DSM-JAVA: FOUNDATION OF A LEAN
DISTRIBUTED OPERATING SYSTEM

OLIVER SCHIRPF, MICHAEL SCHOTTNER,

PETER SCHULTHESS 3 STEFAN TRAUB y MORITZ WENDE
(Ulm University, schulthess @informatik.uni-ulm.de, Fax: ++731-502-4142)

Abstract

Combining atomic transactions, distributed shared memory (DSM) and a typesafe language
(Java) might simpilify the construction of intranets, of telecooperation systems, of parallel
computations and in general the consistent management of distributed data structures. DSM
not only simplifies the communication mechanisms berween programs and program modules
but also the structure of the underlying run-time environment. Read/write conflicts between
concurrent transactions on different network nodes can be automatically resolved by the ope-
rating system. DSM-Java is the core facility of our native operating system Plurix which
might serve as a prototype for ,Next Generation Distributed Operating Systems“. As a com-
panion to the native DSM-Java environment a plug-in for web-based DSM-Java is envisaged.

Keywords: DSM Java, Plurix Operating system, lean Systems Design, Java Compiler.

1. RESEARCH TARGETS

1.1. Operating System for Distributed Applications

DSM-Java offers intrinsic support for distributed virtual storage. A document in DSM-storage
is accessible via regular load- and store machine instructions. The programming of distributed
applications is therefore simplified in comparison to traditional approaches which involve
message passing and remote procedure calls at the application level. Consider the case of a
telecooperation scenario where several participants simultaneously wish to access a shared
document: in DSM-Java the consistency of the document is guaranteed by the operating sy-
stem and not by a specific replication protocols in the application program. DSM-Java may
also be built on top of existing operating systems and browsers but in this case it will heavily
suffer from the weight of the imported run-time system.

1.2. Data Storage in the Network

All objects reside in networked DSM storage and users can access their data without devious
reconciliation mechanisms (Coda [1], the Briefcase in Windows). The most current version of
an object is automatically presented. This facility may be of interest to software development
teams, for inventory lists in a small business environment, for telephone directories and ap-

29



pointment scheduling plans in office environments and many other areas. If data objects are
carefully partitionned substantial computations are feasible in the nelwork of workstations,

1.3. Lean System

Operating systems along the lines of DSM-Java can omit many functions and concepts which
make contemporary operating systems voluminous and clumsy. In particular we omit disk
based file operations and repeated loading and linking of program modules and classes.
Applications which only manipulate private data objects are not penalized by the management
of distributed storage. By rewriting a native operating system from scratch an efficient mana-
gement for storage-, runtime- and transactions was achieved. The Java classes required for the
operating system kernel are compact and yield short transaction times and a small working
set, At the CeBit-fair 1999 a PC-cluster based on Plurix was demonstrated taking less than 60
kbyte of program memory.

2. OS FOR DISTRIBUTED APPLICATIONS

2.1. Transparent Resource Distribution

Resources of individual nodes should be integrated to present a single image of the the (otality
of resources in the network. User ought to perceive the same state of their data objects from
any workstation they may logon from. Consistency of documents and data bases must be gua-
ranteed even if several users manipulate a document concurrently. Large and network span-
ning tasks should be performed by making efficient use of the pooled resources in the cluster.

2.2. Sockets and Streams

At the transport level the data exchange between stations may use sockets, streams or pipes.
Communicating processes transmit messages calling primitives such as send and receive (ty-
pically TCP or UDP). Messages mostly contain textual data but may also include complicated
data structures. These structures are explicitly serialized before beeing transmitted.

2.3, RPC and RMI

Calling methods or procedures remotely (RMI in Java [2], RPC [3], offers greater program-
ming convenience than sockets and streams. Remote procedure calls are very similar (o the
invocation of local procedures (Disregarding a few inevitable semantic restrictions). Seriali-
sation of parameters and the mapping into an external data representation (marshalling) is
automatic. However, the programmer must be in command of a complicated set of develop-
ment tools. RPCs and RMI generate substantial overhead and are typically slower than sok-
kets and streams.

30






