy(ret
transformBy, [ ]). Combin-421

ing these results yields ptstransformBy(rettransformBy, [ ]) =422

{op,cr}, which are the two points-to relations highlighted423

by the two red arrows in Figure 4. Let us now apply424

genSumCode() to summarize transformBy(). Suppose425

freshLocalVar(), when called, will return new local vari-426

ables, tmp1, tmp2, .... For this example, according to Al-427

gorithm 2, we only need to consider the two cases related428

to the return values of this method and its call statement429

rettransformBy = t.transform(o) (since t points to tp).430

Let us consider the method returns first by applying lines431

2-4 in Algorithm 2. We know already that rettransformBy432

has two pointed-to objects. Let us consider op first. Accord-433

ing to line 3 of Algorithm 2 and line 4 of Algorithm 3,434

we will get v = emitStmts(transformBy,op) =435

getParaObj−1(op) = “o”. Afterwards, due to line 4 of436

Algorithm 2, we will generate our first return statement437

for op: transformBy∗ = {“return o;”}. Let us now438

consider cr in ptstransformBy(ret
transformBy, [ ]). Due to439

line 3 of Algorithm 2 and lines 32-33 of Algorithm 3,440

we generate no code but will identify cr by “tmp1”: 441

v = emitStmts(transformBy,cr) = getRetObj−1(cr) = 442

“tmp1”. In line 4 of Algorithm 2, we emit another 443

return: transformBy∗ ∋ “return tmp1;”. Let us 444

now consider rettransformBy = t.transform(o) with 445

unknown call targets by applying lines 15-30 in Algo- 446

rithm 2. As s is cr in line 16, processing line 17 yields 447

x′ = emitStmts(transformBy,cr) = getRetObj−1(cr) = 448

“tmp1”. After lines 18-19, y′ = “tmp2”. After lines 449

20-23, transformBy∗ ∋ “tmp2 = t;”. After lines 450

24-29, we emit another assignment: transformBy∗ ∋ 451

“tmp3 = o;”. In line 30, we obtain the following summary 452

for transformBy(), which is identical to the one in Fig- 453

ure 2 (modulo the temporaries used): 454

transformBy∗ = 455“return o;”, “return tmp1;”,
“tmp2 = t;”, “tmp3 = o;”,
“tmp1 = tmp2.transform(tmp3);”

 456

2) Example 2: For our second example in Figure 5, the 457

summaries generated are the same as the ones given in the 458

two orange boxes (modulo the temporaries introduced). 459

3) Example 3: Figure 8 is used to illustrate [CAST] in 460

Figure 7 when A.cast2A() is summarized. In Figure 8a, 461

B is a subclass of A. Thus, the original cast rule from k-obj 462

applies, since the cast is always safe, even though the dynamic 463

type of any object pointed by b, denoted bp, is unknown 464

(i.e., isTypeExact(bp) = false). In Figure 8b, B is not 465

a subclass of A, which is now an interface. This time, the 466

original cast rule no longer holds, preventing any pointed-to 467

object of b to be filtered out, since its dynamic type may be 468

B’s subtype that implements A. In this case, the corresponding 469

summary-based rule will come into play, as desired. However, 470

if ’B’ is final, a subclass ’C’ derived from ’B’ cannot exist. 471

1 class A {
2 public static A cast2A(B b) {
3 Object o = b;
4 return (A) o; } }
5 class B extends A {}
6 // Application Code
7 class C extends B {}
8 B b = new C();
9 A a = cast2A(b);

(a) B is a subclass of A

1 Interface A {
2 public static A cast2A(B b) {
3 return (A) b;
4 } }
5 class B { }
6 // Application Code
7 class C extends B implements A {}
8 B b = new C();
9 A a = cast2A(b);

(b) B is not a subclass of A

Fig. 8: Applying [CAST].

4) Example 4: According to the second summary-based 472

sub-rule in [CALL] given in Figure 7, any known object 473

passed into an unknown call target must be flagged as a 474

summary object, since its fields may now be made to point to 475

unknown objects. In Figure 9, A.foo(), which is the method 476

to be summarized, contains a call statement b.bar(a) 477

with possibly an unknown callback to the application code, 478

where b points to unknown objects passed from the ap- 479

plication code. When this call statement is analyzed, the 480

object A1 created at line 4 will be marked as a summary 481

object, A1 ∈ Sarg, according to the second summary-based 482

sub-rule in [CALL], so that a is flagged to point to A1, 483



which is a summary object, yielding soundly the summary,484

foo∗ = {“Object a = new A();’’, “b.bar(a);’’,485

“return a.f;’’} (with all the temporaries elided). If this486

sub-rule is ignored, a will not point to any summary object.487

As A1.f points to null, so “return a.f”, which is ef-488

fectively “return null”, will appear alone in the summary489

(lines 2-4 of Algorithm 2), which is obviously unsound.490

1 public class A {
2 public Object f ;
3 public static Object foo(B b) {
4 A a = new A(); // A1
5 b.bar(a );
6 return a. f ; } }
7 public class B { void bar(A o) { } }

8 // Application Code
9 class C extends B {

10 void bar(A a) {
11 a. f = new Object ();
12 } }
13 ...
14 Object c = A.foo(new C());

Fig. 9: Applying second summary-based sub-rule in [CALL].

5) Example 5: We apply genSumCode() to summarize491

library methods across four cases (handled by corresponding492

for loops). We have shown the first case, dealing with method493

returns, in Example1, and the final case, addressing unknown494

call targets, in Examples1 and 4. Here, we focus on the third495

case: handling modifications to fields of unknown objects.496

1 public class A {
2 Object f = new Object ();
3 public void setF (Object o) {
4 this . f = o; } }

5 // Application Code
6 A a = new A();
7 Object o = new Object ();
8 a. setF (o );

Fig. 10: Handling field modifcations to unknown objects.

Figure 10 illustrates a standard setter case, where setF()497

is to be summarized. In the first stage, lib-k-obj is performed.498

By applying [PARAINIT], we create two summary objects,499

denoted thisp and op (for representing unknown objects re-500

ceived from the application code), to make its two parameters501

thissetF and o point to thisp and op, respectively. By502

applying [STORE] to analyze the store at line 4, we find that503

thisp.f can point to op. When generating the summary for504

setF() in the second stage, we will include this modification505

side-effect according to the third for loop in Algorithm 2, since506

thisp represents an unknown object.507

D. Soundness, Precision, and Time Complexity508

1) Soundness: We rely on the following standard definition.509

Definition III.1. A pointer analysis is sound if it over-510

approximates the points-to information for every program.511

Informally, lib-k-obj specified in Figure 7 is sound for a512

library L if it over-approximates the points-to information in513

L regardless of the application code used. For the points-to514

information computed by lib-k-obj for L, it is understood that515

if a variable in L points to an unknown object with an inferred516

upper-bound type T , then it may point to all possible objects517

of any subtype of T . This is stated formally in Lemma III.2.518

Recall that ptsmtd represents the points-to relation com-519

puted for a library method mtd ∈ L by lib-k-obj. Let pts520

be the points-to relation computed for a program P , together521

with L, by k-obj as a whole-program analysis (according522

to Figure 7). Let ptsP,mtd be pts restricted to the library523

code that is reachable from mtd. Let ptsmtd and ptsP,mtd be524

their context-insensitive versions with all contexts dropped. 525

We write ptsmtd ⋑ ptsP,mtd to mean that ptsmtd(x) ⊇ 526

ptsP,mtd(x) holds for every variable or object field x reach- 527

able from mtd during the whole-program analysis. 528

Lemma III.2. Let P be the universe of all programs that 529

share a common library L summarized by lib-k-obj. Then lib- 530

k-obj is sound if ∀ mtd ∈ L : ∀ P ∈ P : ptsmtd ⋑ ptsP,mtd. 531

532Proof. Follows directly from Definition III.1. 533

Lemma III.3. For any given library L, lib-k-obj is sound. 534

Proof Sketch. According to Figure 7, lib-k-obj has two sets 535

of inference rules. It uses the same set of rules from k-obj to 536

handle (1) the known objects created in L identically as the 537

whole-program pointer analysis counterpart k-obj, and (2) the 538

unknown objects (created in either L or the application code) 539

when their upper type bounds are castable ([CAST]) or exact 540

([CALL]). lib-k-obj uses another set of summary-based rules 541

to model pointed-to unknown objects over-approximately to 542

ensure that ∀ mtd ∈ L : ∀ P ∈ P : ptsmtd ⋑ ptsP,mtd, where 543

P is the universe of all programs that share L. As k-obj is 544

sound, lib-k-obj is sound by Lemma III.2. 545

Lemma III.4. Given the points-to information ptsmtd com- 546

puted by lib-k-obj for a library method mtd ∈ L, the summary 547

mtd* generated by genSumCode() has the same points-to 548

side effect visible to the application code according to ptsmtd. 549

Proof Sketch. When generating mtd* for mtd according to 550

Algorithms 2 and 3, we have considered all four possible 551

kinds of modification side-effects visible to the application 552

code recorded in ptsmtd: (1) method returns (lines 2-4), (2) 553

modifications to global variables (lines 5-8), (3) modifications 554

to unknown objects (lines 9-14), and (4) modifications made 555

in unknown target methods invoked on unknown receiver 556

objects at a call statement (by preserving the call statement 557

and generating the code needed for handling its arguments and 558

method returns (lines 15-30). As genSumCode() generates 559

mtd* according to ptsmtd, mtd* is guaranteed to have the same 560

points-to side-effect that is visible to (i.e., directly accessible 561

by) the application code as prescribed by ptsmtd. 562

Theorem III.5. s-k-obj is sound for the application code. 563

Proof. Lemmas III.3 and III.4. 564

2) Precision: For a program using a library L, s-k-obj 565

is sound for its application code (Theorem III.5) but does 566

not guarantee the same precision in the application code 567

as its whole-program pointer analysis counterpart k-obj. In 568

practice, however, s-k-obj is usually more precise than k-obj 569

due to a deeper heap abstraction provided in k-L∗, which is 570

made possible by method inlining performed during library 571

summarization. However, s-k-obj may lose precision in two 572

special cases due to null pointers and (also) method inlining. 573

Precision Loss. Let us look at the two scenarios for s-k-obj. 574

• Null Pointers. Consider Figure 11. If we apply k-obj to 575

perform a whole-program analysis, line 9 will be ignored, 576

since c.copy() at line 3 is ignored by k-obj due to c 577

= null. However, if we summarize copyCtor() for 578



k-obj and then apply s-k-obj to perform the subsequent579

summary-based analysis, s-k-obj will lose precision. When580

analyzing copyCtor(), lib-k-obj assumes that its pa-581

rameter c points to a non-null unknown object, denoted582

cp, of type Ctor ([PARAINIT]). Since Ctor is final,583

isTypeExact(cp) = true. By [CALL], c.copy()584

at line 3 is resolved to copy() in class Ctor. When585

genSumCode() is invoked, this call is inlined, yield-586

ing copyCtor∗ = {“Ctor tmp1 = newCtor();587

// C’’, “return tmp1;’’}. Finally, when s-k-obj is588

applied, c at line 9 will be made to point to C spuriously.589

1 class ReflectAccess {
2 Ctor copyCtor(Ctor c) {
3 return c.copy (); } }
4 final class Ctor {
5 Ctor copy() {
6 return new Ctor (); } } // C

7 // Application Code
8 ReflectAccess r = new ReflectAccess ();
9 Ctor c = r .copyCtor(null );

Fig. 11: Precision loss of s-k-obj due to null pointers.

• Method inlining. Consider Figure 12. Object-590

sensitively [8], the contexts for calling id() at lines591

19 and 20 are [E1,T1] and [E1,T2], respectively. If we592

apply 2-obj to perform a whole-program pointer analysis,593

we will prove that v1 and v2 are not aliases since v1594

and v2 point to O1 and O2, respectively. However, if we595

summarize this library class for 2-obj, entrySet∗ will596

stay the same as entrySet() but iterator∗ will597

become “iterator() { return new Enum(); //598

E1 }”, where the call at line 11 has been inlined. For the599

new program obtained with the library replaced by this600

summary, the contexts required for distinguishing the two601

calls to id() at lines 19 and 20 are now longer: [E1, E2,602

T1] and [E1, E2, T2], respectively. If we apply s-2-obj to603

analyze this new program, we will no longer be able to604

distinguish these two calls as their contexts under 2-limiting605

are identical: [E1, E2], causing us to conclude that v1 and606

v2 are aliases since v1 and v2 will both point to O1 and607

O2. As a result, s-2-obj is not as precise as 2-obj.608

1 class Table {
2 private Enum getIterator () {
3 return new Enum();} // E1
4 Entry entrySet () {
5 return new Entry();} // E2
6 class Enum {
7 Object id (Object o) {
8 return o;}}
9 class Entry {

10 Enum iterator () {
11 return Table . this . getIterator ();}}}

12 // Application Code
13 Table t1 = new Table (); // T1
14 Table t2 = new Table (); // T2
15 Object o1 = new Object (); // O1
16 Object o2 = new Object (); // O2
17 Entry e1 = t1 . entrySet ();
18 Entry e2 = t2 . entrySet ();
19 Object v1 = e1. iterator (). id (o1);
20 Object v2 = e2. iterator (). id (o2);

Fig. 12: Precision loss of s-k-obj due to method inlining.

Precision Gain. In general, s-k-obj can achieve better preci-609

sion than its whole-program pointer analysis counterpart k-610

obj in the application code since method inlining performed611

by library summarization in L enables k-L∗ to provide a612

deeper heap abstraction than L. Consider Figure 13. The613

heap contexts for modeling the two distinct objects B created614

due to the two calls at lines 14 and 15 are [A1] and [A2],615

respectively. Under 1-obj, which applies 0-limited heap, these616

two heap objects are conflated. As a result, v1 and v2 617

are considered to be aliases as both may point to O1 and 618

O2. However, if we summerize the library for 1-obj, we 619

will obtain foo∗ = {"return new B(o); // B1"} and 620

bar∗ = {"return new B(o); // B2"}, with baz() 621

inlined in its two callers. By inlining the object allocation site 622

at line 7 in its two callers, we will end up inserting one copy 623

in foo() and another copy in bar(). As a result, the heap 624

contexts for modeling B1 and B2 are now [ ]. For the new 625

program, s-1-obj (or even s-0-obj) can now prove that v1 and 626

v2 are not aliases. Effectively, library summarization provides 627

a more precise heap abstraction in k-L∗ than in L, enabling 628

s-1-obj to achieve better precision in the application code than 629

1-obj at the expense of having to handle slightly more objects. 630

1 class A {
2 static C foo(o) {
3 return new A().baz(o ); } // A1
4 static C bar(o) {
5 return new A().baz(o ); } // A2
6 B baz(Object o) {
7 return new B(o); }} // B
8 class B {
9 Object f ;

10 B(Object o) { this . f = o; }}
11 // Application Code
12 Object o1 = new Object (); // O1
13 Object o2 = new Object (); // O2
14 B b1 = A.foo(o1);
15 B b2 = A.bar(o2);
16 Object v1 = b1.f ;
17 Object v2 = b2.f ;

Fig. 13: Precision gain of s-k-obj over k-obj.

In general, summarizing a library can cause its extensive 631

method inlining, enabling s-k-obj to gain rather than lose 632

precision in the application code. In addition, precision loss is 633

negligible due to null pointers, which are rare. Thus, library 634

summarization enables pointer analysis to run faster while 635

achieving better precision for the application code. 636

3) Time Complexity: k-obj has a worst-case time com- 637

plexity (N3), where N is the program size [11], [14]. Our 638

library summarization approach (Algorithm 1) has the same 639

worst-case time complexity. In addition to the standard in- 640

ference rules from k-obj, lib-k-obj (Figure 7) relies also 641

on five summary-based rules, where [PARAINIT] is applied 642

only once in O(1) and every other rule has the same time 643

complexity as its corresponding rule from k-obj. The number 644

of summary objects created by lib-k-obj is linear to the 645

number of variables in the program: |S| = O(|V|). The time- 646

complexity of genSumCode() (Algorithms 2 and 3) is linear 647

to the size of the points-to graph generated by lib-k-obj: 648

|H| ∗ (|H| + |V| + |G|) = O(N2), since |H| = |O| + |S|. 649

Thus, the overall time complexity of our approach is O(N3). 650

IV. EVALUATION 651

We show that s-k-obj runs faster than k-obj while achieving 652

better overall precision in the application code, where 1 ⩽ 653

k ⩽ 2. Note that k-obj is unscalable when k ⩾ 3 for large 654

programs [3]–[7]. We address two research questions: 655

• RQ1: Can our approach generate k-object-sensitive li- 656

brary summaries efficiently with a low time overhead? 657

• RQ2: Can s-k-obj run more efficiently than k-obj while 658

also achieving better overall precision (measured by sev- 659

eral standard precision metrics) for the application code? 660

We have implemented our approach (open-sourced soon) in 661

SOOT [10], where, as shown in Figure 7, k-obj is naturally a 662



special case of lib-k-obj. The DaCapo benchmark suite [15]663

is commonly used in the pointer analysis literature [4], [6],664

[16], [17]. We have considered all 14 Java programs from665

its most recent edition (2018-04-06) except jython since its666

context-sensitive analyses do not scale [17]. For each program,667

its associated library is the aggregate of its own third-party668

libraries and the Java standard library (JDK1.8.0 312).669

We have done our experiments on an Intel(R) Xeon E5-1660670

3.2GHz machine with 256GB of RAM. For each program, the671

analysis time of an algorithm is the average of three runs.672

A. RQ1: Overhead673

Given a library L, we produce different k-object-sensitive674

library summaries k-L∗ customized for k-obj with different675

values of k. These can be obtained in parallel, since different676

library methods can be summarized independently. In addition,677

a real-world application can often take months or even years678

for many of its libraries to receive an update. Therefore, k-679

L∗ can be reused by different applications or even the same680

application where k-L∗ is applied. In this case, the time spent681

for obtaining k-L∗ can be amortized across such scenarios.682

TABLE II: Number of library methods summarized and ig-
nored in the reachable methods found in the libraries used by
the 13 Java programs, together with the summarization times.

Program #Reachable #Ignored #Summarized Time (secs)
1-obj 2-obj 1-obj 2-obj 1-obj 2-obj 1-obj 2-obj

avrora 7747 7622 3832 3791 3915 3831 68.71 71.66
batik 19787 16878 6819 6535 12968 10343 218.80 213.04
eclipse 10908 10685 5285 5227 5623 5458 307.46 311.94
fop 32021 31608 11549 11416 20472 20192 484.50 480.29
h2 19585 19411 7737 7689 11848 11720 157.84 177.58
luindex 14645 14485 7194 7145 7451 7340 90.95 95.58
lusearch 7748 7620 3820 3777 3928 3843 48.42 51.20
pmd 17607 17418 6141 6096 11466 11322 223.35 243.27
sunflow 13904 13754 6452 6392 7452 7362 116.37 119.70
tomcat 10585 10458 5160 5124 5425 5334 323.22 320.38
tradebeans 11818 11642 5412 5376 6406 6266 1112.90 1101.67
tradesoap 11818 11642 5412 5376 6406 6266 1106.17 1112.69
xalan 10554 10420 4040 3997 6514 6423 107.21 110.84

As a proof of concept, we compute the summaries for683

the methods in a library by using a simple sequential im-684

plementation of our library summarization approach. For a685

library method m summarized, we define reachables(m) to686

be the number of reachable methods found by lib-k-obj. The687

methods in a library tend to fall into two categories: those688

with a few reachable library methods and those appearing in689

a few strongly connected cycles (SCCs) consisting of a large690

number of library methods. In general, summarizing the library691

methods in a large SCC is not beneficial, since their summaries692

are more or less the same, resembling the original statements693

forming the SCC. Currently, we terminate the summarization694

process for a library method m when reachables(m) > K,695

where K = 200 empirically, and will use m directly instead.696

Table II gives the number of library methods summarized697

for the libraries used by the 13 Java programs under k-698

obj, together with the summarization times. For 1-obj and699

2-obj, the percentages of reachable library methods that are700

summarized are 56.4% and 55.9%, costing 4365.9 seconds701

and 4409.84 seconds, respectively, across the 13 programs.702

B. RQ2: Efficiency and Precision 703

As revealed in Table III, s-k-obj runs more efficiently than 704

k-obj while achieving better precision in the application code. 705

TABLE III: Efficiency and precision of k-obj and s-k-obj for
the 13 Java programs (for the application code).

Program Metrics 1-obj s-1-obj 2-obj s-2-obj

avrora
Time (s) 30.31 18.16 762.47 274.26
#Reachable Meths 3495 3495 3459 3459
#May Fail Casts 274 274 209 209
#Poly Calls 96 96 87 87

batik
Time (s) 607.12 222.06 7019.81 2000.91
#Reachable Meths 8268 8175 8240 8147
#May Fail Casts 1545 1418 1254 1180
#Poly Calls 3305 3005 3041 2960

eclipse
Time (s) 205.44 218.31 1219.90 882.12
#Reachable Meths 3870 3818 3814 3764
#May Fail Casts 1467 1450 1228 1209
#Poly Calls 1671 1629 1529 1488

fop
Time (s) 7327.26 4637.04 22382.84 13815.25
#Reachable Meths 15985 15940 15948 15909
#May Fail Casts 3096 3086 2296 2284
#Poly Calls 6738 6718 4519 4492

h2
Time (s) 122.42 38.04 9046.40 5429.35
#Reachable Meths 407 407 407 406
#May Fail Casts 34 34 28 28
#Poly Calls 43 6 41 4

luindex
Time (s) 75.55 47.83 1019.69 377.70
#Reachable Meths 365 365 365 365
#May Fail Casts 30 30 24 24
#Poly Calls 5 5 3 3

lusearch
Time (s) 20.59 11.10 656.41 262.14
#Reachable Meths 364 364 363 363
#May Fail Casts 31 31 25 25
#Poly Calls 5 5 3 3

pmd
Time (s) 405.87 128.82 58193.44 31358.33
#Reachable Meths 4308 4239 4304 4235
#May Fail Casts 1594 1551 1436 1397
#Poly Calls 1093 1038 954 907

sunflow
Time (s) 62.95 37.74 1547.01 887.25
#Reachable Meths 971 971 970 970
#May Fail Casts 90 90 54 54
#Poly Calls 55 55 53 53

tomcat
Time (s) 34.01 18.31 854.12 278.45
#Reachable Meths 463 463 462 462
#May Fail Casts 40 40 34 34
#Poly Calls 21 21 19 19

tradebeans
Time (s) 56.07 24.06 1660.67 862.95
#Reachable Meths 394 394 394 394
#May Fail Casts 35 35 28 28
#Poly Calls 6 6 4 4

tradesoap
Time (s) 54.72 24.12 1684.1 879.72
#Reachable Meths 394 394 394 394
#May Fail Casts 35 35 28 28
#Poly Calls 6 6 4 4

xalan
Time (s) 46.58 17.71 1064.74 358.78
#Reachable Meths 1696 1657 1653 1648
#May Fail Casts 179 176 107 105
#Poly Calls 225 210 218 205

1) Precision: We measure the precision of a pointer analy- 706

sis using three commonly used metrics, #Reachable Methods 707

(number of reachable methods), #May-Fail Casts (number of 708

casts that may fail), and #Poly Calls (number of polymorphic 709

callsites), computed for the application code. 710

For each program, s-k-obj achieves the same precision 711

as or higher precision than k-obj. By producing k-object- 712

sensitive library summaries, s-k-obj can also achieve notice- 713

able precision improvements over k-obj (as a nice side-effect 714

of method inlining (Figure 13)). For #Reachable Methods, 715

we see it reduced for xalan by 2.3% under s-1-obj. For 716

#May-Fail Casts, s-1-obj reduces it by 8.2% for batik, 717

and s-2-obj reduces it by 5.9% for batik, 2.7% for pmd 718

and 1.8% for xalan. For #Poly Calls, library summarization 719

is also beneficial. For batik, s-1-obj reduces it by 9.1%. 720

For eclipse, pmd, and xalan, s-1-obj’s reduction rates 721



are 2.5%, 5.0%, and 6.7%, respectively. For h2, we see a722

reduction of 86.0% under s-1-obj and of 90.2% under s-2-obj.723

2) Efficiency: For a program, we obtain the analysis time of724

a pointer analysis under a 24-hour time budget. In Figure 14,725

we give the speedups of s-k-obj over k-obj. We observe that s-726

1-obj achieves an average speedup of 2.1x over 1-obj with the727

largest at 3.2x for h2, and s-2-obj achieves an average speedup728

of 2.3x over 2-obj with the largest at 3.5x for batik.729

av
ro

ra
ba

tik
ec

lip
se fo
p h2

lu
in

de
x

lu
se

ar
ch

pm
d

su
nfl

ow
to

m
ca

t
tra

de
be

an
s

tra
de

so
ap

xa
la

n

1

2

3

4

5

Sp
ee

du
ps

s-1-obj s-2-obj

Fig. 14: The speedups of s-k-obj over k-obj, where 1 ⩽ k ⩽ 2.

In general, s-k-obj is faster than k-obj (with one exception730

for eclipse when k = 1) as it avoids re-analyzing the731

same library methods. In addition, summarizing a library732

method in s-k-obj achieves better precision than k-obj in the733

application code due to deeper heap abstraction via method734

inlining, albeit with slightly more propagated objects due to735

object allocation site replication, as shown in Figure 13. For736

object-sensitivity [8], a more precise heap abstraction leads737

to simultaneously a more precise calling-context abstraction,738

resulting in slightly more calling contexts but fewer points-to739

facts being propagated redundantly and/or spuriously by s-740

k-obj. For eclipse, s-1-obj (218.31 secs) is 6.3% slower741

than 1-obj (205.44 secs) since s-1-obj has to handle 6.5%742

more object allocation sites, costing more analysis time in743

handling their propagation during its analysis. In this case,744

the performance benefit provided by library summarization745

is more than offset by the analysis cost thus incurred. In746

return, however, s-1-obj becomes more precise than 1-obj by747

achieving a reduction of 1.3%, 1.2% and 2.5% for #Reachable748

Methods, #May Fail Casts, and #Poly Calls, respectively.749

V. RELATED WORK750

Most library summarization techniques [18]–[23] focus on751

generating “internally digested” summaries for some particular752

static analyses at hand. In [18], the side effect of a method is753

recorded by using a normalized abstract heap and then instan-754

tiated at a callsite, achieving a bottom-up pointer analysis for755

Java. In [19], [20], a library is summarized by reasoning about756

graph reachability to support program analyses formulated in757

terms of Context-Free Language (CFL) reachability. Other758

techniques make use of different analysis-specific summary759

functions, including the points-to and modification effects for760

supporting the classic MOD-REF analysis [23], the transfer761

functions on reduced ICFG [22], the statement-level trans- 762

formers [21]. In contrast, we focus on generating precise 763

library summaries to support pointer analysis. 764

AVERROES [1], [24] supports an application-focused analy- 765

sis by building an application-only call graph, without actually 766

analyzing the library. It obtains a library summary per applica- 767

tion by merging over-approximately the information from all 768

the library pointers into a single set, without catering to the 769

varying precision needs of different downstream analyses. This 770

can lead to a significant precision loss, as recently validated 771

[2]. In contrast, our approach customizes library summaries to 772

cater to the varying precision needs of k-obj under varying k- 773

limits. This way, s-k-obj can run faster while achieving nearly 774

the same or better precision than k-obj in the application code. 775

The “apponly” mode in SPARK [25] takes an extreme stance 776

by disregarding library dependencies and concentrating exclu- 777

sively on analyzing the application code. This sharply limits 778

program coverage. In contrast, our approach aims to equal 779

whole-program analysis results in precision and soundness. 780

SOOT [10] also supports a “library mode” for its callgraph 781

construction phase. This option is intended for the standalone 782

analysis of libraries. Besides it is not for generating a summary 783

that can then be plugged into the analysis of an application 784

that uses the library, it is also very different with our lib-based 785

pointer analysis. It primarily enhances the completeness of the 786

call graph by supplementing new objects with any-sub-type of 787

the declared type at some key locations. However, these added 788

objects lack any information except for the type. In contrast, 789

Our summary object covers the entire lifecycle of an abstract 790

object from generation to usage, and its traceability enables 791

precise reproduction of program behavior. 792

Bottom-up and top-down pointer analyses [26]–[28] use 793

a two-phase analysis with value-flows moving in opposite 794

directions to achieve context-sensitivity context-insensitively. 795

Although method summaries are used in these approaches, 796

they are closely tied to the particular framework used. These 797

techniques tend to be less precise than inclusion-based pointer 798

analysis counterparts [25] because the methods appearing in a 799

strongly connected component (SCC) are usually merged and 800

analyzed in a context-insensitive manner [25]. 801

There are other efforts on generating method summaries. 802

In [29], the behavior of binary code is summarized in the 803

absence of source code. In [30], some redundant statements 804

in methods are eliminated intra-procedurally by utilizing code 805

patterns related to context-sensitive pointer analysis. 806

VI. CONCLUSION 807

We introduce a novel approach for generating precise library 808

summaries to accelerate object-sensitive pointer analysis while 809

achieving the same or better precision in the application code. 810

Due to its general nature, our approach is expected to find 811

applications in other flavours of pointer analyses, including 812

many downstream analyses that rely on aliasing information. 813
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