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Abstract

In this thesis, we discuss when set-valued social choice functions are prone to
strategic manipulations according to Kelly’s set extension. We derive both Kelly-
strategyproof social choice functions and impossibility results by analyzing the com-
bination of various axioms paired with Kelly-strategyproofness. First, we discuss
implications between various types of monotonicity and strategyproofness. One of
the strongest results of this type is that set-monotonic social choice functions are
even strategyproof if preferences are allowed to be intransitive and a slightly weak-
ened variant of Kelly-strategyproofness is used. Next, we consider the combination
of rank-basedness and Kelly-strategyproofness. On the one hand, we prove that
there are several interesting social choice functions that satisfy these axioms in the
strict domain. On the other hand, we derive a strong impossibility result stating
that there is no Kelly-strategyproof, rank-based and Pareto-optimal social choice
function if preferences may contain ties. Moreover, we analyze when social choice
functions in C2 are Kelly-strategyproof if preferences may contain ties. As there are
almost no social choice functions that satisfy these axioms and Pareto-optimality,
we derive strong necessary conditions for Kelly-strategyproof C2-functions. The
strongest one states that every Kelly-strategyproof and Pareto-optimal C2-function
must choose one of the most preferred alternatives of every voter. Finally, we con-
sider the combination of Kelly-strategyproofness and responsive efficiency as there
is the conjecture that no anonymous social choice function satisfies these axioms.
Even though we cannot prove this conjecture, we provide strong evidence that it
is true by showing that there is no Kelly-strategyproof and responsively efficient
social choice function in C2. Thereby, our results provide many new insights on
Kelly-strategyproofness.
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Chapter 1

Introduction

1.1 Motivation

Voting is a common tool for making group decisions. It has already been used by the
old Greek poleis and is still used in today’s modern society. However, we are recently
confronted with more and more problems in elections: voting fraud, manipulations
and ballot schemes for instance. These problems encourage the thorough analysis
of voting schemes from a mathematical standpoint, which is the focus of a research
field called computational social choice.

One main question in this research field asks when a voting scheme is manipulable.
Informally, we call a voting scheme manipulable if a voter can improve the outcome
of the election from his individual perspective by lying about his preferences. This
question has been answered independently by Gibbard [Gib73, Gib77] and Satterth-
waite [Sat75] who have shown that every reasonable voting scheme is manipulable if
it chooses always a single winner. Even though this result is considered a milestone
in computational social choice, it is criticized for the assumption of single-valuedness.
This assumption is from a theoretical standpoint not reasonable because alternatives
often seem equally good. For instance, consider an election with two voters and three
alternatives in which the voters do not agree on the most preferred alternative but
on the least preferred one. In this situation, it seems unreasonable to pick a single
winner, but it is required for the Gibbard-Satterthwaite-Theorem.

As consequence, current research analyzes voting schemes allowing for multiple win-
ners. We call such voting schemes social choice functions. Unfortunately, it is not
apparent how to define manipulations when multiple winners are possible as it is
not clear on how to compare sets of alternatives. For instance, assume that a voter
prefers a to b and b to c. In this situation, it is unclear whether he prefers the
set {a, c} over the set {b}. There are multiple approaches for dealing with this
problem, see, e.g., [Gär79, BBP04]. We focus in this thesis on set extensions: This
term refers to functions that extend a voter’s preference over single alternatives to
sets of alternatives. The main advantage of set extensions is that we do not need
any information but the voter’s preference on the alternatives. On the downside,
set extensions are usually incomplete, i.e., not all sets can be compared with a
set extension. Furthermore, there are multiple different set extensions, see, e.g.,
[Fis72, Kel77, Neh00] among others, and all of them are reasonable under suitable
assumptions.
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In this thesis, we focus on Kelly’s set extension first presented in [Kel77] and some
of its variations. This extension weakly prefers a set of alternatives X to another
set of alternatives Y if no alternative in Y is strictly preferred to an alternative in
X. This definition is motivated by the assumption that a voter has no information
about the tie breaking algorithm which is used for eventually selecting a unique
winner. In this situation, a voter can only be sure to improve the outcome through
a manipulation if all alternatives that are chosen after the manipulation are weakly
preferred to the alternatives that were chosen before the manipulation. Otherwise,
it is possible that a worse alternative is eventually the winner after tie breaking.

In this thesis, we analyze when voting schemes are manipulable with respect to
Kelly’s extension. In the rest of this chapter, we introduce the basic terminology
in Section 1.2 and provide an overview of known results on strategyproofness in
Section 1.3. The remaining chapters are organized as follows: First, we discuss im-
plications between monotonicity and strategyproofness in Chapter 2. The goal of
this chapter is to find simple criteria that imply strategyproofness. In the subse-
quent chapters, we focus on special classes of social choice functions. In particular,
we discuss rank-based social choice functions with respect to strategyproofness in
Chapter 3 and social choice functions in C2 in Chapter 4. The results in these chap-
ters affect almost all important social choice functions as C2 and rank-basedness are
the two main approaches for designing election schemes. In Chapter 5, we discuss
social choice functions satisfying responsive efficiency with respect to strategyproof-
ness. Finally, Chapter 6 concludes this thesis.

1.2 Problem Definition and Notation

In this section, we discuss basic terminology and notation used in this thesis. First,
we introduce the general problem setting considered in this thesis in Section 1.2.1.
Thereafter, we discuss well-established axioms for social choice functions in Sec-
tion 1.2.2. Note that we always stick to our terminology, even if we cite a result of
another author who originally used his own notation.

1.2.1 Problem Definition

The goal of this section is to provide a general overview of the problems considered in
this thesis. Therefore, we first aim to formalize the concept of elections, which leads
to the definition of social choice functions. For introducing this term, recall how an
election works: Multiple individuals state their preferences over some alternatives
and in the end, a set of winners is determined. This means that we consider a finite
set of voters N = {1, ..., n} and each voter submits a preference over a finite set of
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alternatives A = {a1, ..., am}. If only few alternatives are required in a proof or an
example, we usually refer to the alternatives as a, b, c, etc.
The preference Ri is modeled as binary relation on A for every voter i ∈ N . Fur-
thermore, the preference relation satisfies additional requirements depending on the
domain we are working in:

• We say Ri is intransitive, denoted by Ri ∈ I, if Ri is complete.

• We say Ri is in the weak domain, denoted by Ri ∈ W , if Ri is complete and
transitive.

• We say Ri is strict, denoted by Ri ∈ S, if Ri is complete, transitive and
anti-symmetric.

Note that we usually write a �i b instead of (a, b) ∈ Ri, which means that voter i
prefers alternative a weakly to alternative b. If (a, b) ∈ Ri and (b, a) ∈ Ri, we write
a ∼i b, which indicates that voter i is indifferent between a and b. Furthermore, we
write a �i b if (a, b) ∈ Ri and (b, a) 6∈ Ri. In this case, we say that a is strictly
preferred to b by voter i. Moreover, if we work in the strict or weak domain, we
concatenate multiple preferences, e.g., Ri = {(a, b), (a, c), (b, c), (c, b)} is abbreviated
by a �i b ∼i c.
In an election, we do not get a single preference as input. Instead, every individual
voter submits a preference relation. This leads to a tuple R = (R1, ..., Rn) which we
call a preference profile. Just as individual preferences, a preference profile R is

• in the intransitive domain if R ∈ In.

• in the weak domain if R ∈ Wn.

• in the strict domain if R ∈ Sn.

Observe that we often consider multiple preference profiles for a proof or even in
examples. We distinguish the various profiles by superscripts or primes, e.g., R
and R′ denote different profiles. Furthermore, all properties related to a preference
profile are identified by the same superscript, e.g., a �′i b denotes that voter i prefers
alternative a strictly over b in the preference profile R′. Additionally, we sometimes
consider profiles in which the preferences of some voters are ignored. Thus, given a
profile R = (R1, R2, ..., Rn), we define R−i = (R1, ..., Ri−1, Ri+1, ..., Rn) as the profile
in which the preference of the single voter i is not considered. Similarly, we denote
with R−I the preference profile derived from R by ignoring the preferences of the
voters in I ⊆ N .
We always present preference profiles in one of the forms shown in Figure 1.1. We
use the left representation if we require many preference profiles. In this represen-
tation, the left-most column contains the name of the preference profile, whereas
the remaining columns contain preferences over the alternatives. Furthermore, the
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1 1
R1 a � b ∼ c b � a ∼ c

R1 :
1 1
a b
b, c a, c

Figure 1.1: Example for the representations of preference profiles

number over each column indicates how many voters submit the corresponding pref-
erence. Finally, a row forms a preference profile.

The right representation is usually used for better readability and if only few pref-
erence profiles are required. It shows only a single preference profile where each
column corresponds to the preference of some voters. The meaning behind this
notation is the following: If an alternative a is placed above another alternative b,
then a � b, and if they are in the same cell, then a ∼ b. The first row states again
how many voters submit a specific preference.

Finally, we introduce social choice functions which are mappings from a set of pref-
erence profiles to a non-empty subset of alternatives. This intuition is formalized in
the next definition.

Definition 1.1 (Social choice functions). Consider a set of voters N , a set of
alternatives A and a domain of preferences D and assume that every voter i ∈ N
submits a preference Ri ∈ D. A social choice function f is a mapping from the set
of preference profiles with respect to D and N to the set of non-empty subsets of A,
i.e., f : D|N | 7→ 2A \ ∅.

We often refer to social choice functions as rule or abbreviate the term with SCF.
An instance of a social choice function is f :W3 7→ 2{a,b,c} \ ∅ : (R1, R2, R3) −→ {a}.
This function takes the preferences of 3 voters over the alternatives {a, b, c} where
ties are allowed and returns always a as winner. Note that this example is defined
on exactly 3 voters. However, many social choice functions can be defined on an
arbitrary number of voters and alternatives. Therefore, we do often not specify
the size of the electorate as it does not affect the definition of the corresponding
social choice function. In contrast, the domain on which a social function is defined
influences its properties and therefore, it is always clarified which types of preferences
are used.

Our main goal in this thesis is to analyze various social choice functions with respect
to strategyproofness. Thus, we aim to formalize this term next. As social choice
functions are set-valued, we first have to define a method for comparing sets of
alternatives based on the preference of a voter. For this reason, we introduce a set
extension. This term refers to a function generalizing a voter’s preference defined
on the set of alternatives A to an incomplete binary relation on 2A \ ∅. Note that
there are various set extensions discussed in the literature. In this thesis, we focus
on the set extension introduced in [Kel77] which is defined in the sequel.
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Definition 1.2 (Kelly’s set extension). Consider the individual preference Ri of
an arbitrary voter i ∈ N . The set extension P̃ is defined as

X P̃i Y ⇐⇒ ∀x ∈ X, y ∈ Y : x �i y ∧ ∃x ∈ X, y ∈ Y : x �i y .

Informally, a voter prefers a set X over a set Y according to the set extension P̃
if every alternative in X is at least as good as every alternative in Y and at least
one alternative in X is strictly preferred to at least one alternative in Y . Note
that many sets are not comparable by this set extension. For instance, assume that
Ri = a �i b �i c �i d; then {a, d} is not comparable to any other set but {d} even
though {a, c} also seems preferable to {a, d}.
Next, we define strategyproofness based on the set extension P̃ . Intuitively, a social
choice function is P̃ -strategyproof if no voter can obtain a better outcome with
respect to the set extension P̃ by lying about his true preference. Formally, this is
defined as follows.

Definition 1.3 (P̃ -strategyproofness). A social choice function f is P̃ -strategy-
proof if there are no voter i ∈ N and preference profiles R, R′ such that R−i = R′−i
and f(R′) P̃i f(R).

We call a social choice function P̃ -manipulable if it is not P̃ -strategyproof. Note
that P̃ -strategyproofness is a rather weak variant of strategyproofness because the
set extension P̃ allows to compare only few sets. Nevertheless, P̃ -strategyproofness
is well-established and often considered in the literature for two reasons. On the
one hand, there are several interesting P̃ -strategyproof social choice functions in
the strict domain, which is for many stronger forms of strategyproofness not true.
On the other hand, there are also various impossibility results with respect to P̃ -
strategyproofness in the weak domain which are very strong as only a weak variant
of strategyproofness is required. The goal of this thesis is to continue this line of
work: We aim to find social choice functions that are P̃ -strategyproof or prove that
no such functions exist if we assume additional axioms ensuring that the considered
social choice functions are reasonable.

1.2.2 Axioms for Social Choice Functions

Observe that we use various axioms throughout this thesis for analyzing and charac-
terizing social choice functions. Therefore, we define in this section many standard
axioms used in various chapters. Note that the axioms introduced in this section
should be known by an expert in the field of computational social choice. Less
common Axioms are discussed in more detail in subsequent chapters.
The first terms that we introduce are neutrality and anonymity. The intention of the
former axiom is that all alternatives should be treated identically, whereas the latter
one states that the voters should be treated identically. The idea for formalizing
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R1 :
1 1 1
a b b
b a a

R2 :
1 1 1
b a a
a b b

R3 :
1 1 1
a b a
b a b

Figure 1.2: Preference profiles used for explaining neutrality and anonymity

neutrality is that renaming alternatives in the preference profile leads to renaming
them in the choice set. Formally, this is defined as follows.

Definition 1.4 (Neutrality). A social choice function f satisfies neutrality if for
all permutations π : A 7→ A and preference profiles R, R′ such that a �i b if and only
if π(a) �′i π(b) for all i ∈ N and alternatives a, b ∈ A, it holds that π(f(R)) = f(R′).

Even though the definition of neutrality seems rather technical, it is a very desirable
axiom that is satisfied by many real elections. The main idea is that if an alternative
a is chosen by a social choice function f for a preference profile R, another alternative
b should be chosen by f if we exchange the roles of a and b in the preference profile
R. This means that a and b are treated equally, which is usually desired in an
election. An example of an application of neutrality is displayed in Figure 1.2 where
the preference profile R2 is obtained from the preference profile R1 by renaming
a to b and b to a. This means that every neutral social choice function f with
f(R1) = {b} satisfies that f(R2) = {a}.
Our next goal is to introduce anonymity which models that voters are treated
equally. As it defines the same property for voters as neutrality does for alter-
natives, we use the same idea: If we rename the voters, the choice set should not
change. Formally, it is defined as follows.

Definition 1.5 (Anonymity). A social choice function f satisfies anonymity if
for all permutations π : N 7→ N and preference profiles R, R′ with Rπ(i) = R′i for
all i ∈ N , it holds that f(R) = f(R′).

Anonymity is a very desirable property that is satisfied by many elections in the real
world. Its main idea is that it should not matter who submits a specific vote but only
the votes themselves are important. This is reached by allowing to rename the voters
without affecting the choice set. An example of an application of anonymity can be
seen in Figure 1.2 where the preference profile R3 is obtained from the preference
profile R2 by exchanging the preferences of voter 2 and 3. Thus, it follows that
f(R2) = f(R3) for every anonymous social choice function f . Furthermore, if f is
also neutral and f(R1) = {a}, the choice sets for R2 and R3 are already determined.
While the goal of anonymity and neutrality is to treat voters and alternatives identi-
cally, there are also axioms which intend to model that social choice functions should
obey the preferences of the voters. Even though this sounds trivial, this property
is not formalized by the definition of social choice functions as these functions can
return arbitrary choice sets. Furthermore, even though this condition sounds easy at
first, it is surprisingly hard to model it properly. A common approach for this issue
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is Pareto-optimality which states that a social choice function should not choose an
alternative as winner if there is another alternative that is preferred by every voter.

Definition 1.6 (Pareto-optimality). An alternative a is Pareto-dominated by an
alternative b in a preference profile R if it holds for all voters i ∈ N that b �i a
and there exists a voter i∗ ∈ N with b �i∗ a. If a is not Pareto-dominated by any
alternative, it is Pareto-optimal. A social choice function f is called Pareto-optimal
if f(R) ⊆ {a ∈ A | a is Pareto-optimal in R} for all preference profiles R.

Pareto-optimality is a very desirable property as it seems not reasonable to choose
an alternative as winner if every voter agrees that there is a better alternative. Note
that the definition of Pareto-optimality leads straightforwardly to a social choice
function which we call Pareto-rule. This rule returns always all Pareto-optimal
alternatives and we abbreviate it with PO, especially if we discuss its choice set.
For an instance of Pareto-optimality, consider the profile R4 displayed in Figure 1.3.
In this profile, every voter prefers c strictly to d, which means that d is Pareto-
dominated by c. Every other alternative is Pareto-optimal as a uniquely first-ranked
alternative cannot be Pareto-dominated. Thus, PO(R4) = {a, b, c}. Note that the
last observation leads to another prominent social choice function which is known
as Omninomination-rule. This SCF, abbreviated by OMNI, chooses all alternatives
that are first-ranked by at least one voter and clearly, it is another example of a
Pareto-optimal SCF in the strict domain.
A similar intention as Pareto-optimality is modeled with an axiom called Condorcet-
consistency. The intuition behind this axiom is that it is often easy to decide on
a best alternative in a preference profile. This idea is formalized with the notion
of the Condorcet winner which refers to an alternative that is preferred to every
other alternative by a majority of the voters. For explaining this concept, we first
introduce majorities between alternatives.

Definition 1.7 (Majority for a against b). Consider a preference profile R and
two alternatives a, b ∈ A. The majority for a against b in the profile R is denoted
by nab = |{i ∈ N | a �i b}|.

The majority nab for alternative a against alternative b is simply the number of
voters who prefer a strictly to b. Note that the concept of majorities leads to many
interesting social choice functions and even to a hierarchy among these functions.
In fact, the concept of majorities has significantly influenced the research on social
choice functions. Based on these majorities, it is easy to define the Condorcet
winner.

Definition 1.8 (Condorcet winner). An alternative a ∈ A is the Condorcet
winner in a preference profile R if nab > nba for all alternatives b ∈ A \ {a}.

Note that a Condorcet winner does not exist in every preference profile. For instance,
there is no Condorcet winner in the profile R5 shown in Figure 1.3 because nab > nba,
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R4 :

1 1 1 1
a a b c
b c a d
c d c a
d b d b

R5 :

1 1 1
a b c
b c a
c a b

Figure 1.3: Preference profiles used for explaining Pareto-optimality and Condorcet-
consistency

nbc > ncb and nca > nac. It should be mentioned that R5 is a well-known profile
usually referred to as Condorcet cycle. In contrast, the preference profile R4 in the
same figure has a Condorcet winner: The alternative a satisfies nax = 3 > nxa = 1
for all x ∈ A \ {a}. There are several arguments in favor of always choosing a
Condorcet winner if one exists. Most importantly, if we try to choose another
alternative as winner, we always find a majority rejecting this idea. This leads to
the notion of Condorcet-consistency which demands that a social choice function
picks the Condorcet winner as unique winner if it exists.

Definition 1.9 (Condorcet-consistency). A social choice function f satisfies
Condorcet-consistency if it holds for all preference profiles R that f(R) = {a} if a
is the Condorcet winner in R.

Note that we refer to social choice functions satisfying Condorcet-consistency as Con-
dorcet extensions. Furthermore, there are many interesting social choice functions
satisfying this axiom. A simple example of a Condorcet extension is the Condorcet-
rule which returns the Condorcet winner if it exists; otherwise, it returns all alter-
natives.

Note that Condorcet-consistency and Pareto-optimality are axioms that ensure small
choice sets. Unfortunately, this is often in conflict with P̃ -strategyproofness as it
becomes easier to manipulate if only few alternatives are chosen. Nevertheless, we
desire social choice functions with small choice sets and therefore, we often consider
P̃ -strategyproofness combined with one of these axioms in subsequent chapters.
This leads usually either to interesting social choice functions or to an impossibility
result.

1.3 Literature Review

In this section, we review existing results on P̃ -strategyproofness. Thus, we discuss
P̃ -strategyproof social choice functions and present well-established impossibility
results.
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First, we discuss P̃ -strategyproof social choice functions in the strict domain. One of
the most important results with respect to this setting is a criterion which implies P̃ -
strategyproofness: Every set-monotonic social choice function defined on the strict
domain is P̃ -strategyproof [Bra15]. Informally, set-monotonicity means that a social
choice function is invariant under the weakening of unchosen alternatives. A more
formal definition is discussed in Section 2.1. Note that this result is very helpful for
proving the P̃ -strategyproofness of social choice functions.

Additionally, Brandt [Bra15] provides two more results on the P̃ -strategyproofness
of social choice functions. Firstly, if a SCF f is P̃ -strategyproof and there is a SCF
g such that f(R) ⊆ g(R) and f(R) = g(R) if |f(R)| = 1| for all preference profiles
R ∈ Sn, then g is also P̃ -strategyproof. Secondly, the author observes that the
strong superset property and monotonicity imply set-monotonicity. Informally, the
strong superset property means that a social choice function f is invariant under
removing unchosen alternatives from the preference profile, whereas monotonicity is
a weakening of set-monotonicity.

We can deduce from the last two remarks that many tournament solutions are P̃ -
strategyproof in the strict domain. It can be shown that the bipartisan set (BP )
defined in [LLLB93] satisfies the strong superset property and monotonicity and
therefore, this social choice function is P̃ -strategyproof. Furthermore, it has also
been proven that the minimal covering set (MC) introduced in [Dut88], the uncov-
ered set (UC) proposed in [Fis77] and [Mil80], and the top cycle (TC) (see, e.g.,
[Bor76]) are P̃ -strategyproof because BP (R) ( MC(R) ( UC(R) ( TC(R) for all
preference profiles R ∈ Wn and all these rules return a single winner if and only if
it is the Condorcet winner. It should be mentioned that the P̃ -strategyproofness of
the top cycle has been independently proven in [MP81]. Furthermore, note that the
previous chain of inclusions leads to the question whether the bipartisan set is the
finest tournament solution that satisfies P̃ -strategyproofness. However, this conjec-
ture has been disproved in [BG16]. Further social choice functions that are known
to be P̃ -strategyproof in the strict domain are the Condorcet-rule [Gär76, Neh00],
the Omninomination-rule [Gär76] and the Pareto-rule [Fel79]. Additionally, it has
been shown that the Omninomination-rule, the Pareto-rule and the intersection of
these rules are also P̃ -strategyproof in the weak domain [BSS].

Next, we discuss impossibility results which have a longer history than the possibility
results. The first result of this kind has been shown independently by Gibbard
[Gib73] and Satterthwaite [Sat75]. It states that there is no strategyproof, non-
dictatorial, non-imposing (i.e., ∀x ∈ A : ∃R ∈ Sn : f(R) = {x}) and single-valued
(i.e., ∀R ∈ Sn : |f(R)| = 1) social choice function, even if strict preferences are used.
The main criticism of this theorem is the single-valuedness as it is unreasonable from
a theoretic standpoint.

Thus, impossibility results for set-valued social choice functions have been devel-
oped. The first results of this kind have been discussed by Kelly [Kel77] and
Barbera [Bar77b]. Both of these results rely heavily on an axiom called quasi-
transitive rationalizability which is itself very restrictive. Further research, such as



10 Introduction

[Ban82, Ban83, MP81], requires weaker rationalizability axioms for deriving impos-
sibility results. These works lead to new axioms such as minimal binariness and
quasi-binariness. However, many social choice functions also fail these axioms and
therefore, other approaches have been investigated.
In particular, it is in [Bar77a] shown that every unanimous and positive responsive
social choice function cannot be simultaneously non-dictatorial and P̃ -strategyproof.
While unanimity is a weak assumption, positive responsiveness means that if mul-
tiple winners are chosen for a preference profile and a voter reinforces one of them,
this alternative becomes the unique winner. As consequence, social choice functions
satisfying this axiom are almost single-valued. Furthermore, it should be mentioned
that the definition of strategyproofness used in [Bar77a] is even weaker than P̃ -
strategyproofness.
More recently, computer-aided proofs have been used to show the non-existence of
P̃ -strategyproof social choice functions in various important settings. With this
approach, it has been shown in [BSS] that no pairwise and Pareto-optimal social
choice function is P̃ -strategyproof and in [Bra11] that no Condorcet extension is
P̃ -strategyproof. Note that pairwiseness requires that a SCF only depends on the
majority margins nab−nba of all pairs of alternatives a, b ∈ A. Both of these results
require the weak domain, whereas many of the previously mentioned theorems are
also true in the strict domain. However, the axioms used for deducing these results
are significantly less restrictive than the ones used in earlier impossibility results.
Thus, it seems that it is significantly harder to find P̃ -strategyproof social choice
functions if preferences may contain ties.



Chapter 2

Monotonicity and
Strategyproofness

The main theorem of [Bra15] provides a simple condition for the P̃ -strategyproofness
of social choice functions. In detail, it states that set-monotonicity implies P̃ -
strategyproofness in the strict domain. This theorem turns out to be very help-
ful for proving the P̃ -strategyproofness of multiple social choice functions such as
the bipartisan set. However, not every P̃ -strategyproof social choice function satis-
fies set-monotonicity. Thus, we analyze in this chapter whether other axioms than
set-monotonicity also imply P̃ -strategyproofness. Furthermore, even if we do not
find such axioms, it might be possible that weaker axioms are sufficient to prove
strategyproofness based on weaker set extensions. Therefore, we analyze in this
chapter various types of monotonicity and their relations to different variants of
strategyproofness.

First, we discuss the required monotonicity axioms and set extensions in Section 2.1.
We relate these monotonicity axioms with the various types of strategyproofness in
Section 2.2. Note that we work in this section with the weak domain, which means
that we generalize the results in [Bra15]. Furthermore, we can even adapt our results
to the intransitive domain in Section 2.3. Finally, we consider a strengthening of
strategyproofness called group-strategyproofness in Section 2.4. This axiom asks
whether a group of voters can manipulate and we show that all our results also hold
for the respective variant of group-strategyproofness.

2.1 Monotonicity Axioms and Set Extensions

In this section, we discuss various monotonicity axioms and set extensions that are
required for the main theorems of this chapter. Note that many axioms introduced
here are currently only rarely considered in the literature.

We start with the introduction of monotonicity axioms. The intention of mono-
tonicity axioms is to ensure that social choice functions behave reasonable. This
is necessary as the mere mathematical description of these functions allows for ar-
bitrary choice sets. However, in practice, the outcome of a social choice function
should be predictable in many situations. For instance, if an alternative is in the
choice set for a given preference profile, this alternative should still be chosen if a
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voter reinforces it in his preference. This is exactly the behavior which is formalized
by monotonicity.

Definition 2.1 (Monotonicity). Consider two arbitrary preference profiles R, R′,
a voter i ∈ N and an alternative a ∈ A such that R−i = R′−i, x �i y if and only
if x �′i y, a �i y implies a �′i y and a �i y implies a �′i y for all alternatives
x, y ∈ A \ {a}. We call a social choice function f monotonic if a ∈ f(R) implies
that a ∈ f(R′).

The intuitive meaning of monotonicity is that a chosen alternative should also be
chosen after a voter reinforces it. However, note that this standard definition can
be criticized from a practical standpoint: It only ensures that the alternative a
is still chosen after it is reinforced, but it does not affect the other alternatives.
Therefore, it is possible that other alternatives are additionally chosen, which is
often not desirable. For instance, assume that alternative a is the unique winner in
a preference profile. Next, a voter reinforces this alternative and as a result, many
alternatives can be the winner without violating monotonicity.
To prohibit such a behavior, stronger monotonicity axioms such as set-monotonicity
have been designed. This property has been introduced in [Bra15] and generalized
to the weak domain in [BBGH15]. The intuition of this axiom is that the weakening
of unchosen alternatives should not affect the choice set.

Definition 2.2 (Set-monotonicity). Consider two arbitrary preference profiles R,
R′ such that x �i y implies x �′i y and y �′i x implies y �i x for all voters i ∈ N .
We call a social choice function f set-monotonic if f(R) = f(R′).

This rather strong axiom requires that, unless a chosen alternative is weakened, the
choice set does not change. However, this definition is in conflict with the decisive-
ness of a social choice function: Regardless of how much a voter reinforces a chosen
alternative, it is impossible for him to make the choice set smaller without chang-
ing his preference between chosen alternatives. For fixing this flaw, we introduce
another monotonicity axiom called weak set-monotonicity.

Definition 2.3 (Weak set-monotonicity). Consider two arbitrary preference pro-
files R, R′ such that x �i y implies x �′i y and y �′i x implies y �i x for all voters
i ∈ N . We call a social choice function f weakly set-monotonic if f(R′) ⊆ f(R).

Weak set-monotonicity states that, unless a chosen alternative is weakened, no un-
chosen alternative can become chosen. The most important difference between set-
monotonicity and weak set-monotonicity is that the latter allows for refining the
choice set. Thus, a voter may be able to remove some alternatives from the choice
set by reinforcing a chosen alternative.
For an example that illustrates the differences between the various types of mo-
notonicity, consider Figure 2.1. This figure shows three preference profiles R1, R2

and R3 that are each defined on 3 voters and 4 alternatives. Furthermore, we in-
troduce three social choice function f1, f2 and f3 whose domain is {R1, R2, R3}.
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R1 :

1 1 1
a a, c c
b b a, b
c, d d d

R2 :

1 1 1
a a, c c
b, c b a, b
d d d

R3

1 1 1
a a, c c
b d a, b
c, d b d

Figure 2.1: Preference profiles used for explaining the different monotonicity axioms

Additionally, we assume that f1 is set-monotonic, f2 is weakly set-monotonic and
f3 is monotonic. Finally, let f1(R

1) = f2(R
1) = f3(R

1) = {a, c}. Because of set-
monotonicity, it follows for f1 that f1(R

2) = f1(R
3) = f1(R

1) = {a, c} as no chosen
alternative is weakened if we compare R1 with R2 and R3. We can deduce from
weak set-monotonicity for the same reason that f2(R

2) ⊆ f2(R1), e.g., f(R2) = {a}
is a valid choice. Furthermore, it holds that f2(R

3) = f2(R
1) as the profiles R1 and

R3 only differ in preferences between unchosen alternatives. Thus, we can deduce
from weak set-monotonicity that f(R3) ⊆ f(R1) and f(R1) ⊆ f(R3), which means
that the choice set cannot change. Finally, consider the social choice function f3:
It holds that c ∈ f3(R2) as this alternative is reinforced by the first voter. For in-
stance, f3(R

2) = {b, c} is a valid choice. In contrast, monotonicity cannot be applied
for deriving information about f3(R

3) as R3 is derived from R1 by reinforcing an
unchosen alternative. Hence, many outcomes are possible, e.g., f3(R

3) = {a, c, d}.
In the previous example, we see that neither f1 nor f2 are allowed to change the
choice set if only unchosen alternatives are reordered. In contrast, monotonicity
does not imply this property and f3 can choose almost all choice sets for the profile
R3. As this property plays an important role in the proof of the main theorem of
[Bra15], it seems reasonable to define it as an own axiom called independence of
unchosen alternatives.

Definition 2.4 (Independence of unchosen alternatives). A social choice func-
tion f satisfies independence of unchosen alternatives if for all preference profiles
R, R′ such that x �i y if and only if x �′i y and y �i x if and only if y �′i x for all
alternatives x ∈ f(R), y ∈ A and voters i ∈ N , it holds that f(R) = f(R′).

The intuitive meaning of independence of unchosen alternatives is that a social
choice function returns the same choice set if no preferences involving a chosen
alternative are modified. As we have seen in the previous example, set-monotonicity
and weak set-monotonicity seem related to this axiom. We prove that there is even
an implication between these properties.

Lemma 2.1. Every weakly-set monotonic social choice function satisfies indepen-
dence of unchosen alternatives.

Proof: Consider an arbitrary weakly set-monotonic social choice function f and
two preference profiles R and R′ such that Ri|{x,y} = R′i|{x,y} for all alternatives
x ∈ f(R), y ∈ A and voters i ∈ N . It follows from this assumption that we can
apply weak set-monotonicity to deduce that f(R′) ⊆ f(R). Furthermore, this means
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that Ri|{x,y} = R′i|{x,y} for all x ∈ f(R′), y ∈ A and i ∈ N and therefore, weak set-
monotonicity implies that f(R) ⊆ f(R′). Thus, f(R) = f(R′) which shows that f
satisfies independence of unchosen alternatives. �

As consequence of this lemma, it follows that every set-monotonic social choice
function satisfies independence of unchosen alternatives as set-monotonicity implies
weak set-monotonicity. Furthermore, set-monotonicity also implies monotonicity as
shown in [Bra15]. In contrast, it can be shown that weak set-monotonicity does not
imply monotonicity. This claim follows from the previously considered example: The
weakly set-monotonic social choice function f2 satisfies f2(R

2) = {a} even though
c ∈ f2(R1) and c is reinforced to derive R2 from R1. This contradicts monotonicity
as every monotonic social choice function selects c in the profile R2 if it is selected
in R1.

Next, we focus on various set extensions related to Kelly’s extension. The reason for
this is that our monotonicity axioms do not imply P̃ -strategyproofness in the weak
domain, but they can be used to prove strategyproofness with respect to weaker set
extensions.

Definition 2.5 (Set extensions). Consider the individual preference Ri of an
arbitrary voter i ∈ N . We define the following set extensions:

1. X P̄i Y ⇐⇒ ∀x ∈ X, y ∈ Y : x �i y

2. X P̂i Y ⇐⇒ ∀x ∈ X, y ∈ Y, x 6= y : x �i y ∧ ∃x ∈ X, y ∈ Y : x �i y

3. X P̃i Y ⇐⇒ ∀x ∈ X, y ∈ Y : x �i y ∧ ∃x ∈ X, y ∈ Y : x �i y

For convenience, we include also Kelly’s extension in this list even though it has
already been introduced in Definition 1.2. The reason for this is that we need
Kelly’s extension in the subsequent sections. Furthermore, we define two weaker set
extensions. The first one is introduced by Nehring in [Neh00] and requires that every
alternative in X is strictly preferred to every alternative in Y . This set extension
is one of the weakest considered in the literature as it only allows to compare very
few sets. For instance, X P̄ Y requires that X and Y are disjoint. The second
set extension has not been considered in the literature yet. Intuitively, it states
that a set X is preferable to a set Y if every alternative in X is strictly better
than every alternative in Y with the exception that a single alternative can be in
both X and Y . This means that the set extensions P̂ and P̃ are equal in the
strict domain. However, P̂ is weaker than P̃ in the weak domain as P̃ allows that
multiple alternatives are in the intersection of X and Y , whereas P̂ only allows for
a single one. Furthermore, P̂ is stronger than P̄ as it can additionally compare sets
that intersect in one alternative. This makes this set extension interesting as it lies
between P̃ and P̂ . The notion of P̂ - and P̄ -strategyproofness follows from replacing
P̃ in Definition 1.3 with the respective set extension.
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R1 :

1 1
a d
b, c c
d a, b

R2 :

1 1
a d
b c
c, d a, b

Figure 2.2: Preference profiles used for explaining the various types of strategyproof-
ness

Next, we discuss an example that shows the difference between these notions of
strategyproofness. Thus, consider the preference profiles R1 and R2 shown Fig-
ure 2.2. Furthermore, let f1, f2 and f3 denote three social choice functions that
satisfy f1(R

2) = f2(R
2) = f3(R

2) = {a, b}, f1(R1) = {b, c, d}, f2(R1) = {b, d}
and f3(R

1) = {d}. This means that f1 is P̃ -manipulable by the first voter be-
cause f1(R

2) = {a, b} P̃1 {b, c, d} = f(R1). In contrast, this modification is no
P̂ -manipulation for voter 1 and therefore, it is also no P̄ -manipulation. The rea-
son for this is that b ∈ f1(R

2) is not strictly preferred to c ∈ f1(R
1). Moreover,

f2 is P̂ -manipulable because voter 1 prefers every alternative x ∈ f2(R
2) strictly

to every alternative y ∈ f2(R
1), x 6= y. However, this is no P̄ -manipulation as

b ∈ f2(R1)∩ f2(R2) and an alternative cannot be strictly preferred to itself. Finally,
the SCF f3 is P̄ -manipulable by voter 1 since he prefers both a and b strictly to d.
Therefore, he can P̄ -manipulate f3 by switching from R1 to R2.
Note that this example shows on the one hand the differences between the set exten-
sions introduced in Definition 2.5. On the other hand, we see that often only very
few preference profiles suffice to discuss strategyproofness. This can also be observed
in subsequent sections in which we analyze implications between monotonicity ax-
ioms and different types of strategyproofness. For formalizing this observation, we
introduce comprehensive subsets of a domain.

Definition 2.6 (Comprehensive Domain). We call a domain D comprehensive
if for every triple of individual preferences Ri, R

′
i, R

′′
i with Ri ∩ R′i ⊆ R′′i ⊆ Ri ∪ R′i,

it holds that R′′i ∈ D if Ri, R
′
i ∈ D.

Note that this definition differs from the original one suggested in [Neh00] which
only requires that Ri∩R′i ⊆ R′′i . However, our definition is equivalent to the original
one in the strict domain and slightly stronger in the weak domain. The reason for
this is that the original definition allows for arbitrarily introducing ties which is not
possible with Definition 2.6 because of R′′i ⊆ Ri ∪ R′i. Furthermore, note that both
constraints in Definition 2.6 are independent: R′′i ⊆ Ri ∪ R′i prohibits the arbitrary
introduction of ties in R′′i and Ri∩R′i ⊆ R′′i prohibits the arbitrary removal of ties in
R′′i . An example for a comprehensive domain is the set of all preferences extending
a partial order on A to a complete and transitive relation.
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2.2 Results in the Weak Domain

In this section, we present variations of the main theorem in [Bra15] stating that
set-monotonicity implies P̃ -strategyproofness in the strict domain. It is easy to see
that this implication does not hold in the weak domain anymore. Therefore, we try
to find similar implications in the weak domain for various types of monotonicity
and strategyproofness. Note that we use comprehensive subsets of the weak domain
for proving positive results and the strict domain for proving negative results. This
strengthens the results as we only require subsets of the weak domain.
As we consider many combinations of various types of monotonicity and strategy-
proofness, a short overview of the results in this section are presented in Table 2.1.
It should be mentioned that this table also illustrates the results of the following sec-
tions, i.e., if there is an implication, we can generalize it to the intransitive domain
and group-strategyproofness as discussed in Section 2.3 and Section 2.4.
We start the discussion of our results with a conjecture arising from [Bra15]: In this
paper, it is observed that set-monotonicity implies monotonicity and independence
of unchosen alternatives. Thus, one might conjecture that these two properties
entail P̃ -strategyproofness. We disprove this conjecture by showing that monoto-
nicity combined with independence of unchosen alternatives does not even imply
P̄ -strategyproofness.

Theorem 2.1. There is a social choice function f1 : Sn 7→ 2A \ ∅ that satis-
fies monotonicity and independence of unchosen alternatives and that violates P̄ -
strategyproofness if m ≥ 4 and n ≥ 1.

Proof: For proving this theorem, we construct a social choice function f1 that satisfies
monotonicity and independence of unchosen alternatives but not PN -strategyproof-
ness. For simplicity we design a quasi-dictatorial SCF, i.e., f1 depends only on the
preference of a single voter i. In the sequel, we focus on the case that m = 4 as we

P̄ -strategypr. P̂ -strategypr. P̃ -strategypr.
Monotonicity + Indepen-
dence of unchosen alter- × × ×
natives
Weak set-monotonicity

√
× ×

Set-monotonicity
√ √

×

Table 2.1: Overview of the results in Section 2.2. The rows of this table represent
the different types of monotonicity and the columns are associated with the different
types of strategyproofness. A tick in a cell means that the corresponding variant
of monotonicity implies the considered type of strategyproofness in every compre-
hensive subset of the weak domain. A cross indicates that there is no implication
between the type of monotonicity and strategyproofness.
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Ri f1(R) f2(R)
a � b � c � d {c, d} {a}
a � b � d � c {a, d} {a}
a � c � b � d {a, c} {a}
a � c � d � b {a, c} {a}
a � d � b � c {a, d} {a}
a � d � c � b {a, d} {a}
b � a � c � d {c, d} {a}
b � a � d � c {b, d} {a}
b � c � a � d {b, c} {a, d}
b � c � d � a {b, c} {a, b, c, d}
b � d � a � c {b, d} {a, c}
b � d � c � a {b, d} {a, b, c, d}
c � a � b � d {a, c} {a}
c � a � d � b {a, c} {a}
c � b � a � d {b, c} {a, d}
c � b � d � a {b, c} {a, b, c, d}
c � d � a � b {a, b} {a, b}
c � d � b � a {b, c} {a, b, c, d}
d � a � b � c {a, d} {a}
d � a � c � b {a, d} {a}
d � b � a � c {b, d} {a, c}
d � b � c � a {b, d} {a, b, c, d}
d � c � a � b {a, b} {a, b}
d � c � b � a {d, b} {a, b, c, d}

Table 2.2: Social choice functions used for proving Theorem 2.1 and Theorem 2.3

can easily generalize f1 to more alternatives by adding dummy alternatives which
that are never chosen and that do not affect the social choice function. Under these
assumptions, we define f1 as follows: If Ri = a � b � c � d or Ri = b � a � c � d,
then f1(R) = {c, d} and if Ri = c � d � a � b or Ri = d � c � a � b, then
f1(R) = {a, b}. Otherwise, f1 returns the winner of the comparison of a against b
and the winner of the comparison of c against d in the preference of voter i. The
complete social choice function f1 is displayed in the second column of Table 2.2.

First, we analyze the social choice function f1 with respect to P̄ -strategyproofness,
monotonicity and independence of unchosen alternatives. Thus, note that f1 is P̄ -
manipulable: If the true preference of voter i is a � b � c � d, he can P̄ -manipulate
by submitting c � d � a � b as {a, b} P̄i {c, d}.
Next, we show that this rule also satisfies monotonicity and independence of uncho-
sen alternatives. As only the preference of voter i affects the choice set of f1, we
focus on this voter. Even more, if we ignore the special cases of f1, it is clear that
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monotonicity and independence of unchosen alternatives are satisfied as f1 always
returns the winners of the pairwise comparison of a against b and c against d in the
preference Ri.

Thus, we consider the special cases and assume that Ri = a � b � c � d because all
special cases are symmetric. First note that R∗i = b � a � c � d is the only other
preference such that Ri is related to it by independence of unchosen alternatives.
As f1 returns the same choice for every preference profile R in which voter i submits
Ri or R∗i , independence of unchosen alternatives is satisfied. Next, we prove that
no other preference R′i ∈ S \ {Ri, R

∗
i } is related to Ri by independence of unchosen

alternatives. Therefore, we consider an arbitrary preference profile R′ ∈ Sn with
R′i 6∈ {Ri, R

∗
i } and make a case distinction with respect to f1(R

′). If d ∈ f1(R′), then
d �′i c, which contradicts that R′i and Ri are related by independence of unchosen
alternatives. If c ∈ f(R′), then c is preferred to at least two alternatives by voter
i as c �′i d and R′i 6∈ {Ri, R

∗
i }. This contradicts again that Ri and R′i are related

by independence of unchosen alternatives. Finally, if neither c nor d is returned,
then we are in the second special case in which b is the least preferred alternative of
voter i. It follows again that Ri and R′i are not related by independence of unchosen
alternatives and we can deduce that f1 satisfies this axiom.

Next, we discuss why the SCF f1 satisfies monotonicity in the special cases. We
focus again on Ri = a � b � c � d since the other special cases are symmetric.
First note that whenever voter i reinforces c or d this alternative is still in the choice
set as it wins the pairwise comparison. Thus, monotonicity holds if we reinforce
a winning alternative in Ri. Moreover, we show that this axiom is also satisfied
if voter i switches from an arbitrary preference R′i to Ri. Therefore, observe that,
unless R′i = b � a � c � d, a winning alternative is weakened in R′i to switch to
Ri. The reason for this is that in every other preference, at least one alternative in
{c, d} is strictly preferred to at least one alternative in {a, b} by voter i or he prefers
d over c. As this is not true in Ri, a winning alternative is weakened to go from R′i
to Ri and therefore, monotonicity does not relate the choice sets f(R) and f(R′).
Note that this argument does not hold for the second special case c � d � a � b
and d � c � a � b. However, we have to reinforce both a and b to derive Ri from
this preference. This means that the special cases are not related by monotonicity
either. Furthermore, if R′i = b � a � c � d, then f1 returns the same choice sets for
the corresponding preference profiles R and R′. Hence, we can finally conclude that
f1 is monotonic, which proves this theorem. �

Observe that the social choice function used in the proof of Theorem 2.1 can be
extended to the weak domain. It still compares a against b and c against d in the
preference of voter i and chooses the winners unless a is uniquely-third ranked and
b is uniquely last-ranked or c is uniquely third-ranked and d is uniquely last-ranked.
If voter i submits a tie between a and b or c and d, then both alternatives are
chosen unless we are in a special case. In the special cases, we still choose {a, b} or
{c, d} depending on the last-ranked alternatives. It can be easily checked that this
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leads to a social choice function in the weak domain that satisfies monotonicity and
independence of unchosen alternatives but violates P̄ -strategyproofness.
Note that Theorem 2.1 leads to the question whether there is an implication between
a stronger monotonicity axiom and P̄ -strategyproofness. We give a positive answer
to this question by showing that weak set-monotonicity implies P̄ -strategyproofness
in the weak domain. Note that this proves the sixth remark of [Bra15]. However,
for the proof of the following theorem, we need to restrict preferences to a subset
of alternatives. Therefore, we define the restriction of Ri to the set of alternatives
X ⊆ A as Ri|X = Ri ∩X2.

Theorem 2.2. Every weakly set-monotonic social choice function f defined on a
comprehensive subset of the weak domain is P̄ -strategyproof.

Proof: Assume for contradiction that there is a social choice function f that is
defined on a comprehensive subset Dn of the weak domain and that is weakly set-
monotonic but not P̄ -strategyproof. Thus, there are preference profiles R, R′ ∈ Dn

and a voter i ∈ N such that f(R′) P̄i f(R) and R−i = R′−i. It follows from the
definition of P̄ -strategyproofness that f(R′) ∩ f(R) = ∅ and that Y P̄i X for all
X ⊆ f(R), Y ⊆ f(R′). We show that there is a preference profile R∗ such that
f(R) = f(R∗) ⊆ f(R′) and R−i = R∗−i = R′−i, which contradicts that f(R′) P̄i f(R).
For constructing this preference profile R∗, we partition the alternatives into two sets
U and L. For this step, we denote with m one of voter i’s least preferred alternative
in f(R′), i.e., ∀x ∈ f(R′) : x �i m. Then, U = {x ∈ A | x �i m} is the set
of all alternatives weakly preferred to m by voter i in the preference profile R and
L = A \ U . With the help of these sets, we define the preference R∗i as follows.

R∗i = R′i|U ∪ Ri|L ∪ {(x, y) | x ∈ U, y ∈ L}

Next, we explain why f(R) = f(R∗) holds. For this reason, observe that the tran-
sitivity of Ri implies that y �i x for all y ∈ U and x ∈ L because y �i m and
m �i x. Furthermore, it holds that f(R) ⊆ L because m �i x for all x ∈ f(R).
This means that voter i’s preference between alternatives in U and alternatives in
f(R) is the same in Ri and R∗i , i.e., for all x ∈ U and y ∈ f(R) it holds that x �i y
and x �∗i y. Moreover, we have by construction that Ri|L = R∗i |L. Hence, we can
apply independence of unchosen alternatives to deduce that f(R) = f(R∗).
Furthermore, we discuss why f(R∗) ⊆ f(R′). For proving this inclusion, we define
the auxiliary preference profile Raux = (R′−i, R

aux
i ) where Raux

i differs from R∗i only
in the fact that the alternatives in L are ordered according to R′i instead of Ri. This
leads to the following formal definition.

Raux
i = R′i|U ∪R′i|L ∪ {(x, y) | x ∈ U, y ∈ L}

Observe that f(Raux) ⊆ f(R′) as we can apply weak set-monotonicity in R′i to
weaken the alternatives in L until we reach Raux

i . Furthermore, we can deduce from
independence of unchosen alternatives that f(R∗) = f(Raux) because R∗i and Raux

i
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only differ in preferences between alternatives in L. This is no problem as every
alternative in f(Raux) is strictly preferred to every alternative in L. Consequently,
it holds that f(R) = f(R∗) ⊆ f(R′) which contradicts f(R′) P̄i f(R).
Finally, we show that R∗i is an element of the considered comprehensive subset D
of the weak domain. This is true since we have for all x, y ∈ A with x �∗i y that
either x �i y or x �′i y: If x, y ∈ U , this observation follows from R∗i |U = R′i|U ;
if x ∈ L, y ∈ A, we have x �∗i y if and only if x �i y. Thus, it is obvious that
Ri ∩R′i ⊆ R∗i ⊆ Ri ∪R′i, which implies that R∗i ∈ D. �

Note that we are not aware of commonly discussed social choice functions that are
defined on the weak domain and that satisfy weak set-monotonicity but violate set-
monotonicity. However, there are multiple simple examples: For instance, consider
the social choice function that returns a and b for all profiles but those in which
only one alternative in {a, b} is top-ranked by all voters; in this case we only return
the alternative that is top-ranked by everyone. This social choice function is clearly
weakly set-monotonic and therefore, we can deduce from Theorem 2.2 that it is
P̄ -strategyproof. However, it is not set-monotonic since it might happen that a
voter submits c � a � b and after weakening c, every voter prefers a the most. In
this scenario, the constructed social choice function returns initially {a, b} and after
weakening c, it only returns {a}, which contradicts set-monotonicity.
Furthermore, note that Theorem 2.1 and Theorem 2.2 give a tight bound on the
strength of monotonicity axioms required for proving P̄ -strategyproofness. Nev-
ertheless, it might be possible to generalize Theorem 2.2 by showing that weak
set-monotonicity implies also stronger variants of strategyproofness. Unfortunately,
this conjecture is false because we can construct a social choice function that is
weakly set-monotonic and P̂ -manipulable.

Theorem 2.3. There is a social choice function f2 : Sn 7→ 2A \ ∅ that satisfies weak
set-monotonicity but not P̂ -strategyproofness if m ≥ 4 and n ≥ 1.

Proof: We construct a social choice function f2 that is weakly set-monotonic but not
P̂ -strategyproof. As in the proof of Theorem 2.1, we focus on the case that m = 4
because we can always add dummy alternatives that are never chosen and that do
not affect the behavior of f2. Furthermore, the SCF f2 that we construct in the
sequel is quasi-dictatorial, i.e., its outcome only depends on a single voter i. The
social choice function f2 is defined as follows: If alternative a is the most preferred
alternative or the second most preferred alternative of voter i in the preference
profile R, then f2(R) = {a}; if alternative a is ranked third by voter i, the choice set
consists of alternative a and the least preferred alternative of voter i; if alternative
a is ranked last by voter i, then f(R) = A. The last column of Table 2.2 shows an
explicit description of f2 depending only on the preference Ri.
First note that voter i can P̂ -manipulate f2: If his true preference is c � b � a � d,
then f2(R) = {a, d}. However, {a, c} P̂i {a, d} and voter i can achieve this outcome
by submitting d � b � a � c.
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Next, we show that the SCF f2 is indeed weakly set-monotonic. Note for this that
f2 only depends on the preference of voter i and therefore, it is trivially weakly
set-monotonic for all voters j 6= i. Hence, we focus in the sequel on the preference
submitted by voter i. If alternative a is the least preferred alternative of voter
i, then all alternatives are chosen. Hence, every choice set is a subset and weak
set-monotonicity trivially holds. Next, assume that a is ranked third and that an
unchosen alternative is weakened by voter i. If a is ranked third afterwards, then
the least preferred alternative is also the same, which means that the choice set has
not changed. Otherwise, alternative a is now the most preferred or second most
preferred alternative of voter i, which means that a is the unique winner. Thus, it
follows that f2 satisfies weak set-monotonicity in this case. Finally, if alternative a
is among the two most preferred alternatives of voter i and we weaken an unchosen
alternative, a is still preferred to at least two other alternatives. Hence, the choice
set does not change and we can deduce that f2 satisfies weak set-monotonicity in all
cases. �

Note that the social choice function f2 can be extended to the weak domain. There-
fore, we define the rank of an alternative x in the preference Ri of voter i as
r(x,Ri) = |A| − |{a ∈ A | x �i a}|. Based on this definition, we extend f2 as
follows: If r(a,Ri) = |A|, we return every alternative; if r(a,Ri) = |A| − 1, we
return a and the alternative b that satisfies a �i b; otherwise, we return a. It is easy
to see that this approach leads to a weakly set-monotonic SCF in the weak domain
that is P̂ -manipulable. Furthermore, it should be mentioned that the social choice
function f2 is also monotonic. Thus, not even weak set-monotonicity paired with
monotonicity implies P̂ -strategyproofness.
In contrast, we can show that set-monotonicity implies P̂ -strategyproofness in the
weak domain. This gives again a tight bound for the weakest monotonicity axiom
required for proving P̂ -strategyproofness.

Theorem 2.4. Every set-monotonic social choice function f defined on a compre-
hensive subset of the weak domain is P̂ -strategyproof.

Proof: Assume for contradiction that there is a social choice function f that is defined
on a comprehensive subset Dn of the weak domain and that is set-monotonic but
not P̂ -strategyproof. Hence, there are preference profiles R,R′ ∈ Dn and a voter
i ∈ N such that R−i = R′−i and f(R′) P̂i f(R). We derive a contradiction to this
assumption by constructing a preference profile R∗ such that R∗−i = R−i = R′−i and

f(R) = f(R∗) = f(R′) contradicting that f(R′) P̂i f(R).
As in the proof of Theorem 2.2, we partition the alternatives A into two sets U and
L. For this step, we denote with m one of voter i’s least preferred alternatives in
f(R′), i.e., ∀x ∈ f(R′) : x �i m. Furthermore, let U = {x ∈ A | x �i m} and
L = A \ U . We use these sets to define R∗i : The alternatives of U are ordered
according to R′i and they are strictly preferred to all alternatives in L. Furthermore,
the alternatives of L are ordered according to Ri. Formally,
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R∗i = R′i|U ∪ Ri|L ∪ {(x, y) | x ∈ U, y ∈ L} .

As next step, we explain why the equation f(R′) = f(R∗) is true. For this reason,
we consider the auxiliary profile Raux1 = (R′−i, R

aux1
i ) in which the preference of

voter i is defined as

Raux1
i = R′i|U ∪ R′i|L ∪ {(x, y) | x ∈ U, y ∈ L} .

Observe that f(R′) = f(Raux1) since we can use set-monotonicity to weaken the
alternatives in L in the preference R′i until we arrive at Raux1

i . Moreover, it holds
that f(Raux1) = f(R∗) as we can apply independence of unchosen alternatives to
Raux1
i to reorder the alternatives of L in Raux1

i according to R∗i . Thus, independence
of unchosen alternatives and set-monotonicity imply that f(R′) = f(Raux1) = f(R∗).

Furthermore, we show that f(R) = f(R∗). It is important for the proof of this
equivalence that f(R′) P̂i f(R) implies that |f(R) ∩ f(R′)| ≤ 1. This observation
results in a case distinction with respect to the size of f(R) ∩ f(R′). First, we
assume that f(R)∩ f(R′) = ∅. In this case, voter i can directly apply independence
of unchosen alternatives to reorder the alternatives in U in the same way as in R∗i .
The reason for this is that it holds before and after this change that y �i x for all
x ∈ f(R), y ∈ U . It follows that f(R) = f(R∗) = f(R′), which contradicts the
initial assumption of f(R′) P̂i f(R).

For the second case, we assume that there is an alternative m in f(R) ∩ f(R′).
Note that this alternative satisfies that m �i x for all x ∈ f(R) and y �i m for all
y ∈ f(R′). Otherwise, there are alternatives x ∈ f(R), y ∈ f(R′), x 6= y, such that
x �i y contradicting that f(R′) P̂i f(R). We use this fact to define an auxiliary
preference profile Raux2 with Raux2

−i = R−i and f(R) = f(Raux2) = f(R∗). Formally,
we define Raux2

i as

Raux2
i = R′i|U\{m} ∪ Ri|L∪{m} ∪ {(x, y) | x ∈ U \ {m}, y ∈ L ∪ {m})} .

It follows from independence of unchosen alternatives that f(R) = f(Raux2) because
we only reorder the alternatives U \ {m} in Ri. Next, observe that Raux2

i and
R∗i only differ in the position of alternative m. Hence, we can now apply set-
monotonicity to move m up in the preference Raux

i until we reach R∗i . This implies
that f(R) = f(Raux2) = f(R∗) = f(R′), which is a contradiction to f(R′) P̂i f(R).
Consequently, f is P̂ -strategyproof.

Finally, we show that R∗i is also element of D. This claim follows from the same
argument as presented in the proof of Theorem 2.2: It holds that x �∗i y if and only
if x �′i y for all x, y ∈ U and that x �∗i y if and only if x �i y for all x ∈ A, y ∈ L.
Thus, it is easy to see that R∗i ∈ D because D is a comprehensive domain. �

As a consequence of this theorem, there are many P̂ -strategyproof social choice
functions in the weak domain. For instance, it has been shown in [BBH18] that
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R1 :

1 1 1
a a b
c c d
d d c
b b a

R2 :

1 1 1
a a b
c c c
d d d
b b a

Figure 2.3: Preference profiles used to show that f3 does not satisfy independence
of unchosen alternatives

every tournament solution that is set-monotonic in the strict domain can be gener-
alized with the conservative extension to the weak domain while maintaining set-
monotonicity. Together with Theorem 2.4, this implies that many tournament so-
lutions, such as the bipartisan set and the top cycle, can be generalized to social
choice functions that are P̂ -strategyproof in the weak domain. This observation is
remarkable as P̂ -strategyproofness is only slightly weaker than P̃ -strategyproofness,
but it is a consequence of theorem 2 in [BSS] that no tournament solution is both
Pareto-optimal and P̃ -strategyproof.

Finally, we consider set-monotonicity paired with P̃ -strategyproofness in the weak
domain. In this domain, it is easy to show that these two axioms are independent.
It is obvious that P̃ -strategyproofness does not imply set-monotonicity. For the
other direction, we consider the Condorcet-rule. This social choice function picks
the Condorcet winner if there is one; otherwise, it returns all alternatives. This
rule is not P̃ -strategyproof in the weak domain as shown in [BB11], but it is set-
monotonic: If all alternatives are picked, set-monotonicity does not allow for any
change. If the Condorcet winner is chosen, this alternative clearly stays the winner
if a voter reinforces it or reorders unchosen alternatives. As set-monotonicity implies
P̂ -strategyproofness also in the strict domain, it seems more accurate to state that
set-monotonicity implies P̂ -strategyproofness instead of P̃ -strategyproofness.

Furthermore, observe that no implication in this section can be inverted. We con-
sider the social choice function f3 that is a variation of the OMNI-rule in order to
prove this claim. The OMNI-rule returns all alternatives that are first-ranked by at
least one voter. The SCF f3 does the same unless every voter prefers an alternative
in {a, b} uniquely the most, both a and b are at least once first-ranked and every
voter prefers c uniquely second most. For such profiles, f3 returns {a, b, c}. This rule
violates independence of unchosen alternatives if there are at least 4 alternatives as
f3(R

1) = {a, b} and f3(R
2) = {a, b, c} where the profiles R1 and R2 are shown in

Figure 2.3. This contradicts independence of unchosen alternatives and therefore,
neither weak set-monotonicity nor set-monotonicity are satisfied by f3. However,
it is easy to check that the SCF f3 is P̃ -strategyproof. Even more, Theorem 4.1
discussed in a subsequent chapter provides a simple criterion which can be used to
prove the P̃ -strategyproofness of f3 with the help of the OMNI-rule. Thus, there
is a P̃ -strategyproof social choice function that violates independence of unchosen
alternatives and therefore, no result of this section can be inverted.
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2.3 Generalizations to the Intransitive Domain

In the following, we discuss generalizations of the theorems presented in the last
section to the intransitive domain. This domain is only rarely considered in the
literature as the absence of transitivity makes many theorems invalid. Neverthe-
less, we show that variants of Theorem 2.2 and Theorem 2.4 are also true in the
intransitive domain. However, we require the complete intransitive domain instead
of discussing comprehensive subsets.
We start the discussion of our results by generalizing Theorem 2.2. Note that even
though Theorem 2.5 and its proof seem similar to this theorem, there are many
important differences. For instance, we require the complete intransitive domain
instead of a comprehensive subset for the following result.

Theorem 2.5. Every weakly set-monotonic social choice function defined on the
intransitive domain is P̄ -strategyproof.

Proof: Assume for contradiction that there is a social choice function f : In 7→ 2A\∅
that is weakly set-monotonic but not P̄ -strategyproof. Thus, there are preference
profiles R,R′ ∈ In and a voter i ∈ N such that R−i = R′−i and f(R′) P̄i f(R). Note
that the definition of P̄ -strategyproofness implies that f(R′)∩f(R) = ∅ and that all
alternatives in f(R′) are strictly preferred to those in f(R) by voter i. Hence, we can
derive a contradiction by constructing a preference profile R∗ such that R∗−i = R−i
and f(R) = f(R∗) ⊆ f(R′). Therefore, we define R∗i as follows:

R∗i = R′i|f(R′) ∪Ri|A\f(R′) ∪ {(x, y) | x ∈ f(R′), y ∈ A \ f(R′)} .

Observe that f(R) = f(R∗) holds because we can apply independence of unchosen
alternatives to reorder the preferences of voter i that involve alternatives in f(R′).
More precisely, for every x ∈ f(R′), y ∈ A \ f(R′) with x �i y we change the
preference to y �i x and we order the alternatives in f(R′) according to R′i. None
of these modifications involves an element of f(R) because x �i y is true for all x ∈
f(R′), y ∈ f(R); otherwise, f(R′) is no P̄ -improvement over f(R). As a consequence,
it follows that f(R) = f(R∗).
Finally, we explain why f(R∗) ⊆ f(R′) is true. Note for this that we can switch
from x �i y to y �i x for all x ∈ A \ f(R′), y ∈ f(R′) while ensuring that no
unchosen alternatives becomes chosen because of weak set-monotonicity. It also
suffices to make only these modifications since the preference of voter i is allowed
to be intransitive. This leads to an auxiliary preference profile Raux = (R′−i, R

aux
i )

such that f(Raux) ⊆ f(R∗) and the alternatives in f(R′) are strictly preferred to all
other alternatives. Formally, Raux

i is defined as

Raux
i = R′i|f(R′) ∪ R′i|A\f(R′) ∪ {(x, y) | x ∈ f(R′), y ∈ A \ f(R′)} .

Next, we can apply independence of unchosen alternatives to reorder the alternatives
in A \ f(R′) in the preference Raux

i according to Ri. After this step, we arrive at R∗i
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and therefore, it results from independence of unchosen alternatives and weak set-
monotonicity that f(R∗) = f(Raux) ⊆ f(R′). This contradicts the initial assumption
of f(R′) P̄i f(R). Thus, this assumption is wrong and f is P̄ -strategyproof. �

Note that the proof of Theorem 2.2 cannot be used to show Theorem 2.5 as the latter
result works in the intransitive domain. For showing the result in the weak domain,
we have defined the set U containing all alternatives that are weakly preferred
to voter i’s least preferred alternative in f(R′). Furthermore, it is important for
deriving the preference R∗i that voter i prefers every alternative in U strictly to
every alternative in f(R). However, it might happen that there is an alternative x
that voter i prefers to his worst alternative in f(R′) and an alternative y ∈ f(R)
with y �i x as his preference can be intransitive. Hence, we have to modify a
preference involving a chosen alternative to go from Ri to R∗i and consequently,
weak set-monotonicity does not relate the choice sets f(R) and f(R∗). However,
this is only possible if we allow intransitive preferences as otherwise all alternatives
in U are strictly preferred to those in f(R).
The same problem occurs if we try to generalize Theorem 2.4 to the intransitive
domain without adapting the proof. Therefore, we provide another argument similar
to the one presented in the proof of Theorem 2.5 which shows that set-monotonic
social choice functions are P̂ -strategyproof in the intransitive domain.

Theorem 2.6. Every set-monotonic social choice function defined on the intransi-
tive domain is P̂ -strategyproof.

Proof: Assume for contradiction that there is a social choice function f : In 7→ 2A\∅
that is set-monotonic but not P̂ -strategyproof. Thus, there are preference profiles
R,R′ ∈ In and a voter i ∈ N such that R−i = R′−i and f(R′) P̂i f(R). We
construct in the sequel a preference profile R∗ such that R−i = R∗−i = R′−i and

f(R) = f(R∗) = f(R′), which contradicts that f(R′) P̂i f(R). Therefore, we define
R∗i as

R∗i = R′i|f(R′) ∪ Ri|A\f(R′) ∪ {(x, y) | x ∈ f(R′), y ∈ A \ f(R′)} .

Next, we show that f(R′) = f(R∗). For proving this equality, we use set-monotoni-
city to switch for all alternatives x ∈ f(R′), y ∈ A \ f(R′) with y �i x to x �i y in
the preference R′i . It suffices to make only these modifications as voter i’s preference
is allowed to be intransitive. This step leads to an auxiliary preference profile Raux1

such that Raux1
−i = R′−i and all alternatives in f(R′) are preferred to those in A\f(R′)

in Raux1
i . Formally, Raux1

i is defined as

Raux1
i = R′i|f(R′) ∪ R′i|A\f(R′) ∪ {(x, y) | x ∈ f(R′), y ∈ A \ f(R′)} .

As we apply set-monotonicity to derive the preference Raux1
i from R′i, it follows

that f(R′) = f(Raux1). Thereafter, we reorder the alternatives in A \ f(R′) in the
preference Raux1

i according to Ri, which results in R∗i . As we only change preferences
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between unchosen alternatives, it follows from independence of unchosen alternatives
that f(R′) = f(Raux1) = f(R∗).
Finally, we discuss why f(R) = f(R∗) is true. For proving this equality, it is
important that |f(R) ∩ f(R′)| ≤ 1, which follows directly form the definition of
P̂ -strategyproofness. This observation leads to a case distinction on the size of the
intersection of the choice sets. First, assume that f(R) ∩ f(R′) = ∅. In this case,
it follows for all x ∈ f(R) and y ∈ f(R′) that y �i x as otherwise f(R′) is no
P̂ -manipulation to f(R). Thus, we can use independence of unchosen alternatives
to reorder the alternatives in f(R′) in the preference Ri according to R′i and to
switch from x �i y to y �i x for all pairs of alternatives x ∈ A \ f(R′), y ∈
f(R′). After applying these modifications, we arrive at R∗i and as no change involves
an alternative in f(R), it follows from independence of unchosen alternatives that
f(R) = f(R∗) = f(R′). However, this contradicts f(R′) P̂i f(R) and therefore, f is
not P̂ -manipulable in this case.
For the next case, assume that f(R) ∩ f(R′) = {m} for an alternative m ∈ A.
Observe that for all x ∈ f(R′) \ {m} and y ∈ f(R) \ {m}, it holds that x �i m,
m �i y and x �i y. Otherwise, there are alternatives x ∈ f(R′) and y ∈ f(R),
x 6= y, such that y �i x, which contradicts that f(R′) P̂i f(R). Thus, we can use
the auxiliary profile Raux2 = (R−i, R

aux2
i ) in which voter i prefers all alternatives in

U = f(R′) \ {m} strictly to those in L = A \ U , the alternatives in U are ordered
according to R′i and the alternatives in L are ordered according to Ri. Formally,
Raux2
i is defined as follows.

Raux2
i = R′i|U ∪ Ri|L ∪ {(x, y) | x ∈ U, y ∈ L}

Observe that we can derive Raux2
i from Ri by applying independence of unchosen

alternatives as no preferences involving alternatives in f(R) are changed. This means
that f(R) = f(Raux2). Moreover, note that R∗i and Raux

i only differ from each other
in the preferences involving m. Hence, we can apply set-monotonicity to switch all
preferences with x �i m to m �i x for all x ∈ A \ f(R′). This step does not involve
any alternatives in f(R) \ {m} as m �i x holds for all x ∈ f(R) \ {m} in Ri and
Raux2
i . Thus, we can deduce R∗i from Raux2

i by applying set-monotonicity, which
implies that f(R) = f(R∗) = f(R′). This contradicts the initial assumption stating
that f(R′) P̂i f(R) and therefore, it follows that f is P̂ -strategyproof. �

A consequence of the last theorem is that many tournament solutions are even in
the intransitive domain P̂ -strategyproof. The reason for this is that the conservative
extension can also be applied to intransitive preferences [BBH18]. Thus, it follows
from Theorem 2.6 that many social choice functions, such as generalizations of the
bipartisan set and the top cycle, are even in the intransitive domain P̂ -strategyproof.
To the best of our knowledge, the theorems in this section are the first results dis-
cussing strategyproofness in the intransitive domain. Note that the results are also
rather surprising as positive theorems on strategyproofness often turn into impossi-
bility results if we try to generalize them from the strict domain to the weak domain.
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In contrast, it seems that generalizing social choice functions from the weak domain
to the intransitive one maintains many positive results such as the theorems dis-
cussed in this section. Thus, the intransitive domain does not appear to be more
difficult to handle than the weak one with respect to strategyproofness.

2.4 Generalizations to Group-Strategyproofness

In this section, we discuss a natural extension of strategyproofness called group-
strategyproofness. While our standard definition of strategyproofness is only con-
cerned with a single voter, group-strategyproofness asks whether an arbitrarily large
group of voters can manipulate. This leads to the question whether the implications
presented in the previous sections also hold for this stronger variant of strategy-
proofness. As we show in the sequel, every result presented in the previous two
sections is true for the corresponding version of group-strategyproofness.
For proving this claim, we formally introduce group-strategyproofness first. This
term has first been discussed in [Bra11] and informally, a social choice function is
group-strategyproof if no group of voters can lie about their preferences such that
the outcome of an election is for every voter in the group preferable to the outcome
before the manipulation. As usual, we use set extensions to define which sets a voter
considers as preferable to the current choice set. This leads to the following formal
definition.

Definition 2.7 (Group-Strategyproofness). Consider an arbitrary set extension
P. A social choice function f is P-group-strategyproof if there are no preference
profiles R, R′ and a non-empty subset of voters I ⊆ N such that R−I = R′−I and
f(R′) Pi f(R) for all voters i ∈ I.

Next, we present a short example illustrating the difference between strategyproof-
ness and group-strategyproofness. For this reason, consider the profiles R1 and R2

depicted in Figure 2.4 and the social choice function OMNI that chooses all most
preferred alternatives of all voters. This social choice function is known to be P̃ -
strategyproof, i.e., it cannot be P̃ -manipulated by a single voter. However, it is easy
to see that it can be P̃ -manipulated by a group of voters. For instance, observe that
OMNI(R1) = {a, b, c, d} as every alternative is first-ranked by at least one voter.
This means that voter 3 and 4 can manipulate if they weaken c and d, which leads
to the profile R2. For this profile, OMNI returns {a, b} which is a subset of the most
preferred alternatives of these voters. This is a P̃ -group-manipulation and therefore,
OMNI is not P̃ -group-strategyproof.
It follows from this example that group-strategyproofness is indeed stronger than
strategyproofness. Thus, it is not clear whether the results discussed in Section 2.2
and Section 2.3 also hold for group-strategyproofness. However, if we consider the
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R1 :
1 1 1 1
a, b b a, b, c a, b, d
c, d a, c, d d c

R2 :
1 1 1 1
a, b b a, b a, b
c, d a, c, d c, d c, d

Figure 2.4: Preference profiles used for explaining the difference between strategy-
proofness and group-strategyproofness

proofs of the corresponding theorems, we see that we always use the same strategy:
We assume that a voter can manipulate, i.e., there are two profiles R, R′ which only
differ in the preference of a single voter. Next, we construct a third profile R∗ by
assigning a new preference to the manipulator. Finally, we derive that f(R) = f(R∗)
and that f(R∗) ⊆ f(R′) for a weakly set-monotonic SCF f , and that f(R) = f(R∗)
and that f(R∗) = f(R′) for a set-monotonic SCF f . Note that the last observations
do not rely on the fact that we go from R and R′ to the same profile R∗. Instead,
the only important point is how we change the preference of the manipulator. Thus,
it seems reasonable that we can adapt the preference of every voter of a group in a
similar way to prove group-strategyproofness.
For formalizing this idea, we introduce a new axiom called interpolation. This axiom
means that if there are two profiles R, R′ that differ in the preferences of a group
of voters I, we can find two other profiles R1 and R2 that differ in the preferences
of less voters and whose choice sets are related to R and R′. Formally, this axiom
is defined as follows.

Definition 2.8 (Interpolation). A social choice function f is interpolating if for
all preference profiles R, R′ with R−I = R′−I for a group of voters I ⊆ N there
are two profile R1 and R2 such that R1

−I′ = R2
−I′ for a group of voters I ′ ( I with

|I ′| = |I| − 1, f(R) = f(R1) and f(R2) ⊆ f(R′). Furthermore, we call a social
choice function f strongly interpolating if it is interpolating and f(R2) = f(R′).

Note that it follows directly from the proofs of Theorem 2.2 and Theorem 2.5 that
every weakly set-monotonic social choice function is interpolating on every compre-
hensive subset of the weak domain and on the intransitive domain. Furthermore,
Theorem 2.4 and Theorem 2.6 imply that set-monotonic social choice functions are
even strongly interpolating on the corresponding domains. Finally, the main theo-
rem of [Bra15] shows that set-monotonic social choice functions defined on the strict
domain are also strongly interpolating.
Our next goal is to prove that every interpolating social choice function is P̄ -
group-strategyproof and that every strongly interpolating social choice function is
P̂ -group-strategyproof. Thus, we can deduce from these statements that all previ-
ously explained results also hold for group-strategyproofness. We start the discus-
sion of these results by proving the implication between interpolation and P̄ -group-
strategyproofness.

Theorem 2.7. If a social choice function f : Dn 7→ 2A \ ∅ is interpolating on its
domain Dn, then f is P̄ -group-strategyproof.
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Proof: Consider a social choice function f : Dn 7→ 2A \ ∅ that is interpolating on
its domain Dn and assume for contradiction that f is not P̄ -group-strategyproof.
Thus, there is a non-empty set of voters I ⊆ N and two profiles R, R′ such that
R−I = R′−I and f(R′) P̄i f(R) for all voters i ∈ I. We show that there is a profile
R∗ such that R−I = R∗−I = R′−I and f(R) = f(R∗) ⊆ f(R′) by an induction on |I|.
This contradicts that f(R′) P̄i f(R) for any voter i ∈ I as the set extension P̄ can
only compare disjoint sets. Thus, it only remains to find the profile R∗.

First, we consider the induction basis assuming that |I| = 0. This assumption
implies that R = R∗ = R′ if |I| = 0 and that f(R) = f(R∗) = f(R′). Therefore, the
induction basis trivially holds. Next, we consider the induction step assuming that
|I| = k and that we can find the profile R∗ if two profiles differ only on the preferences
of k − 1 voters. Observe that there are two profiles R1, R2 such that R1

−I′ = R2
−I′

for a group of voters I ′ ( I with |I ′| = |I|−1 and f(R) = f(R1) and f(R2) ⊆ f(R′)
as f is interpolating. Thus, we can use the induction hypothesis on R1 and R2 to
deduce that there is a profile R∗ such that f(R) = f(R1) = f(R∗) ⊆ f(R2) ⊆ f(R′).
This implies that there is indeed a profile R∗ with f(R) = f(R∗) ⊆ f(R′), which
contradicts that f(R′) P̄i f(R) for all voters i ∈ I. Therefore, the initial assumption
is wrong and f is P̄ -group-strategyproof. �

As already mentioned, it follows directly from the proofs of Theorem 2.2 and The-
orem 2.5 that weakly set-monotonic social choice functions are in the weak and the
intransitive domain interpolating. Thus, we deduce the following corollary from
Theorem 2.7.

Corollary 2.1. Every weakly set-monotonic social choice function defined on a
comprehensive subset of the weak domain or on the intransitive domain is P̄ -group-
strategyproof.

Proof: We show that weakly set-monotonic social choice functions are interpolating
on the considered domains because the P̄ -group-strategyproofness follows from this
axiom and Theorem 2.7. Therefore, consider two arbitrary profiles R and R′ such
that R−I = R′−I for a non-empty set of voters I ⊆ N . Next, we choose an arbitrary
voter i ∈ I and let him change his preference in both profiles to the preference R∗i
described in the proof of Theorem 2.2 if f is defined on a comprehensive subset of
the weak domain, or to the preference R∗i discussed in the proof of Theorem 2.5
if f is defined on the intransitive domain. This leads to new profiles R1 and R2

with R1 = (R−i, R
∗
i ) and R2 = (R′−i, R

∗
i ). Furthermore, as i ∈ I, R1 and R2

only differ in the preferences of |I| − 1 voters. Finally, it follows from the same
arguments presented in proofs of Theorem 2.2 and Theorem 2.5 that f(R) = f(R1)
and f(R2) ⊆ f(R′). Consequently, f is indeed interpolating such that Theorem 2.7
implies this corollary. �

It follows from this corollary that weak set-monotonicity even implies P̄ -group-
strategyproofness on important domains such as the weak and the intransitive one.
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Furthermore, it should be stressed that the step from P̄ -strategyproofness to P̄ -
group-strategyproofness is remarkably simple as we only have to apply the con-
struction designed for a single voter inductively for a set of voters.
Therefore, it seems reasonable that we can prove similar results for set-monotonic
social choice functions. As we discuss next, set-monotonicity is closely related to
strong interpolation which implies P̂ -strategyproofness. Thus, it is indeed true that
set-monotonic social choice functions are P̂ -group-strategyproof in many important
domains such as the weak or the intransitive one.

Theorem 2.8. If a social choice function f : Dn 7→ 2A \ ∅ is strongly interpolating
on its domain Dn, then f is P̂ -group-strategyproof.

Proof: Consider a social choice function f : Dn 7→ 2A\∅ that is strongly interpolating
on its domain Dn and assume for contradiction that f is not P̂ -group-strategyproof.
Thus, there is a non-empty set of voters I ⊆ N and two profiles R, R′ such that
R−I = R′−I and f(R′) P̂i f(R) for all voters i ∈ I. We show that there is a profile
R∗ such that R−I = R∗−I = R′−I and f(R) = f(R∗) = f(R′) by an induction on

|I|. This contradicts that f(R′) P̂i f(R) for any voter i ∈ I, which means that f is
P̂ -group-strategyproof. Thus, it only remains to find R∗.
Therefore, note that if |I| = 0, then R = R∗ = R′ and f(R) = f(R∗) = f(R′).
Hence, the induction basis trivially holds. Next, consider the induction step assum-
ing that |I| = k and that there is such a profile R∗ for all profiles that only differ
in the preferences of k − 1 voters. Note that there are two profiles R1, R2 such
that R1

−I′ = R2
−I′ for a group of voters I ′ ( I with |I ′| = |I| − 1, f(R) = f(R1)

and f(R2) = f(R′) as f is strongly interpolating. Therefore, we can use the in-
duction hypothesis on R1 and R2 to deduce that there is a profile R∗ such that
f(R) = f(R1) = f(R∗) = f(R2) = f(R′). Hence, we have found R∗ for profiles R
and R′ that differ in the preferences of k voters. As f(R) = f(R∗) = f(R′), it follows
that our initial assumption is wrong and therefore, f is P̂ -group-strategyproof. �

Similar to the arguments on weak set-monotonicity and interpolation, we can show
that every set-monotonic social choice function is strongly interpolating on the weak
and the intransitive domain. Therefore, it follows that functions satisfying set-
monotonicity are even P̂ -group-strategyproof.

Corollary 2.2. Every set-monotonic social choice function defined on a comprehen-
sive subset of the weak domain or on the intransitive domain is P̂ -group-strategy-
proof.

Proof: We prove that set-monotonicity implies strong interpolation on comprehen-
sive subsets of the weak domain and on the intransitive domain. Then, this corollary
follows from Theorem 2.8. Thus, consider an arbitrary set-monotonic social choice
function f and two profiles R, R′ such that R−I = R′−I for a non-empty set of voters
I ⊆ N . We show how to find the profiles R1 and R2 such that R1

−I′ = R2
−I′ for a

group of voters I ′ ( I with |I ′| = |I|−1, f(R) = f(R1) and f(R2) = f(R′). For this
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reason, consider an arbitrary voter i ∈ I and let R∗i denote the preference discussed
in the proof of Theorem 2.4 if f is defined on a comprehensive subset of the weak
domain, or the preference discussed in the proof of Theorem 2.6 if f is defined on
the intransitive domain. We set R1 = (R−i, R

∗
i ) and R2 = (R′−i, R

∗
i ) and observe

that these profiles only differ in the preferences of voters in I \ {i}. Furthermore, it
follows from the arguments presented in the proofs of Theorem 2.4 and Theorem 2.6
that f(R1) = f(R) and f(R2) = f(R′). Thus, we derive from Theorem 2.8 that f
is P̂ -strategyproof on its domain. �

As a consequence of this theorem, it follows that many important social choice
functions are even P̂ -group-strategyproof. For instance, many tournament solu-
tions, such as the bipartisan set or the top cycle, can be generalized to the weak
and even to the intransitive domain with the help of the conservative extension
while maintaining the set-monotonicity of these functions. Thus, there are P̂ -group-
strategyproof social choice functions in these domains. Furthermore, note that P̂ -
group-strategyproofness is equal to P̃ -group-strategyproofness on the strict domain
and therefore, it follows from this result that set-monotonic social choice functions
defined on a comprehensive subset of the strict domain are P̃ -group-strategyproof.
This proves the third remark in [Bra15].
Furthermore, it should be mentioned that the implications in this section are not
invertible. This claim follows from analyzing the social choice function f3 which has
been used at the end of Section 2.2 to prove that the results of this section are not
invertible. The main problem is that social choice functions with large choice sets are
often P̂ - or even P̃ -group-strategyproof while violating independence of unchosen
alternatives.
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Chapter 3

Rank-based Social Choice
Functions

Social choice functions are often categorized by their behavior. This approach leads
to different classes of social choice functions such as tournament solutions or C2-
functions. Another interesting class are rank-based social choice functions. These
social choice functions have been discussed first in [Las96]. However, after this pub-
lication, rank-based rules have not been considered in the literature anymore and
therefore, almost no results are known yet. Nevertheless, there are many important
rank-based social choice functions such as scoring rules. Thus, we analyze these
functions in detail. In particular, we focus on three goals in this chapter: Firstly, we
introduce various classes of rank-based social choice functions that seem interesting
because of their properties. We discuss different ideas for designing these functions
with the hope to stimulate further research on rank-based social choice functions.
Secondly, we provide insights on the P̃ -strategyproofness of rank-based social choice
functions by analyzing the introduced rules thoroughly. Thirdly, we suggest exten-
sions of rank-based social choice functions to the weak domain. This is necessary
as rank-based social choice functions have hitherto only been defined in the strict
domain.

For achieving these goals, we first provide a short introduction to rank-based social
choice functions in Section 3.1. After that, we analyze various classes of rank-
based social choice functions with respect to P̃ -strategyproofness in Section 3.2
and Section 3.3. Finally, we discuss various extensions of rank-based social choice
functions to the weak domain in Section 3.4 and we derive an impossibility result
stating that none of these approaches leads to a P̃ -strategyproof, Pareto-optimal
and rank-based social choice function in the weak domain.

3.1 Introduction to Rank-based Social Choice
Function

In this section, we formally introduce rank-based social choice functions as we need
a strong understanding of these rules in the subsequent sections. It should be men-
tioned that rank-based social choice functions have only been introduced for the
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strict domain in [Las96]. Therefore, we focus first in all sections but the last one on
the strict domain.
As we want to discuss rank-based social choice functions, we first define the rank
of an alternative. Intuitively, the rank of an alternative in the preference of a voter
states how much a voter prefers this alternative, i.e., if alternative a is the i-th most
preferred alternative of a voter, it has rank i. Since we work in the strict domain, this
approach assigns a unique rank to each alternative. A formal definition is presented
in the sequel.

Definition 3.1 (Rank of an alternative). The rank of an alternative a ∈ A in
the preference Ri ∈ S of voter i is defined as r(Ri, a) = 1 + |{b ∈ A | b �i a}|.

Given the rank of every alternative with respect to every voter, we can reconstruct
the preference profile. Therefore, only working with the ranks does not restrict the
set of possible social choice functions. Hence, we consider the ranks of an alternative
with respect to all individual voters and sort them in ascending order. This idea
leads to the rank vector of an alternative.

Definition 3.2 (Rank vector of an alternative). The rank vector of alternative
a in the profile R ∈ Sn is defined as r∗(R, a) = (r(Ri1 , a), r(Ri2 , a), ..., r(Rin , a)),
where r(Ri1 , a) ≤ r(Ri2 , a) ≤ ... ≤ r(Rin , a).

Note that a key idea of rank vectors is that they are ordered, i.e., v1 ≤ v2 ≤ ... ≤ vn
if v is a rank vector. We always assume this property throughout this chapter
implicitly, even for vectors that are no rank vectors. Furthermore, observe that
ordering the entries in a rank vector ensures anonymity as it is no longer possible
to find out the individual preferences of a voter. However, a single rank vector is
usually insufficient to decide which alternatives are in the choice set. Therefore, we
consider all rank vectors simultaneously, which leads to the rank matrix.

Definition 3.3 (Rank matrix). The rank matrix of the preference profile R ∈ Sn
is defined as

r∗(R) =


r∗(R, a1)
r∗(R, a2)

...
r∗(R, am)

 .

The rank matrix contains the rank vectors of all alternatives as rows. It is usually
not possible to associate a rank matrix with a unique preference profile. Instead,
many profiles can have the same rank matrix. Even more, we cannot reconstruct the
preference of a single voter from the rank matrix as it is not clear which voter assigns
which rank to an alternative. Thus, the rank matrix disregards information about
its original preference profile. Nevertheless, the ranks of the alternatives are often
sufficient to decide the winners of an election. This is the main idea of rank-based
social choice functions which only rely on the rank matrix to compute the choice
set.
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R1 :

1 1 1
b b d
a c c
d d b
c a a

R2 :

1 1 1
b b d
c c a
d d b
a a c

Figure 3.1: Preference profiles used for explaining rank-basedness

Definition 3.4 (Rank-based social choice functions). A social choice function
f : Sn 7→ 2A\∅ is rank-based if it only depends on the rank matrix, i.e., f(R) = f(R′)
for all preference profiles R,R′ ∈ Sn with r∗(R) = r∗(R′).

Before we discuss properties of rank-based social choice functions, we first provide
an example which illustrates all previous definitions. Thus, consider the preference
profiles R1 and R2 shown in Figure 3.1. If we compute the rank of alternative c
in R1 for every voter, we obtain that r(R1

1, c) = 4, r(R1
2, c) = 2 and r(R1

3, c) = 2.
This means that r∗(R1, c) = (2, 2, 4). If we repeat this for all alternatives and both
profiles, we obtain that

r∗(R1) = r∗(R2) =


2 4 4
1 1 3
2 2 4
1 3 3

 .

Thus, every rank-based social choice function f satisfies that f(R1) = f(R2).
This example shows that different preference profiles can have the same rank matrix.
Additionally, we can observe that rank-based social choice functions cannot be based
on the majorities between alternatives anymore. The reason for this is simple: We
do not know how an individual voter ranks the alternatives and therefore, we cannot
recompute the majorities. This is also the case in the example: While c is preferred
to b by the third voter in R1, c is Pareto-dominated by b in R2. Hence, the social
choice functions satisfying Fishburn’s C2 [Fis77] are almost never rank-based. Note
that many well-established social choice functions satisfy C2, such as tournament
solutions and many variants of the Pareto-rule. Even more, this example shows that
many rank-based social choice functions violate desirable axioms based on majorities
such as Pareto-optimality and Condorcet-consistency.
Nevertheless, there are also some well-known rank-based social choice functions.
One of the most prominent examples is Borda’s rule which has been designed in the
19th century [Bor81]. This rule gives an alternative m− i points for every voter who
ranks it at position i and chooses the alternatives with maximal score as winners.
Borda’s rule can be generalized to the well-established class of scoring rules. These
rules give an alternative si points for every voter who ranks it at position i and
choose the alternatives with maximal score as winners. Another important rank-
based social choice function is the OMNI-rule which chooses all alternatives that
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are first-ranked by at least one voter. This rule is particularly interesting as is
P̃ -strategyproof [Gär76].
In the following sections, we discuss on the one hand these well-established rank-
based SCFs. On the other hand, we also design new approaches for defining rank-
based social choice functions such as independent rank-based SCFs. These functions
decide for every alternative whether it is in the choice set only based on its own
rank vector. The beauty of this approach is that we completely avoid comparing
alternatives which each other, which makes these social choice functions easy to
analyze and efficient to compute. Furthermore, these rules are used in practice as
they model hurdles such as the five-percent hurdle used in German elections. We
discuss independent rank-based social choice functions in more detail in Section 3.2.
Note that we can think of many more approaches for defining rank-based social
choice functions. However, these rules do not show so clear characteristics as inde-
pendent rank-based SCFs. Therefore, we simply refer to all rank-based social choice
functions that are not independent ones as general rank-based social choice func-
tions. These rules are analyzed in Section 3.3 where we discuss various interesting
subclasses of general rank-based social choice functions. The goal is to characterize
P̃ -strategyproof social choice functions or to find simple criteria that prove that a
social choice function is P̃ -manipulable.

3.2 Independent Rank-based Social Choice
Functions

In this section, we discuss independent rank-based social choice functions. These
rules form an interesting subclass of rank-based social choice functions and decide
whether an alternative is in the choice set only based its own rank vector. This
idea makes independent rank-based SCFs easy to handle and efficient to compute.
Furthermore, these social choice functions are used in practice. For instance, the
five-percent hurdle used in German elections implements this approach. Formally,
these social choice functions are defined by the following axiom called independence
of ranks of other alternatives.

Definition 3.5 (Independence of ranks of other alternatives). A social choice
function f : Sn 7→ 2A \ ∅ satisfies independence of ranks of other alternatives if
a ∈ f(R) implies that a ∈ f(R′) for all alternatives a ∈ A and preference profiles
R,R′ ∈ Sn with r∗(R, a) = r∗(R′, a).

It follows from this definition that for every independent rank-based social choice
function f and alternative a ∈ A, there is a decision function ga that takes the rank
vector of a as input and returns 1 if and only if a is in the choice set; otherwise ga
returns 0. For instance, the decision function ga of the OMNI-rule only checks for
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every alternative a if the first entry of its rank vector is equal to 1. This view on
independent rank-based social choice functions is sometimes helpful for formalizing
observations.
As consequence of the previous observation, it follows that OMNI is an indepen-
dent rank-based social choice function. Even more, there are many interesting rules
within this class. Therefore, we discuss social choice functions satisfying indepen-
dence of ranks of other alternatives in Section 3.2.1. Unfortunately, it turns out
that only few of them are P̃ -strategyproof. Thus, we thoroughly analyze indepen-
dent rank-based social choice functions with respect of P̃ -strategyproofness in Sec-
tion 3.2.2. This leads to a characterization of the OMNI-rule based on independence
of ranks of other alternatives and P̃ -strategyproofness.

3.2.1 Threshold Rules and Multi-Threshold Rules

In this section, we introduce two large classes of independent rank-based social choice
functions: Threshold rules and multi-threshold rules. We provide characterizations
for both classes that show that almost all reasonable independent rank-based social
choice functions are threshold rules or multi-threshold rules.
The rough intuition of threshold rules and multi-threshold rules is that of a hurdle:
An alternative is chosen if its rank vector is good enough. For mathematically
formalizing this intuition, we have to define a way on evaluating how good a rank
vector is. For this reason, we introduce a dominance relation that allows to compare
vectors.

Definition 3.6 (Dominance relation on vectors). A vector u = (u1, u2, ..., un)
dominates another vector v = (v1, v2, ..., vn), denoted by u D v, if ui ≤ vi for all
i ∈ {1, 2, ..., n}.

This definition states that a vector u dominates another vector v if no entry ui is
larger than the corresponding entry vi. It is obvious that this dominance relation is
incomplete, transitive and anti-symmetric. Incompleteness is very difficult to avoid
by transitive relations on vectors, whereas the latter two properties are required for a
reasonable quality measure on vectors. Furthermore, the chosen dominance relation
is rather simple to handle and still strong enough to prove various interesting results.
Because of these reasons, we focus on this relation even though different methods
for comparing vectors exist.
With the help of this dominance relation, we formalize the intuition of threshold
rules and multi-threshold rules next.

Definition 3.7 (Threshold rules). A social choice function f : Sn 7→ 2A \ ∅
is a threshold rule if there is an ordered vector v ∈ {1, 2, ...,m}n called threshold
vector such that a ∈ f(R) if and only if r∗(R, a) D v for all alternatives a ∈ A and
preference profiles R ∈ Sn.
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It follows from this definition that threshold rules deem an alternative good enough
to be chosen if its rank vector dominates the threshold vector. Many social choice
functions used in practice implement this idea, for instance the five-percent hurdle.
Furthermore, the OMNI-rule which chooses all first-ranked alternatives is also a
threshold rule defined by the vector v = (1,m, ...,m).
Next, we generalize threshold rules to multi-threshold rules. These social choice
functions are defined by a set of threshold vectors instead of a single one and an
alternative is chosen if its rank vector dominates at least one of these threshold
vectors. The main motivation for introducing these rules is that many rank vectors
seem equally good but are often not comparable with respect to the dominance rela-
tion. This means that threshold rules often do not choose alternatives even though
their rank vector seems intuitively better than the threshold vector. This problem
can be solved by using multiple threshold vectors because this allows to define more
precisely which rank vectors suffice to include the corresponding alternatives in the
choice set.

Definition 3.8 (Multi-threshold rules). A social choice function f : Sn 7→ 2A\∅
is a multi-threshold rule if there is a set of threshold vectors V = {v1, v2, ..., vk} such
that a ∈ f(R) if and only if there is a vector vi ∈ V with r∗(R, a) D vi for all
alternatives a ∈ A and preference profiles R ∈ Sn.

Note that we can assume without loss of generality that no vectors in V can be
compared by the dominance relation. This assumption is valid as an alternative
is chosen if its rank vector dominates a single vector v ∈ V . If there are vectors
v1, v2 ∈ V with v1 D v2, then it follows from the transitivity of the domination
relation that if r∗(R, a)D v1, then also r∗(R, a)D v2. Thus, we can remove the vector
v1 from V without changing the corresponding social choice function. Furthermore,
observe that every threshold rule is a multi-threshold rule whose set of threshold
vectors contains only a single element.
Next, we illustrate threshold rules and multi-threshold rules with the example shown
in Figure 3.2. In this figure the preference profiles R1 and R2 and their corresponding
rank matrices are displayed. Moreover, consider the threshold rule f1 defined by the
vector v1 = (2, 3, 4, 4, 5). It follows that f1(R

1) = {b, c, d, e}. However, note that
r∗(R1, b), r∗(R1, c) and r∗(R1, e) dominate r∗(R1, d). Thus, a threshold rule that
only chooses {b, c, e} for R1 seems interesting. Unfortunately, it is not possible for a
threshold rule to choose this set as the rank vectors of b and c are not comparable and
therefore, one of them is excluded if we choose a more restrictive threshold vector.
We can fix this by using a multi-threshold rule. For instance, consider the multi-
threshold rule f2 defined by the set V2 = {(2, 3, 3, 4, 5), (1, 3, 4, 4, 5)} and note that
f2(R

1) = {b, c, e}. Another critique on the social choice functions f1 and f2 is that
they do not choose a in R1 even though it is the Condorcet winner. Even more, b is
chosen even though it is Pareto-dominated by a. Hence, a more restrictive threshold
rule seems interesting. For instance, consider the threshold rule f3 defined by the
vector v3 = (1, 3, 3, 5, 5). It holds that f3(R

1) = {a, e}, which seems more desirable
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R1 :

1 1 1 1 1
c e a a a
d b e e e
e d c b b
b c d d c
a a b c d

R2 :

1 1 1 1 1
c b b a a
e e e e c
d d d d e
b c c c d
a a a b b

r∗(R1) =


1 1 1 5 5
2 3 3 4 5
1 3 4 5 5
2 3 4 4 5
1 2 2 2 3

 r∗(R2) =


1 1 5 5 5
1 1 4 5 5
1 2 4 4 4
3 3 3 3 4
2 2 2 2 3


Figure 3.2: Preference profiles used for explaining threshold rules

than the outcome of the previous two functions. However, observe that f3(R
2) = ∅

as no rank vector dominates v3. Thus, the vector v3 does not even define a proper
social choice function. We can fix this problem by using a multi-threshold rule. For
instance, the multi-threshold rule f4 defined by V4 = {(1, 3, 3, 5, 5), (2, 3, 3, 4, 4)} is
a feasible social choice function. Furthermore, f4(R

1) = {a, e} and f4(R
2) = {e}

and therefore, f4 seems to select reasonable choice sets.

Our next goal is to analyze a problem observed in the previous example: Not every
vector defines a proper threshold rule. Unfortunately, it seems that there is no simple
mathematical criterion for deciding whether a vector defines a feasible threshold
rule. Therefore, we design Algorithm 1 which decides this problem efficiently with
a greedy approach. If a vector does not define a feasible threshold rule f , then
this algorithm constructs a preference profile R such that f(R) = ∅ and it returns
false. If no such profile exists, then the algorithm returns true indicating that f is
a feasible social choice function.

The main idea of this algorithm is to ensure that, given an ordered vector v, as
many alternatives as possible are not chosen while minimizing for each alternative
the number of voters that place it at a position with large rank. For defining this
formally, we introduce the violation index l(R, a) that denotes for a preference profile
R and an alternative a ∈ A the largest index i such that r∗(R, a)i > vi; if there is
no such index i, then l(R, a) = 0. Hence, the formal goal of the algorithm is to find
a preference profile R∗ that maximizes |{a ∈ A | l(R∗, a) ≥ i}| for every index i.

To achieve that goal, Algorithm 1 iterates over all alternatives and maximizes the vi-
olation index l(R, a) for every alternative individually. As only the indices i ≥ l(R, a)
are relevant for determining the violation index, this maximization is achieved by
placing an alternative repeatedly at a position with maximal rank until it cannot
dominate the vector v anymore. Therefore, the algorithm places the current alter-
native a at the position with the highest available rank. If there are multiple such
positions, we choose the left-most one. This is repeated until the alternative a can-
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Iteration 1:

R :

1 1 1 1 1

a a

Iteration 2:

R :

1 1 1 1 1

a a b b

Iteration 3:

R :

1 1 1 1 1

c c
a a b b c

Iteration 4:

R :

1 1 1 1 1

c c d d d
a a b b c

Iteration 5:

R :

1 1 1 1 1

e e e e e
c c d d d
a a b b c

Filling the remaining
positions arbitrarily

R :

1 1 1 1 1
d d c c a
b b a a b
e e e e e
c c d d d
a a b b c

Figure 3.3: Example for Algorithm 1 with A = {a, b, c, d, e}, n = 5, v = (1, 3, 3, 4, 5)

not be chosen anymore, i.e., until there is an index la such that r∗(R, a)la > vla , or
until every voter has placed this alternative and it is still chosen. The latter case
means that a cannot be removed from the choice set anymore, which implies that
v defines a feasible threshold rule. This procedure fills the rank vector of an alter-
native from the right since we always add the largest possible entry. It follows from
this observation that this procedure leads indeed to the largest violation indices.

Note that after iterating over all alternatives, usually not all positions in R are used.
The remaining positions in R can be filled arbitrarily because they do not influence
the outcome of the algorithm. If the considered vector v does not define a feasible
threshold rule, no alternative can be chosen anymore in R regardless of how the free
positions are filled.

In Figure 3.3, an example for the execution of Algorithm 1 is provided. For the
example we choose A = {a, b, c, d, e}, n = 5 and v = (1, 3, 3, 4, 5). We always
display the profile that is constructed during the exeuction of the algroithm after an
alternative is removed from the choice set. Observe that we only have to ensure that
the rank vector for every alternative does not dominate the vector v = (1, 3, 3, 4, 5).
This is achieved for alternatives a and b since r∗(R, a)4 = r∗(R, b)4 = 5 > 4 = v4,
for alternatives c and d since r∗(R, c)3 = r∗(R, d)3 = 4 > 3 = v3 and for alternative
e since r∗(R, e)1 = 3 > 1 = v1. Thus, it follows that the vector v does not define a
feasible threshold rule.

After discussing Algorithm 1 in detail, we prove its correctness, i.e., we show that an
ordered vector v defines a feasible threshold rule if and only if the algorithm returns
true.
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input : A threshold vector v, a set of alternatives A and the number of
voters n

output: true if v defines a feasible threshold rule for A and n; false
otherwise

m← |A|
c← m // number of alternatives that can still be chosen

x← 1 // pointer to the current voter (=column of R)

y ← m // pointer to the current rank (=row of R)

for a ∈ A do
r∗(a)← zeros(m) // current approximation of rank vector of a
la = n // index of r∗(a) that is filled next

while r∗(a) D v ∧ la > 0 do
r∗(a)la = y // Update the rank vector of a
if y > vla then // Check if r∗(a) can still dominate v

c← c− 1 // a cannot be chosen anymore

end
la ← la − 1 // Update pointer to the rank vector

R(x, y)← a // Update the preference profile

x← x+ 1 // Update pointers to the preference profile

if x > n then
x← 1
y ← y − 1

end

end

end
Fill up the free position in R arbitrarily such that R is a feasible preference
profile

if c = 0 then
return false

else
return true

end

Algorithm 1: Decision procedure for the feasibility of threshold rules
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Theorem 3.1. Consider an ordered vector v, a set of alternatives A and let n
denote the number of voters. The vector v defines a feasible threshold rule on A and
n voters if and only if Algorithm 1 returns true.

Proof: Consider an arbitrary threshold vector v, the corresponding set of alternatives
A and the number of voters n. Furthermore, let f denote the threshold rule defined
by v. It is straightforward that the vector v does not define a feasible threshold
rule if Algorithm 1 returns false. The reason for this is that f(R) = ∅ for the
preference profile R constructed during the execution of Algorithm 1. This is true
as the counter c in the algorithm equals 0 after the construction of R only if there
is an index la for every alternative a ∈ A such that r∗(R, a)la > vla . Otherwise, c
is not 0 as this is the requirement for decreasing it. Thus, f(R) = ∅, which proves
that f is indeed no feasible threshold rule if Algorithm 1 returns false.

Next, we focus on the inverse direction: If there is a preference profile R′ such that no
rank vector r∗(R′, a) of an alternative a ∈ A dominates the threshold vector v, then
Algorithm 1 returns false. We prove this by showing that the preference profile R∗

constructed during the execution of Algorithm 1 leads to maximal violation indices.

Thus, consider the preference profile R∗ constructed during the execution of Al-
gorithm 1 and an arbitrary second preference profile R′. Let a1, ..., am denote the
alternatives in A ordered in decreasing order of their violation indices l(R∗, a) and
let b1, ..., bm denote the alternatives ordered in decreasing order of their violation
indices l(R′, a). We claim that l(R∗, ai) ≥ l(R′, bi) for every i ∈ {1, ...,m}. If we
assume that f(R′) = ∅ for a preference profile R′, we can deduce from this state-
ment that f(R∗) = ∅, too. The reason for this is that f(R′) = ∅ implies that the
violation index of every alternative in R′ is larger than 0. By applying our claim,
we can deduce that the violation index of every alternative in R∗ is also larger than
0, which implies that f(R∗) = ∅. This is detected by the algorithm and therefore,
it returns indeed false.

Hence, it remains to prove the claim. Therefore, assume for contradiction that there
is a preference profile R′ and an index i such that l(R′, bi) > l(R∗, ai). If there is
such an index i, we can also consider the minimal index i∗ meeting the condition,
i.e., l(R′, bi

∗
) > l(R∗, ai

∗
) and l(R′, bj) ≤ l(R∗, aj) for all j < i∗. This implies the

following inequality.

i∗−1∑
j=1

l(R′, bj) ≤
i∗−1∑
j=1

l(R∗, aj)

Furthermore, as bi
∗

satisfies r∗(R′, bi
∗
)l(R′,bi∗ ) > vl(R′,bi∗ ) and l(R′, bi

∗
) ≤ l(R′, bj) for

every j < i∗, it follows that

n(m− vi∗)−
i∗∑
j=1

n+ 1− l(R′, bj) ≥ 0 .
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We obtain this equation as there are n(m− vi∗) positions with rank larger than vi∗
and every alternative bj, j ≤ i∗, must be placed at a position with a rank larger
than vl(R′,bj) ≥ vl(R′,bi∗ ) by at least n+ 1− l(R′, bj) voters. We can deduce from the
previous inequalities that

n(m− vi∗)− n+ 1− l(R′, bi∗)−
i∗−1∑
j=1

n+ 1− l(R∗, aj) ≥ 0 .

This means that our algorithm has enough positions to remove alternative ai
∗

also
at the index l(R′, bi

∗
). Furthermore, Algorithm 1 fills up the profile from bottom

to top and therefore, an alternative is always removed with the largest possible
violation index. Hence, the initial assumption is a contradiction as l(R∗, ai

∗
) cannot

be smaller than l(R′, bi
∗
). This means that l(R∗, ai) ≥ l(R′, bi) for all preference

profiles R′ and indices i ∈ {1, ...,m}. This proves the claim and therefore also the
theorem. �

Note that we actually have the same problem for multi-threshold rules as for thresh-
old rules: Not every set of vectors defines a feasible social choice function. However,
it seems unlikely that Algorithm 1 can be extended to check whether a set of vectors
defines a feasible multi-threshold rule. Instead, we conjecture that it is NP-hard to
decide this problem. The reason for this conjecture is that the problem seems related
to scheduling problems on multiple machines with deadlines. Furthermore, many
straightforward extensions of Algorithm 1 such as greedily removing alternatives by
placing them at the positions with the least rank do not lead to a correct decision
procedure.
Observe that we can deduce from the last remarks and Theorem 3.1 that it is
preferable to work with threshold rules instead of multi-threshold rules. Hence, the
questions which social choice functions can be modeled with threshold rules and
when multi-threshold rules are required arise naturally. We answer these questions
by providing characterizations for both classes.
However, before we discuss the characterization of either of these classes, we first
make an important observation between independent rank-based social choice func-
tions that satisfy monotonicity (see Definition 2.1) and the dominance relation. This
observation is required for the proof of both characterizations as threshold rules and
multi-threshold rules are monotonic.

Lemma 3.1. Consider an arbitrary social choice function f : Sn 7→ 2A \ ∅ that
satisfies monotonicity and independence of ranks of other alternatives. It holds for
all alternatives a ∈ A that if a ∈ f(R) for a preference profile R ∈ Sn, then a ∈ f(R′)
if r∗(R′, a) D r∗(R, a).

Proof: Let f denote an arbitrary social choice function that satisfies all axioms re-
quired by the lemma. Furthermore, consider two preference profiles R,R′ ∈ Sn such
that a ∈ f(R) and r∗(R′, a) D r∗(R, a). We prove in the sequel that a ∈ f(R′).
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Observe for this that r∗(R′, a)i ≤ r∗(R, a)i for all i ∈ {1, ..., n}. If this inequality
is for every index i ∈ {1, ..., n} tight, the lemma follows directly from independence
of ranks of other alternatives. Thus, assume that there is an index i such that
r∗(R′, a)i < r∗(R, a)i and let i∗ denote the smallest index satisfying this condition.
By the definition of the rank vector, there is a voter j with r(Rj, a) = r∗(R, a)i∗ .
Next, consider the preference profile R∗ in which voter j reinforces alternative a
such that r∗(R∗j , a) = r∗(R′, a)i∗ and nothing else changes. It follows from mono-
tonicity that a ∈ f(R∗). Furthermore, it holds that r∗(R′, a) D r∗(R∗, a) as the
only difference between r∗(R∗, a) and r∗(R, a) is that r∗(R∗, a)i∗ = r∗(R′, a)i∗ . This
means that we can repeat this step and as i∗ is growing larger in each iteration, we
eventually arrive at a profile R̃ with a ∈ f(R̃) and r∗(R′, a) = r∗(R̃, a). This implies
that a ∈ f(R′) because of independence of ranks of other alternatives. �

We aim to use Lemma 3.1 to characterize threshold rules. Unfortunately, it seems
that a stronger axiom than independence of ranks of other alternatives is required
to uniquely characterize these rules. Therefore, we introduce the following strength-
ening of this property which we call max-closure.

Definition 3.9 (Max-closure). Given two rank vectors a = (a1, a2, ..., an) and
b = (b1, b2, ..., bn), we define the max-operation as

a ◦max b = (max(a1, b1),max(a2, b2), ...,max(an, bn)) .

We call a social choice function f : Sn 7→ 2A \ ∅ max-closed if there is a function
ga(v) such that a ∈ f(R) if and only if ga(r

∗(R, a)) = 1 for every alternatives a ∈ A
and every preference profile R ∈ Sn and if ga(u) = ga(v) = 1 implies ga(u◦maxv) = 1
for all vectors u, v.

The intuitive meaning of max-closure is that there is a unique worst rank vector
that is still accepted. Clearly, this is characteristic for threshold rules for which
the threshold vector is this unique worst vector. However, it seems that we cannot
weaken max-closure without violating the following characterization of threshold
rules.

Theorem 3.2 (Characterization of threshold rules). A social choice function
is a threshold rule if and only if it is neutral, max-closed and monotonic.

Proof: Consider an arbitrary threshold rule f defined by a threshold vector v. We
prove in the sequel that f satisfies all the axioms required by the theorem. It is
obvious that f is neutral as we compare the rank vector of each alternative with the
same threshold vector v to decide whether it is chosen.
Next, we explain why f satisfies max-closure. This follows from the observation
that for every alternative a ∈ A, there is a decision function ga that takes the rank
vector of a as input and returns 1 if and only if this rank vector dominates the
threshold vector v. Thus, consider two arbitrary preference profiles R,R′ ∈ Sn such
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that ga(r
∗(R, a)) = ga(r

∗(R′, a)) = 1 for an alternative a ∈ A. We can deduce from
the definition of the dominance relation that r∗i (R, a) ≤ vi and r∗i (R

′, a) ≤ vi for all
i ∈ {1, ..., n}. This implies that max(r∗i (R, a), r∗i (R, a)) ≤ vi for all i ∈ {1, ..., n} and
therefore, ga(r

∗(R, a) ◦max r
∗(R′, a)) = 1. Hence, f satisfies max-closure.

Finally, we show that f satisfies monotonicity as defined in Definition 2.1. To prove
this claim, consider two preference profiles R,R′ ∈ Sn such that R′ is obtained from
R by letting a single voter reinforce an arbitrary alternative a ∈ A. This implies
that the new rank vector r∗(R′, a) dominates r∗(R, a). Thus, if a ∈ f(R), then
r∗(R, a) dominates the threshold vector v which implies that r∗(R′, a) also dominates
v because of the transitivity of the dominance relation. Hence, we can conclude that
every threshold rule satisfies neutrality, monotonicity and max-closure.

Next, assume that we are given a social choice function f that satisfies neutrality,
max-closure and monotonicity. We prove in the sequel that there is a vector v
whose corresponding threshold rule is f . Since max-closure implies independence of
ranks of other alternatives, it suffices to consider the rank vector of an alternative
to decide whether it is in the choice set. Formally, this means that there is for
every alternative a ∈ A a decision function ga such that a ∈ f(R) if and only if
ga(r

∗(R, a)) = 1. Furthermore, we know that ga(r
∗(R, a) ◦max r

∗(R′, a)) = 1 holds
for all preference profiles R,R′ ∈ Sn with ga(r

∗(R, a)) = ga(r
∗(R′, a)) = 1 as f

satisfies max-closure. Hence, it follows that there is a unique vector va = (v1, ..., vn)
such that ga(va) = 1 and ga(v1, ..., vi + 1, vi+1, ..., vn) = 0 for all i ∈ {1, 2, ..., n}. By
neutrality, ga(v) = gb(v) for all alternatives a, b ∈ A and rank vectors u and thus,
va = vb for all alternatives a, b ∈ A. Finally, we can deduce from Lemma 3.1 that an
alternative a is chosen in every preference profile R such that r∗(R, a) D va. Thus,
the social choice function f is a threshold rule defined by the threshold vector va.
�

Note that all axioms required for Theorem 3.2 are independent: A social choice
function that is monotonic and max-closed but not neutral can be defined by using
different threshold vectors for different alternatives. An instance for a social choice
function that is neutral and max-closed but not monotonic is the function that
returns all alternatives in all preference profiles except those for which OMNI returns
a single alternative x. For these profiles, the SCF returns A \ {x}. Finally, a social
choice function that satisfies monotonicity and neutrality but not max-closure is the
multi-threshold rule defined by the set {(m−2,m−1, ...,m−1,m), (m−1, ...,m−1)}.
This multi-threshold rule violates max-closure as alternatives with the rank vectors
(m − 2,m − 1, ...,m − 1,m) and (m − 1, ...,m − 1) are chosen, but an alternative
with the rank vector (m− 1, ...,m− 1,m) is not chosen.

Note that the last observation is actually the only real difference between multi-
threshold rules and threshold rules. As we prove in the sequel, this small difference
is reflected in the characterization of multi-threshold rules by weakening max-closure
to independence of ranks of other alternatives.



46 Rank-based Social Choice Functions

Theorem 3.3 (Characterization of multi-threshold rules). A social choice
function is a multi-threshold rule if and only if it satisfies neutrality, monotonicity
and independence of ranks of other alternatives.

Proof: Consider an arbitrary multi-threshold rule f that is specified by the set of
threshold vectors V = {v1, ..., vk}. This multi-threshold rule is neutral as the rank
vector of every alternative is compared with the same set of threshold vectors. Thus,
if the rank vector of an alternative dominates a threshold vector, this is also true
after renaming the alternative.
Next, we prove the monotonicity of f with an argument similar to the one in the
proof for threshold rules: If the rank vector r∗(R, a) of alternative a in the preference
profile R dominates a threshold vector vi, then this vector is still dominated if a
single voter reinforces a. The reason for this is the transitivity of the dominance
relation and the fact that reinforcing an alternative means that its new rank vector
dominates its old one. Thus, a ∈ f(R) implies a ∈ f(R′) for all profiles R,R′ that
satisfy that R′ is derived from R by reinforcing a.
Finally, we prove that f also satisfies independence of ranks of other alternatives.
This is true since a ∈ f(R) if the rank vector r∗(R, a) dominates a threshold vector
vi ∈ V . Clearly, this property does not depend on other alternatives or their ranks
and thus, this axiom is satisfied. As consequence, every multi-threshold rule satisfies
monotonicity, neutrality and independence of ranks of other alternatives.
It remains to prove that every social choice function that satisfies neutrality, mono-
tonicity and independence of ranks of other alternatives is a multi-threshold rule.
Therefore, consider an arbitrary social choice function f that satisfies all these ax-
ioms. Since f satisfies independence of ranks of other alternatives, it suffices to
consider for every alternative its rank vector to decide whether the alternative
is in the choice set. Furthermore, if we have found a preference profile R with
a ∈ f(R), it follows from Lemma 3.1 that a is chosen in every preference profile
R′ with r∗(R′, a) D r∗(R, a). This observation means that we can find for every
alternative a ∈ A a set of threshold vectors Va such that alternative a is chosen in a
preference profile R if its rank vectors r∗(R, a) dominates at least one vector in Va.
Finally, these sets of threshold vectors must be equal for all alternatives because of
neutrality. Thus, we can represent the social choice function f as multi-threshold
rule. �

All axioms in the characterization of multi-threshold rules are independent. Note
that we only have to show that independence of rank of other alternatives is not
implied by neutrality and monotonicity as the remaining points follow from the
examples discussed for threshold rules. This independence results from considering
tournament solutions such as the bipartisan set or the top cycle, see, e.g., [BBH16].
Both rules are known to be neutral and monotonic, but they clearly fail to satisfy
independence of ranks of other alternatives.
Furthermore, note that it follows from this characterization that almost all reason-
able independent rank-based social choice functions are threshold rules or multi-
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threshold rules. The reason for this is that neutrality and monotonicity are very
desirable axioms which should be satisfied in order to deem a social choice function
reasonable.

3.2.2 P̃ -strategyproofness and Independence of Ranks of Other
Alternatives

In this section, we focus on social choice functions that satisfy both independence of
ranks of other alternatives and P̃ -strategyproofness. Even though there are many
interesting social choice functions that satisfy independence of ranks of other alter-
natives, there are almost none that additionally satisfy P̃ -strategyproofness. Thus,
we first discuss two ideas for defining social choice functions that satisfy both axioms.
Unfortunately, all social choice functions in these classes return rather large choice
sets. We use this observation to characterize the OMNI-rule as one of the finest so-
cial choice functions that satisfies both independence of ranks of other alternatives
and P̃ -strategyproofness.
The first approach for defining social choice functions that satisfy both independence
of ranks of other alternatives and P̃ -strategyproofness is inspired by the OMNI-rule.
Instead of only picking the most preferred alternative of every voter, we pick the k
most-preferred alternatives. This is formalized by the following class of threshold
rules which we call I1-functions.

Definition 3.10 (I1-function). A social choice function f : Sn 7→ 2A \ ∅ is an
I1-function if it is a threshold rule defined by a threshold vector v = (k,m,m...,m)
with k ∈ {1, ...,m}.

We can deduce from the definition that OMNI is the finest I1-function, i.e., it holds
for all I1-functions f and preference profiles R ∈ Sn that OMNI(R) ⊆ f(R). This
idea for comparing SCFs is rather important and therefore, we introduce it formally.

Definition 3.11 (Refinement). A social choice function f defined on the domain
Dn is a refinement of a social choice function g defined on the same domain if
f(R) ⊆ g(R) for all preference profiles R ∈ Dn and there is a preference profile
R∗ ∈ Dn with f(R∗) ( g(R∗).

We can deduce the notion of a finest social choice function within a class from this
definition. A social choice function is a finest one in a set of SCFs if no other SCF in
this set refines it. For example, no I1-function refines the OMNI-rule and therefore,
it is one of the finest social choice function in this class. Observe that there can
be multiple finest social choice functions in a class. Furthermore, if a social choice
function f refines another social choice function g, we call g a coarsening of f .
As all I1-functions are coarsenings of the OMNI-rule, it is straightforward that all
these SCFs return for every preference profile a non-empty choice set. Furthermore,
we can also show that all I1-functions are P̃ -strategyproof.
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Theorem 3.4. Every I1-function is P̃ -strategyproof

Proof: Consider an arbitrary I1-function f : Sn 7→ 2A\∅. This function is a threshold
rule defined by a vector v = (k,m, ...,m) with k ∈ {1, ...,m}. If k = 1, then f is the
OMNI-rule which is known to be P̃ -strategyproof [Gär76]. Thus, assume that k > 1.
This means that the most preferred and the second most preferred alternatives of
every voter are included in the choice set. Hence, a voter can only P̃ -manipulate
if he can ensure that his most preferred alternative is the unique winner. However,
this is impossible as |f(R)| > 1 by definition. Thus, our initial assumption is wrong
and f is P̃ -strategyproof. �

Note that Theorem 3.4 is not surprising as we only considered coarsenings of the
OMNI-rule. Nevertheless, it shows that OMNI is not the only P̃ -strategyproof social
choice function that satisfies independence of ranks of other alternatives. However,
these remarks lead to the question whether there are social choice functions that
are not related to the OMNI-rule and that satisfy independence of ranks of other
alternatives and P̃ -strategyproofness. For answering this question, we introduce
another class of social choice functions called I2-functions.

Definition 3.12 (I2-functions). A social choice function f : Sn 7→ 2A\∅ is an I2-
function if it is a threshold rule defined by a vector v = (k, k, ...k,m,m, ...,m) such

that k ∈ {1, 2, ...,m} and the largest index l with vl = k satisfies that (k−1)n
m−1 + 1 > l.

The idea behind I2-functions is that an alternative should be chosen if sufficiently
many voters agree that it is not too bad. This is formalized by demanding that an
alternative is only chosen if there are at least l voters that place it at position with
rank less or equal to k. The second condition stating that l should not be too large
is required for the feasibility and P̃ -strategyproofness of I2-functions. Without this
condition, it is possible that an I2-function is not well-defined as it might return
an empty set for a preference profile. An instance of an I2-function is given by the
threshold rule defined by the vector v = (2, 2,m, ...,m) if there are n ≥ m voters.
Note that we can derive from Theorem 3.1 that I2-functions are indeed feasible
threshold rules. However, we can prove an even stronger result stating that every
I2-function returns for every preference profile at least 2 alternatives.

Lemma 3.2. Every I2-function f : Sn 7→ 2A \ ∅ satisfies that |f(R)| ≥ 2 for every
preference profile R ∈ Sn.

Proof: Consider an arbitrary I2-function f : Sn 7→ 2A\∅ and let v = (k, .., k,m, ...,m)
denote its corresponding threshold vector. Furthermore, let l denote the largest
index with vl = k. This lemma can be deduced from the condition on l stating that
(k−1)n
m−1 + 1 > l. This condition is inspired from the following scoring scheme: Every

alternative a ∈ A receives in a preference profile R one point from each voter i ∈ N
with r(Ri, a) ≤ k. It follows that an alternative is chosen by f if it has at least l
points. Thus, we need to show that there are at least two alternatives with at least
l points for every preference profile R ∈ Sn.
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We can prove this claim by a simple counting argument. Thus, observe that we have
to distribute in total kn points to all alternatives. Furthermore, every alternative
can receive at most n points. Hence, the maximal number of points that can be
given to all alternatives while only selecting a single one is n + (m − 1) · (l − 1) as
the single chosen alternative can get n points and the remaining m − 1 unchosen
alternative have at most l − 1 points. Thus, if kn > n + (m − 1) · (l − 1), at least
two alternatives have at least l points regardless of the preference profile R. As this
term is equivalent to (k−1)n

m−1 + 1 > l, it follows that |f(R)| ≥ 2 for all preference
profiles R ∈ Sn. �

This lemma tells us on the one hand that I2-functions violate various axioms that
demand decisiveness such as Pareto-optimality. On the other hand, this observation
turns out to be crucial for proving that I2-functions are P̃ -strategyproof, which is
the goal of the next theorem.

Theorem 3.5. Every I2-function is P̃ -strategyproof.

Proof: Consider an arbitrary I2-function f : Sn 7→ 2A \ ∅ that is defined by the
threshold vector v = (k, ..., k,m, ...,m) and let l denote the largest index with vl = k.
Assume for contradiction that there are two preference profiles R,R′ ∈ Sn and a
voter i ∈ N such that R−i = R′−i and f(R′) P̃i f(R). Moreover, let z denote voter
i’s most preferred alternative in f(R), i.e., z �i x for all x ∈ f(R) \ {z}. We make
a case distinction with respect to the rank of z in the preference of voter i to prove
this theorem.
First, assume that the rank of z in Ri is larger than k, i.e., r(Ri, z) > k. In this
case, it holds for all alternatives x ∈ f(R) that they have a rank larger than k in Ri

as z �i x for all x ∈ f(R)\{z}. This means that for all alternatives a ∈ f(R), there
are at least l voters in R−i who assign a a rank of at most k. Thus, these alternatives
are chosen regardless of the preference of voter i, which implies that f(R) ⊆ f(R′).
Furthermore, we know that |f(R)| ≥ 2 as shown in Lemma 3.2. Hence, there is an
alternative y ∈ f(R′) such that z �i y contradicting that f(R′) P̃i f(R).
Next, assume that the rank of z in Ri is at most k, i.e., r(Ri, z) ≤ k. This implies
that no alternative a ∈ A with a �i z is in f(R) or f(R′). The reason for this is that
r(Ri, a) < k for all a ∈ A with a �i z, but these alternatives are not chosen. Thus,
there are at most l−2 voters in R−i who assign these alternatives a rank less or equal
to k. This makes it impossible for voter i to force these alternatives in the choice
set. Consequently, every alternative x ∈ f(R′) satisfies that z �i x. Furthermore,
this preference is strict for at least one alternative as |f(R′)| ≥ 2. This contradicts
that f(R′) P̃i f(R) and therefore, it is impossible for voter i to P̃ -manipulate. �

Note that it is crucial for the proof of Theorem 3.5 that there are always at least
two alternatives that win. Otherwise, it is possible that f(R) = {z} and that there
is a voter i who prefers z the least. This voter i might be able to P̃ -manipulate by
placing an alternative a with k < r(Ri, a) < r(Ri, z) first because this can suffice to
include it.
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We can even generalize this observation. As we show in the sequel, OMNI is the
only P̃ -strategyproof social choice function that satisfies independence of ranks of
other alternatives and for which there is a profile R for every alternative a ∈ A
such that f(R) = {a}. The last criterion is called non-imposition and it is formally
introduced in the sequel.

Definition 3.13 (Non-imposition). A social choice function f is non-imposing
if there is a preference profile R for all alternatives a ∈ A such that f(R) = {a}.

Note that non-imposition is a rather weak axiom. For instance, it is even weaker
than Pareto-optimality as every Pareto-optimal social choice function chooses an
alternative uniquely if it is top-ranked by every voter. This weakness makes it a
very desirable axiom that is satisfied by many social choice functions. In the sequel,
our goal is to prove that OMNI is the only P̃ -strategyproof social choice function
that satisfies non-imposition and independence of ranks of other alternatives. We
start this proof by showing that we can focus on refinements of the OMNI-rule.

Lemma 3.3. Every non-imposing social choice function f : Sn 7→ 2A \ ∅ that
satisfies P̃ -strategyproofness and independence of ranks of other alternatives satisfies
f(R) ⊆ OMNI(R) for all preference profiles R ∈ Sn.

Proof: Let f : Sn 7→ 2A \ ∅ denote an arbitrary social choice function that satisfies
all axioms required by the lemma. Additionally, we assume that m ≥ 2 because if
m = 1, every social choice function can only return the single available alternative.
We show under these assumptions that f(R) ⊆ OMNI(R) for all preference profiles
R ∈ Sn.
As first step of the proof, we choose an arbitrary alternative a ∈ A. As f is non-
imposing, there is a profile R such that f(R) = {a}. Thereafter, we iterate over all
voters i ∈ N and let them switch from their current preference Ri to an arbitrary
preference R′i such that a �′i x for all x ∈ A \ {a}. This process defines a sequence
of profiles R0, R1, ..., Rn such that R0 = R and Ri differs from Ri−1 only by the
discussed manipulation of voter i. Note that f(Ri) = {a} for all i ∈ {0, ..., n} as
otherwise there is a minimal index i∗ ≥ 1 such that f(Ri∗) 6= {a} and f(Ri∗−1) = {a}
and voter i∗ prefers a the most in Ri∗ . Thus, voter i∗ can P̃ -manipulate by switching
form Ri∗ to Ri∗−1. This contradicts the P̃ -strategyproofness of f and therefore, we
can deduce that every voter prefers a the most in Rn and f(Rn) = {a}.
Furthermore, every voter i ∈ N can reorder the alternatives b ∈ A with r(Rn

i , b) > 1
arbitrarily without changing the choice set; otherwise, there is a profile R+ such that
Rn
−i = R+

−i, voter i prefers a in both profiles the most and f(Rn) = {a} 6= f(R+).

Thus, voter i can P̃ -manipulate by switching from R+ to Rn. As this holds for all
preference profiles in which all voters prefer the unique winner the most, it follows
that no alternative in A \ {a} can be chosen after these modifications. Finally, as
f satisfies independence of ranks of other alternatives, no alternative b ∈ A \ {a}
can be chosen in a preference profile R unless r∗(R, b)1 = 1. As we can repeat this
argument also for another alternative b 6= a, it follows that an alternative can only
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R :

1 1 1
a b c
b c a
c a b

Rn :

1 1 1
a a a
b b c
c c b

R+ :

1 1 1
a a a
c c c
b b b

Figure 3.4: Preference profiles illustrating the proof of Lemma 3.3

be chosen by f if it is first-ranked by at least a single voter. Thus, f(R) ⊆ OMNI(R)
for all preference profiles R ∈ Sn. �

Note that the main steps of the proof are illustrated with the help of the profiles R,
Rn and R+ shown in Figure 3.4. Furthermore, assume that f is a P̃ -strategyproof,
non-imposing and independent rank-based social choice function and that satisfies
f(R) = {a}. Thus, R is the profile where the proof of Lemma 3.3 starts. Next,
every voter pushes a to the top, which leads to the profile Rn. It follows from the
P̃ -strategyproofness that f(Rn) = {a}. Finally, the voters can arbitrarily reorder
the alternatives b and c without affecting the choice set. This means for instance
that f(R+) = {a}. As consequence of this observation and independence of ranks of
other alternatives, b and c are only chosen by f if they are first-ranked by a voter.
It follows from Lemma 3.3 that we only have to show that no refinement of the
OMNI-rule satisfies both independence of ranks of other alternatives and P̃ -strategy-
proofness. Therefore, we discuss social choice functions satisfying all these properties
in more detail and prove that they are also monotonic.

Lemma 3.4. Every P̃ -strategyproof social choice function f : Sn 7→ 2A \ ∅ that
refines the OMNI-rule and that satisfies independence of ranks of other alternatives
is monotonic.

Proof: Consider a social choice function f : Sn 7→ 2A \ ∅ as specified in the lemma,
two arbitrary preference profiles R,R′ ∈ Sn, R 6= R′, an alternative a ∈ f(R) and a
voter i ∈ N such that R−i = R′−i, x �i y if and only if x �′i y for all x, y ∈ A \ {a}
and a �i x implies a �′i x for all x ∈ A \ {a}. Additionally, we assume that there
are n ≥ 2 voters as there is no refinement of the OMNI-rule if n = 1. We have to
show that a ∈ f(R′) to prove that f satisfies monotonicity.
As first step, we choose an arbitrary alternative b 6= a and let every voter j with
r(Rj, a) > 1 rank b first. Furthermore, we ensure that the rank of a does not change
in the preference of any voter during these modifications. This leads to a preference
profile R1 in which only the alternatives a and b are first-ranked. It follows that
{a} ⊆ f(R1) ⊆ {a, b}, where the first inclusion follows from independence of ranks of
other alternatives and the second one results from the fact that f(R1) ⊆ OMNI(R1).
Furthermore, observe that voter i prefers b the most in R1 as he cannot reinforce a
if it is already his most preferred alternative in R.
Next, assume for contradiction that a 6∈ f(R′). We prove that this assumption
implies that voter i can P̃ -manipulate, which contradicts the P̃ -strategyproofness
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R :

1 1 1
a b c
b c a
c a b

R1 :

1 1 1
a b b
b c a
c a c

R2 :

1 1 1
a b b
b a a
c c c

R′ :

1 1 1
a b c
b a a
c c b

Figure 3.5: Preference profiles illustrating the proof of Lemma 3.4

of f . Therefore, consider the profile R2 that only differs from R1 in the fact that
r(R2

i , a) = r(R′i, a). This implies that r∗(R′, a) = r∗(R2, a), which means that
a 6∈ f(R2) because of independence of ranks of other alternatives. Furthermore, as
a and b are the only first-ranked alternatives in R2, it follows that f(R2) = {b}.
Hence, switching from R1 to R2 is a P̃ -manipulation for voter i as b is his most
preferred alternative in R1. However, this contradicts the P̃ -strategyproofness of f
and therefore, a ∈ f(R′) is true. Hence, we can conclude that f is monotonic. �

Figure 3.5 illustrates the proof of the last lemma with an example. This figure shows
four preference profiles R, R1, R2 and R′. As in the proof, we assume that a ∈ f(R)
for an independent rank-based and P̃ -strategyproof social choice function f that
refines the OMNI-rule. It follows from independence of ranks of other alternatives
that a ∈ f(R1) as r∗(R, a) = r∗(R1, a). Furthermore, observe that only a and b are
first-ranked in R1, which means that f(R1) ⊆ {a, b} as f refines the OMNI-rule.
Thereafter, voter 2 reinforces a in his preference to derive R2. It holds that a is in
f(R2) as f(R2) ⊆ PO(R2) = {a, b} and f is P̃ -strategyproof. Finally, independence
of ranks of other alternatives implies that a ∈ f(R′) as r∗(R2, a) = r∗(R′, a), which
shows that f satisfies monotonicity.
With the help of the previous two lemmas, we can show that OMNI is indeed the
only social choice function that satisfies P̃ -strategyproofness, non-imposition and
independence of ranks of other alternatives. First, we consider the simple scenario
with at most 2 voters.

Lemma 3.5. There is no social choice function f : Sn 7→ 2A \ ∅ that refines the
OMNI-rule and that satisfies P̃ -strategyproofness, independence of ranks of other
alternatives and non-imposition if m ≥ 3 and n ≤ 2.

Proof: First note that Lemma 3.3 even holds if we have only a single voter. This
means that every social choice function f that satisfies all axioms of this lemma is a
refinement of the OMNI-rule or it is the OMNI-rule. Furthermore, if there is only a
single voter, then |OMNI(R)| = 1 for all preference profiles R ∈ Sn. Therefore, we
can directly deduce that no social choice function refines OMNI in this case.
Next, consider the case with n = 2 voters and assume for contradiction that there is
a social choice function f that satisfies all axioms of the lemma and that refines the
OMNI-rule. Thus, there is a preference profile R ∈ Sn such that f(R) ( OMNI(R).
Note that this implies that |OMNI(R)| = 2 and |f(R)| = 1, which means that the
voters rank two different alternatives first but only one of them is chosen by f . In
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R :

1 1
a b
b a
c c

R1 :

1 1
a b
c a
b c

R2 :

1 1
a b
c c
b a

R3 :

1 1
c b
a a
b c

R4 :

1 1
a c
c b
b a

Figure 3.6: Preference profiles illustrating the proof of Lemma 3.5

the sequel, we assume without loss of generality that voter 1 prefers a the most,
voter 2 prefers b the most and f(R) = {b}. In this case, voter 1 can make b his least
preferred alternative and in the resulting profile R1, it still holds that f(R1) = {b}
because f(R1) ⊆ OMNI(R1) = {a, b} and every other outcome is a P̃ -improvement
for voter 1.

Moreover, there is at least one alternative c that is not first-ranked by voter 1 or
voter 2 in R1 since m ≥ 3. Let voter 2 place alternative c at the position with
rank 2 and alternative a at the position with rank 3 to obtain the preference profile
R2. It holds that f(R2) = {b} as otherwise voter 2 can P̃ -manipulate by switching
back to R1. Note that r∗(R2, a) = (1, 3) and a is not chosen in R2. Next, consider
the preference profile R3 which is derived from R2 by letting voter 1 place c first
and note that f(R3) = {b}; otherwise, voter 1 can P̃ -manipulate by switching
from R2 to R3 because b is his worst alternative in R2. In particular, note that
r∗(R3, c) = {1, 2} and c 6∈ f(R3). Finally, consider the preference profile R4 in which
voter 1 ranks a first and c second and voter 2 ranks c first and a third. The remaining
alternatives can be placed arbitrarily. As f is a refinement of the OMNI-rule, it
follows that f(R4) ⊆ {a, c}. However, independence of ranks of other altneratives
implies that a 6∈ f(R4) and c 6∈ f(R4) because r∗(R4, a) = (1, 3) = r∗(R2, a),
r∗(R4, c) = (1, 2) = r∗(R3, c) and a 6∈ f(R2), c 6∈ f(R3). Therefore, no valid
choice for the profile R4 is left. This is a contradiction, which means that the
initial assumption is wrong. Thus, no refinement of the OMNI-rule satisfies P̃ -
strategyproofness, non-imposition and independence of ranks of other alternatives
if m ≥ 3 and n ≤ 2. �

First, we discuss an example for the constructions in the proof of Lemma 3.5. Thus,
consider the preference profiles shown in Figure 3.6 and assume that f denotes
a P̃ -strategyproof and independent rank-based refinement of the Pareto-rule with
f(R) = {b}. As a first step, voter 1 makes b his least preferred alternative to
derive R1. Because f is P̃ -strategyproof and it refines the Pareto-rule, we can
deduce that f(R1) = {b}. Next, voter 2 modifies his preference such that c has
rank 2, which results in the profile R2. We can derive from P̃ -strategyproofness
that f(R2) = {b}. After that voter 1 manipulates such that c is his most preferred
alternative. This steps leads to the profile R3 and it holds that f(R3) = {b} because
of P̃ -strategyproofness. Finally, we consider the profile R4. As f refines the OMNI-
rule, it must hold that f(R4) ⊆ {a, c}. However, this contradicts independence
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of unchosen alternatives as r∗(R4, a) = r∗(R2, a) and r∗(R4, c) = r∗(R3, c) and
a 6∈ f(R2), c 6∈ f(R3). Thus, f does not satisfy all required axioms.
Observe that the approach used in this lemma relies heavily on the fact that there
are only two voters, which implies that every refinement f of the OMNI-rule yields
a profile R such that |f(R)| = 1 even though two alternatives are first ranked by
the voters. This is no longer true if there are more voters and therefore, this proof
cannot be adapted to the situation with n ≥ 3 voters. Nevertheless, we show in the
next theorem that the characterization also holds in this case.

Theorem 3.6 (Characterization of OMNI). OMNI is the only non-imposing
social choice function that satisfies P̃ -strategyproofness and independence of ranks
of other alternatives if m ≥ 3.

Proof: First note that OMNI satisfies all three axioms. We have already seen that
OMNI is a threshold rule and therefore, it satisfies independence of ranks of other
alternatives. Furthermore, if all voters agree on the most preferred alternative, this
alternative is the unique winner, which means that OMNI is indeed non-imposing.
Finally, it has been shown in [Gär76] that OMNI is P̃ -strategyproof.
Thus, it only remains to show that no other social choice function satisfies these
axioms if m ≥ 3. First note that we know by Lemma 3.3 that it suffices to show
that no refinement of the OMNI-rule satisfies all axioms required by this theorem.
Furthermore, we can additionally assume that n ≥ 3 as we have already shown in
Lemma 3.5 that there is no such social choice function if n < 3. Thus, assume for
contradiction that there is a social choice function f defined on m ≥ 3 alternatives
and n ≥ 3 voters that refines the OMNI-rule and that satisfies P̃ -strategyproofness
and independence of ranks of other alternatives. Note that we omit non-imposition
as this axiom is implied by the fact that f refines the OMNI-rule. Furthermore,
we know by Lemma 3.4 that f is also monotonic. In the sequel, we construct two
preference profiles R,R′ ∈ Sn such that voter 1 can P̃ -manipulate by switching from
R to R′. This contradicts that f is P̃ -strategyproof and therefore, it shows that f
does not satisfy all required axioms.
For this construction, let c denote an arbitrary alternative that is not chosen if
its rank vector r∗(R, c) equals (1,m, ...,m). Note that such an alternative c exists
because f satisfies independence of ranks of other alternatives and monotonicity and
therefore, Lemma 3.1 can be used. It follows from this lemma that if an alternative
is chosen with rank vector v = (1,m, ...,m), then it is chosen for every rank vector
v′ with v′1 = 1 as all of these rank vectors dominate v. Thus, if all alternatives
are chosen with the rank vector (1,m, ...,m), then f does not refine the OMNI-
rule. Therefore, an alternative c exists that is not chosen if its rank vector equals
(1,m, ...,m).
Next, let a 6= c denote an arbitrary alternative and let v denote a vector such that
the index l with vl = 1 and vl+1 > 1 is minimal and a is chosen if v is its rank
vector. Note that the index l is well-defined as an alternative is only chosen if the
first entry of its rank vector equals 1. This is true as f refines OMNI. Thus, if the
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R :

1 1 1 1 1
c a b b b
a b a a a
b c c c c

R′ :

1 1 1 1 1
a a b b b
c b a a a
b c c c c

Figure 3.7: Preference profiles illustrating the proof of Theorem 3.6

index l is not well-defined, then alternative a is only chosen if every voter prefers a
the most. However, this means that no alternative is chosen if voter 1 prefers c the
most and all other voters prefer a the most and c the least. This is a contradiction
and therefore, vn > 1. This means that l is well-defined. Furthermore, observe
that the alternative a is not chosen if k < l voters prefer a the most because of the
definition of l. Finally, let b 6∈ {a, c} denote another arbitrary alternative.

We construct the preference profile R as follows: The first voter prefers c first, a
second and b third. The voters i with 2 ≤ i ≤ l prefer a first, b second and c the
least. Finally, the voters j with l < j ≤ n prefer b first, a second and c the least.
The remaining alternatives can be placed arbitrarily. Note that no other alternative
but a, b and c can be chosen by f as every voter prefers one of these alternatives
the most. Moreover, observe that c is not in f(R) because r∗(R, c) = (1,m, ...,m)
and by construction, c does not win with this rank vector. Furthermore, a is not
in the choice set as only l − 1 voters prefer a the most. However, the definition
of l requires that there must be at least l voters who prefer a the most to make it
win. This implies that f(R) = {b}. However, voter 1 prefers a strictly to b and he
can make alternative a win by ranking a first and c second. In this new profile R′,
alternative a is first-ranked by l voters and second-ranked by the rest. As the rank
vector r∗(R′, a) dominates the vector v, it follows from Lemma 3.1 that a ∈ f(R′).
Furthermore, as f refines OMNI, it follows that f(R′) ∈ {{a}, {a, b}}. Thus, we
can deduce that voter 1 can P̃ -manipulate by switching from R to R′ because he
prefers both sets to {b} = f(R). Thus, we can deduce that f is P̃ -manipulable,
which contradicts the initial assumption. Hence, no other social choice function but
the Pareto-rule satisfies non-imposition, P̃ -strategyproofness and independence of
ranks of other alternatives if m ≥ 3. �

An example of the constructions used in the proof of Theorem 3.6 is displayed in
Figure 3.7. Assume for this example that f is a threshold rule defined by the vector
v = (1, 1, 3, 3, 3). This means that f(R) = {b} as only the rank vector of b dominates
the threshold vector. Thus, voter 1 can P̃ -manipulate by swapping c and a, which
means that f is P̃ -manipulable.

Note that all axioms used in the characterization of OMNI are independent: All I2-
functions satisfy independence of ranks of other alternatives and P̃ -strategyproof-
ness but are not non-imposing. The bipartisan set (see, e.g., [BBH16]) satisfies
non-imposition and P̃ -strategyproofness but not independence of ranks of other
alternatives. Furthermore, every threshold rule f refining OMNI satisfies indepen-
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dence of ranks of other alternatives and non-imposition but not P̃ -strategyproof.
Finally, if m = 2, the majority rule that chooses the alternative that is first-ranked
by the most voters satisfies all axioms. Hence, even m ≥ 3 is required.

We can deduce from this characterization that OMNI is the most preferable P̃ -
strategyproof social choice function that satisfies independence of ranks of other
alternatives. The reason for this is that an alternative a should be the unique
winner of an election if all voters agree that a is the best alternative. However,
we can deduce from Theorem 3.6 that this is not true for every other independent
rank-based and P̃ -strategyproof social choice function as such a rule cannot be non-
imposing.

3.3 General Rank-based Social Choice Functions

After discussing independent rank-based social choice functions in the last sec-
tion, we focus on general rank-based SCFs next. Note that there are many well-
established social choice functions within this class, such as scoring rules. Fur-
thermore, we also discuss new ideas for designing general rank-based social choice
functions. Hitherto, neither the known nor the new social choice functions have
been analyzed with respect to P̃ -strategyproofness. Therefore, we discuss various
subclasses of rank-based social choice functions with respect to this axiom.

In particular, we try to find P̃ -strategyproof and rank-based refinements of the
OMNI-rule in Section 3.3.1. The existence of these functions is interesting as it
shows that the characterization of the OMNI-rule based on P̃ -strategyproofness,
non-imposition and independence of ranks of other alternatives cannot be general-
ized. Furthermore, we analyze the well-established class of scoring rules with respect
to P̃ -strategyproofness in Section 3.3.2. Finally, we consider in Section 3.3.3 a new
class of general rank-based social choice functions based on the idea of comparing
rank vectors of alternatives with each other. In this section, we prove a criterion
that shows that a large number of these rules violates P̃ -strategyproofness.

3.3.1 Rank-based Refinements of the OMNI-Rule

The goal in this section is to find rank-based refinements of the OMNI-rule which are
P̃ -strategyproof. The question on the existence of such social choice functions arises
naturally from the characterization of the OMNI-rule presented in Theorem 3.6.
This theorem states that there is no P̃ -strategyproof, non-imposing and independent
rank-based social choice function but the OMNI-rule. Thus, we are interested in
the question whether such functions exist if we weaken independence of ranks of
other alternatives to rank-basedness. As we can prove in this section, there are
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indeed social choice functions that satisfy rank-basedness, non-imposition and P̃ -
strategyproofness.
Our first approach for defining a P̃ -strategyproof refinement of the OMNI-rule is
motivated by the observation that there are many P̃ -strategyproof social choice
functions in the strict domain that are Condorcet extensions. Thus, the idea is to
refine the OMNI-rule by returning the Condorcet winner if there is one; otherwise,
we do not change the OMNI-rule. Unfortunately, it is impossible to detect the
existence of the Condorcet winner always correctly by a rank-based social choice
function. Therefore, we use the following rank-based SCF, which we refer to as f+,
as approximation of the Condorcet-rule: f+(R) = {a} if a is first-ranked by more
than n/2 voters; if no such alternative exists in R, then f+(R) = A. Note that
f+ is well-defined as there can only be a single alternative that is first-ranked by
more than half of the voters. Furthermore, if f+(R) = {a}, then a is the Condorcet
winner in R. This implies that f+ is a coarsening of the Condorcet-rule.
With the help of the SCF f+, we define the first P̃ -strategyproof refinement of the
OMNI-rule called OMNI+. This social choice function returns the intersection of
the OMNI-rule and f+, i.e., OMNI+(R) = OMNI(R) ∩ f+(R). Thus, it is clear
that this SCF indeed refines the OMNI-rule. As we show next, OMNI+ is also
P̃ -strategyproof.

Theorem 3.7. The social choice function OMNI+ is P̃ -strategyproof in the strict
domain.

Proof: Consider an arbitrary preference profile R defined on n voters. We prove
in the sequel that no voter in R can P̃ -manipulate the OMNI+-rule. Thus, let
k = dn+1

2
e denote the number of voters which must agree on a most preferred

alternative a such that f+ returns a as unique winner. Furthermore, let lR denote
the largest number of voters that agree on a first-ranked alternative in the preference
profile R. In the sequel, we make a case distinction with respect to lR.
First, we consider the case that lR < k − 1. In this case, it is impossible for a voter
to manipulate the outcome such that lR′ ≥ k. This means that OMNI+ coincides
with OMNI, even if a voter tries to manipulate. As OMNI is P̃ -strategyproof, it
follows directly that OMNI+ cannot be P̃ -manipulated in this case.
Next, consider a preference profile R with lR ≥ k. Thus, there is an alternative a
such that at least k voters prefer this alternative the most. As f+(R) = {a}, it
follows that OMNI+(R) = {a}. Thus, no voter who prefers a the most can improve
the outcome as his most preferred alternative is the unique winner. Furthermore,
every voter i who prefers a not the most cannot affect the outcome as there are at
least lR ≥ k voters who prefer a the most in R−i. This means that OMNI+(R′) = {a}
for all preference profiles R′ = (R−i, R

′
i) and therefore, voter i cannot P̃ -manipulate.

Thus, OMNI+ is also in this case P̃ -strategyproof.
Finally, consider an arbitrary preference profile R with lR = k − 1. In this case,
it is possible for a voter to make an alternative win uniquely by lying about his
true preferences. Hence, consider a profile R′ with lR′ = k and R−i = R′−i for a



58 Rank-based Social Choice Functions

voter i ∈ N . It follows that OMNI+(R′) = {a} for an arbitrary alternative a ∈ A.
However, a cannot be voter i’s most preferred alternative in R as otherwise lR′ > lR
cannot be true. Furthermore, voter i’s most preferred alternative is in OMNI+(R)
since this rule coincides with OMNI if lR < k. This means that switching from R to
R′ is no P̃ -manipulation for voter i. Furthermore, every modification that does not
lead to a preference profile R′ with lR′ = k cannot be a P̃ -manipulation as OMNI+

coincides for both R and R′ with OMNI under these assumptions. Therefore, no P̃ -
manipulation is possible in this case either. Thus, OMNI+ is indeed P̃ -strategyproof.
�

Note we can deduce from this theorem that OMNI is not the finest social choice
function that satisfies rank-basedness and P̃ -strategyproofness. Furthermore, it also
follows that we cannot generalize independence of ranks of other alternatives to
rank-basedness in the characterization of OMNI as OMNI+ satisfies all required
axioms. However, OMNI+ chooses still a rather large choice set in many situations.
Therefore, a sparser refinement of the OMNI-rule is desirable.

For finding such a social choice function, we consider the Plurality-rule in more
detail. This rule chooses the alternatives that are first-ranked by the most voters.
Formally, let n(R, a) denote the number of voters who prefer a the most in the
preference profile R. Then, the Plurality-rule chooses all alternatives a ∈ A that
maximize n(R, a). Note that this rule is well-known, see, e.g., [Chi96, Lep92]. It is
clear that the Plurality-rule is rank-based and refines the OMNI-rule. Furthermore,
it is obvious that this social choice function returns for many preference profiles very
small choice sets. Unfortunately, it is a well-established result that the Plurality-rule
is P̃ -manipulable. Therefore, we aim to find a slight variation of this social choice
function that fixes this problem.

For finding this variant, we first analyze exactly when the plurality rule is P̃ -
manipulable. Thus, observe that the plurality rule can be P̃ -manipulated if it
returns a single winner a in the preference profile R and there is an alternative
b with n(R, b) = n(R, a) − 1. Furthermore, assume that there is a voter in R who
submits c � b � a. Then this voter can P̃ -manipulate by changing his preference
to b � c � a. Similarly, a voter whose most preferred alternative is not chosen
can also manipulate if the Plurality-rule chooses multiple winners. He can reinforce
the alternative that he prefers the most among the winners and make it the unique
winner. Thus, a voter can P̃ -manipulate by adding an alternative to the choice set
if only a single alternative is chosen, or by removing all alternatives but one from
the choice set if multiple alternatives are chosen. Formally, this means that a voter
P̃ -manipulates by switching from a profile R to a profile R′ with f(R) ( f(R′) or
f(R′) ( f(R). Even more, no other types of manipulations are possible. The reason
for this is that a single voter can only decrease n(R, a) by 1 and increase n(R, b) by
1 for two alternatives a, b ∈ A. Thus, we only have to prohibit these manipulative
inclusions and exclusions of alternatives. The simplest way to do this is to ensure
that always two or more alternatives are chosen. This modification does not really
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solve the problem that a voter can add or remove some alternatives, but it makes
the sets with respect to the set extension P̃ incomparable. This idea leads to the
following social choice function which we call 2-Plurality.

Definition 3.14 (2-Plurality). Consider an arbitrary preference profile R ∈ Sn
and let a1, a2, ..., am denote the alternatives ordered in decreasing order of their
plurality score, i.e., n(R, a1) ≥ n(R, a2) ≥ ... ≥ n(R, am). Then, 2-Plurality, abbre-
viated by p2, is defined as p2(R) = {a ∈ A | n(R, a) ≥ n(R, a2) ∧ n(R, a) > 0}.

The intuition behind 2-Plurality is to pick the best and the second best alterna-
tive with respect to the plurality score. If there are more alternatives b ∈ A with
n(R, b) = n(R, a2), we additionally include them in the choice set to ensure neu-
trality. Furthermore, in the special case that all voters agree on a most preferred
alternative, 2-Plurality returns this alternative as unique winner. As it holds for
almost all preference profiles R that |p2(R)| ≥ 2, it is easy to see that p2 is not
P̃ -manipulable by switching from a profile R to a profile R′ with f(R) ⊆ f(R′)
or f(R′) ⊆ f(R). We formalize this intuition to prove that 2-Plurality is indeed
P̃ -strategyproof.

Theorem 3.8. 2-Plurality is P̃ -strategyproof in the strict domain.

Proof: Consider an arbitrary preference profile R ∈ Sn and a voter i ∈ N . We prove
in the sequel that voter i cannot P̃ -manipulate 2-Plurality in R. We use for this
proof a case distinction with respect to p2(R) and the most preferred alternative of
voter i which we refer to as a. First, assume that a ∈ p2(R). In this case, voter i
can only P̃ -manipulate by switching to a profile R′ with p2(R

′) = {a}. However,
2-Plurality returns a only as unique winner if all voters agree that a is the best
alternative. Thus, if f(R) 6= {a}, voter i cannot PK-manipulate as there is another
voter who does not prefer a the most. Furthermore, if f(R) = {a}, voter i cannot
P̃ -manipulate either as he already obtains his most preferred alternative as unique
winner.
Thus, assume next that the most preferred alternative a of voter i is not in p2(R).
This means that there are two other alternatives b and c with n(R, b) > n(R, a)
and n(R, c) > n(R, a) and {b, c} ⊆ p2(R). As consequence, voter i cannot enforce
that a is chosen as he cannot increase the plurality score of a or reduce the plurality
score of b and c. This means that the only possibility to P̃ -manipulate is to increase
the plurality score of another alternative d. First, we consider the case that d 6∈
p2(R) and we additionally assume without loss of generality that n(R, b) ≥ n(R, c).
This means that n(R, c) > n(R, d) and voter i can only enforce that d is chosen if
n(R, c) = n(R, d) + 1. In this case, he can try to manipulate by placing d first. In
the resulting preference profile R′, it holds that n(R′, c) = n(R′, d) and c still has
the second highest plurality score. This implies that {b, c} ⊆ p2(R

′) and therefore,
this is no P̃ -manipulation for voter i. Thus, voter i cannot P̃ -manipulate by ranking
an unchosen alternative first.



60 Rank-based Social Choice Functions

Finally, assume that voter i’s most preferred alternative a is not chosen and that this
voter tries to manipulate by ranking an alternative d ∈ p2(R) first. We denote the
profile derived from this modification as R′. Observe that no alternative x ∈ A\f(R)
is in p2(R

′) as we do not increase their plurality scores. Thus, switching from R to
R′ is only a P̃ -manipulation for voter i if d is the only winner after the manipulation.
However, there is at least one other alternative that is first-ranked by a voter j 6= i
in R as otherwise the most preferred alternative of voter i is in p2(R). This implies
that |p2(R′)| > 1, which shows that voter i cannot P̃ -manipulate in this case either.
Hence, 2-Plurality is P̃ -strategyproof in each case. �

Note that it is straightforward that 2-Plurality is a refinement of the OMNI-rule.
Even more, it returns for most preference profiles only two alternatives, which means
that it is one of the most discriminating P̃ -strategyproof social choice functions.
It seems even reasonable to conjecture that the average size of the choice set of
p2 is approximately 2 if we use sufficiently many voters and alternatives. Fur-
thermore, 2-Plurality also satisfies many other desirable properties such as Pareto-
optimality and neutrality. Thus, 2-Plurality seems to be one of the most preferable
P̃ -strategyproof social choice functions in the strict domain. However, it should be
mentioned that this SCF only exploits a weakness of the set extension P̃ to achieve
P̃ -strategyproofness. This means that it still suffers from the same disadvantageous
as the Plurality-rule in practice. Therefore, we do not deem 2-Plurality as important
social choice function from a pracitcal standpoint. Nevertheless, it shows that there
can be very discriminating social choice functions that satisfy P̃ -strategyproofness.

3.3.2 Scoring Rules

In this section, we discuss the well-known class of scoring rules with respect to P̃ -
strategyproofness. These rules have often been considered in the literature, see,
e.g., [Smi73, You75, NR81, CS98, Mer03]. These results discuss various interesting
scoring rules and characterize them. Furthermore, there are also results that ana-
lyze scoring rules with respect to specific axioms. However, we are not aware of a
publication discussing scoring rules with respect to P̃ -strategyproofness. Therefore,
we analyze scoring rules with respect to this axiom and show that all non-trivial
scoring rules are P̃ -manipulable. Note that we use in the proof of this result a
large number of voters. This is no problem as one of the most important results
about scoring rules characterizes them with weak axioms but a variable electorate
[Smi73, You75]. This means that a scoring rule can be used for an arbitrary number
of voters. Consequently, it is often assumed that there is a huge number of voters
to prove a result.

Before we discuss scoring rules with respect to P̃ -strategyproofness, we formalize
their idea first. Intuitively, a scoring rule gives an alternative sj points for every
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voter who places it at rank j and chooses eventually the alternatives with maximal
score. This leads to the following formal definition.

Definition 3.15 (Scoring rules). Let c(v, i) denote a function that counts how

often the entry i appears in the vector v, and let sc(R, a, s) =
m∑
i=1

c(r∗(R, a), i) · si
denote the score of alternative a in the profile R with respect to the scoring vector
s = (s1, s2, ..., sm). A social choice function f : Sn 7→ 2A \ ∅ is a scoring rule if
there is a scoring vector s = (s1, s2, ..., sm) such that f chooses the alternatives with
maximal score, i.e., f(R) = {a ∈ A | @b ∈ A : sc(R, b, s) > sc(R, a, s)} for all
preference profiles R ∈ Sn.

A well-known example of a scoring rule is Borda’s rule which is defined by the scoring
vector s = (m − 1,m − 2, ..., 0). For more details see, e.g., [Bor81, NR81, Saa].
Another important scoring rule is the Plurality-rule which is defined by the scoring
vector (1, 0, ..., 0) [Lep92, Chi96]. Note that this rule has already been discussed in
Section 3.3.1.
Furthermore, scoring rules can behave rather unexpected depending on their scoring
vectors. For instance, if there is an index i with si < si+1, an alternative might not
be chosen after it is reinforced by a voter. Thus, a scoring rule is monotonic if and
only if s1 ≥ s2 ≥ ... ≥ sm. Unfortunately, this observation does not exclude the
scoring rule defined by the vector s with s1 = s2 = ... = sm. This scoring rule
returns always all alternatives and therefore, we call it trivial. Hence, we can avoid
this unreasonable social choice function by discussing non-trivial ones. Another
venue for defining reasonable scoring rules is to discuss strictly monotonic ones, i.e.,
scoring rules that are defined by a scoring vector s with s1 > s2 > ... > sm. This
definition also excludes the trivial scoring rule.
Note that the monotonicity of a scoring rule strongly influences its behavior. There-
fore, we distinguish scoring rules with respect to their scoring vectors in order to
analyze their P̃ -strategyproofness. As consequence, the proof of the next theorem
stating that every non-trivial scoring rule is P̃ -manipulable if there are sufficiently
many voters and at least three alternatives requires a case distinction.

Theorem 3.9. Every non-trivial scoring rule is P̃ -manipulable if there are suffi-
ciently many voters and m ≥ 3 alternatives.

Proof: Consider an arbitrary non-trivial scoring rule f defined by the scoring vector
s = (s1, s2, ..., sm). We prove the theorem by constructing a preference profile in
which a voter can P̃ -manipulate.
As the first step of the proof, we construct a preference profile Ra ∈ S(m−1)! such
that f(Ra) = {a} for an arbitrary alternative a ∈ A. Thus, let j denote an index
with sj ≥ sk for all k ∈ {1, ...,m}. Then, every voter places a at rank j in Ra,
which implies that a receives the maximal score. Hence, we have to ensure that
no other alternative receives the same number of points. Therefore, we place the
remaining alternatives such that no voter orders them in the same way, i.e., all
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(m−1)! permutations of these alternatives are used. In the profile Ra, alternative a

obtains (m−1)!·sj points, whereas every other alternative obtains (m−2)!·
m∑

k=1,k 6=j
si

points. This is strictly less than the score of a as sj > si for at least one index i since
f is a non-trivial scoring rule. Moreover, let Rb denote a profile constructed in the
same way as Ra such that b wins uniquely. It follows that f(Rab) = {a, b} where the
profile Rab ∈ S2·(m−1)! is the concatenation of Ra and Rb. We increase the difference
between the score of a and b and the remaining alternatives by adding copies of Rab

to the profile until a single voter cannot make an alternative c ∈ A\{a, b} win. This
leads to the profile R∗ which we use as basis for all subsequent profiles.

Next, we make a case distinction with respect to the monotonicity of f . Firstly,
assume that f is non-monotonic. This means that there is an i ∈ {1, ...,m − 1}
such that si < si+1. In this case, we add a single voter i∗ with r(Ri∗ , a) = i and
r(Ri∗ , b) = i + 1 to the profile R∗ to obtain our final profile R1. Because a and b
have the same score in R∗ and si < si+1, f(R1) = {b}. However, if voter i∗ places
alternative a at rank i + 1 and b at rank i, then the unique winner is a. This is a
P̃ -manipulation for voter i∗ as he prefers a to b. Thus, every non-monotonic scoring
rules is P̃ -manipulable.

Secondly, assume that f is a monotonic but not strictly monotonic scoring rule.
Thus, f is defined by a scoring vector s such that si ≥ si+1 for all i ∈ {1, ...,m− 1}
and there is an index j ∈ {1, ...,m− 1} with sj = sj+1. Furthermore, we can deduce
from the non-triviality of f that there is an index j∗ such that sj∗−1 > sj∗ = sj∗+1

or sj∗ = sj∗+1 > sj∗+2. In this case, we add a new voter i∗ with r(Ri∗ , a) = j∗ and
r(Ri∗ , b) = j∗ + 1 to the profile R∗ to obtain the new profile R2. As s∗j = sj∗+1, it

follows that f(R2) = {a, b}. If sj∗−1 > sj∗ , voter i∗ can P̃ -manipulate by placing a
at rank j∗ − 1. If sj∗+1 > sj∗+2, he can P̃ -manipulate by placing b at rank i+ 2. In
both cases, alternative a wins uniquely as it receives more points than b and voter
i∗ cannot make any other alternative win by construction. As {a} P̃i∗ {a, b}, this
is indeed a P̃ -manipulation for voter i∗. Thus, every non-trivial and monotonic but
not strictly monotonic social choice function is P̃ -manipulable.

Finally, assume that f is strictly monotonic, i.e., s1 > s2 > ... > sm. In this case,
we use the preference profile R3 = R∗ to show that a voter can P̃ -manipulate. It
follows from the construction of R∗ that half of the voters prefer a the most and
half of the voters prefer b the most as s1 is maximal. Furthermore, as m ≥ 3 and
all permutations are used, there is a voter i∗ with r(R3

i∗ , a) = 1 and r(R3
i∗ , b) = 2.

This voter can P̃ -manipulate by weakening b. If he switches to a preference R′i∗ with
r(R′i∗ , b) = 3, the score of b decreases as f is strictly monotonic. This leads to a
preference profile R′ in which a receives strictly more points than b. Furthermore,
the alternative which has been swapped with b by voter i∗ cannot win as it receives
still a smaller score than a in the profile Ra and the same score as a in the profile
Rb. Thus, it holds that f(R′) = {a}. Therefore, it is a P̃ -manipulation for voter i∗

to switch from R3 to R′ as he prefers a strictly to b. Thus, also strictly monotonic
scoring rules are P̃ -manipulable and therefore, we can conclude the theorem. �
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R1 :

1 1 1 1 1
b c a c a
a a b b b
c b c a c

R2 :

1 1 1 1 1
a a b b c
b c a c a
c b c a b

R3 :

1 1 1 1
a a b b
b c a c
c b c b

Figure 3.8: Preference profiles illustrating the proof of Theorem 3.9

First, we discuss Figure 3.8 which shows preference profiles illustrating the proof of
the last theorem. Thus, consider the scoring rule f1 defined by the scoring vector
s1 = (1, 2, 0) and the profile R1. This choice means that s12 is the maximal entry in s1

and that f(R1) = {b}. Moreover, note that the first four voters in R1 form the profile
R∗ = Rab, i.e., R1

−5 = R∗. Finally, voter 5 can P̃ -manipulate by placing b first and
a second. As consequence of this change, f1 chooses alternative a as unique winner
which is the most preferred alternative of voter 5. This shows how to P̃ -manipulate
a non-monotonic scoring rule. Next, consider the preference profile R2 and the
scoring rule f2 defined by the scoring vector s2 = (2, 1, 1). As consequence of this
choice, f2 is a monotonic but not strictly monotonic scoring rule and f2(R

2) = {a, b}.
Furthermore, voter 5 can P̃ -manipulate by exchanging the alternatives a and c in his
preference. This modification leads to a new preference profile R′ with f2(R

′) = {a}.
This is a P̃ -manipulation as {a} P̃5 {a, b}. Finally, we discuss the profile R3 together
with the scoring rule f3 defined by the scoring vector s3 = (2, 1, 0). Note that f3
is a strictly monotonic scoring rule as s31 > s32 > s31 and that f3(R

3) = {a, b}.
Furthermore, voter 1 can P̃ -manipulate f3 by exchanging b and c in his preference.
After this modification f3 chooses a as unique winner, which is a more preferable
outcome for voter i. Thus, this example shows how to P̃ -manipulate the various
types of scoring rules.

Furthermore, note that the condition that m ≥ 3 is indeed required for the validity
of this theorem. If m = 2, the majority rule defined by the scoring vector s = (1, 0)
can be shown to satisfy P̃ -strategyproofness. Furthermore, it should be mentioned
that the preference profiles R1 and R2 constructed in the proof of Theorem 3.9 re-
quire often a huge number of voters. However, this number of voters is for our proof
necessary to show that non-monotonic and monotonic but not strictly monotonic
scoring rules are P̃ -manipulable. Nevertheless, it might be possible to find other
constructions that rely on less voters. In contrast, we can use smaller preference
profiles to show that strictly monotonic scoring rules are P̃ -manipulable. In partic-
ular, every profile in which both a and b are ranked first by half of the voters and
second by the other half of the voters suffices for the proof.

Finally, observe that the proof of Theorem 3.9 shows important ideas that can be
used for many social choice functions. In particular, its displays one of the most
common situations in which rank-based social choice functions are P̃ -manipulable:
Two alternatives are chosen and a voter can break this tie by reinforcing his most
preferred winner or weakening his least preferred winner. This idea can be used to
prove the P̃ -manipulability of many SCFs and we also see it in subsequent sections.
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3.3.3 Dominance Rules

In this section, we introduce a new idea for defining rank-based social choice func-
tions based on comparing the rank vectors of alternatives to determine the choice
set. This idea leads to a class of rank-based social choice functions which we call
dominance rules. This class contains many rank-based social choice functions and
therefore, it seems interesting to analyze it in more detail.

The intuition of dominance rules is to use a transitive and anti-symmetric relation
on the rank vectors to determine the choice set. In more detail, we choose the
alternatives whose rank vectors are maximal with respect to the considered relation.
For instance, we can define a dominance rule with the help of the dominance relation
D discussed in Definition 3.6. In contrast to independent rank-based social choice
functions, we do not compare the rank vectors with a pre-defined threshold vector
but with each other to determine the best alternatives. A formal definition of
dominance rules is presented in the sequel.

Definition 3.16 (Dominance rules). A social choice function f : Sn 7→ 2A \ ∅ is
a dominance rule if there is a transitive and anti-symmetric relation D on the rank
vectors such that f(R) = {a ∈ A | @b ∈ A \ {a} : bDa}.

Informally, this definition means that a dominance rule only chooses alternatives
that are maximal with respect to the considered relation. We pick these alterna-
tives as they are uncontroversially the best ones with respect to the chosen relation.
Observe that this idea is inspired by a well-known axiom called transitive rational-
izatiblity which states that a social choice function implies for a given preference
profile a complete and transitive relation on the alternatives. We relax this axiom by
dismissing the completeness of the relation and adapt it to rank-based social choice
functions which results in the idea of dominance rules.

Note that we have already seen many dominance rules in the previous sections. For
instance, scoring rules are dominance rules that compare rank vectors with the help
of their scores. Furthermore, even threshold and multi-threshold rules are dominance
rules as we can define a suitable relation. In particular, a vector a is preferred to
another vector b with respect to this relation if a dominates the threshold vector v
and b does not dominate v. Thus, we see that this class contains many important
social choice functions. However, formalizing scoring rules or threshold rules as
dominance rules seems unnatural and therefore, we do not intend to discuss them
during this section.

In contrast, we focus on dominance rules that arise by considering natural relations
on vectors such as the dominance relation introduced in Definition 3.6. Another
example of such a dominance rule is induced by the stochastic dominance relation
DS. A vector v dominates another vector u with respect to DS if for all j ∈ {1, ..., n}

it holds that
j∑
i=1

vi ≤
j∑
i=1

ui. This relation is important in many settings as it allows
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to compare many vectors with each other. Furthermore, there are many more well-
known relations on vectors that lead to dominance rules.
However, as we see in the sequel, most of these approaches fail to be P̃ -strategy-
proof. The intuitive reason for this is that many relations are intended to compare
as many vectors as possible. As consequence, the corresponding dominance rules
choose rather small choice sets and therefore, it is easy to P̃ -manipulate them. For
formalizing this intuition, we focus on dominance extensions of D which are defined
as follows.

Definition 3.17 (Dominance extension of D). Let fD denote the dominance
rule defined by the dominance relation D. A social choice function f is a dominance
extension of D if f(R) ⊆ fD(R) for all preference profiles R.

Note that every dominance rule that is defined by a transitive and anti-symmetric
relation D̃ with D ⊆ D̃ is a domination extension of D. This is also the intuition
in the name of these social choice functions as they are defined by a relation D̃
that extends D. For instance, the stochastic dominance relation DS satisfies that
D ⊆ DS and therefore, its corresponding dominance rule is a dominance extension
of D. Further important instances of dominance extensions of D are strictly mono-
tonic scoring rules. Thus, we see that many interesting social choice functions are
dominance extensions of D.
The reason why we introduce dominance extensions of D is that they allow us to
discuss many dominance rules by focusing on the dominance rule fD defined by
the dominance relation D. As we prove next, this dominance rule turns out to
be P̃ -manipulable, which implies that all dominance extensions of D are also P̃ -
manipulable as they choose similar choice sets for many profiles.

Theorem 3.10. No dominance extension of D is P̃ -strategyproof if m ≥ 3 and
n ≥ 4.

Proof: Consider an arbitrary social choice function f : Sn 7→ 2A \ ∅ that is a dom-
inance extension of D. In the sequel, we construct a preference profile R in which
a voter can P̃ -manipulate f . Furthermore, we focus on the case that m = 3 as
we can assume that all other alternatives are not among the three most preferred
alternatives of any voter in R. This implies that these alternatives are dominated
with respect to D and therefore, they are not chosen by any dominance extension
of D.
We make a case distinction with respect to the number of voters n to prove this
theorem. First, assume that n is even. In this case, consider the profile R1 shown
in Figure 3.9. In this profile, one half of the voters submits a � b � c and the other
half of the voters submits b � a � c. It follows that r∗(R1, a) = r∗(R1, b) and that
the rank vector of c is dominated by the rank vector of both a and b. This implies
that f(R1) ⊆ {a, b}. In the sequel, we assume that a ∈ f(R1) because the case
b ∈ f(R1) is symmetric. If a is chosen, then the voters with b � a � c can improve
by switching the position of a and c. As result of this manipulation, the rank vector
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R1 :

n/2 n/2
a b
b a
c c

R2:

(n− 3)/2 (n− 3)/2 1 1 1
a b c b a
b a b a c
c c a c b

Figure 3.9: Preference profiles used in the proof of Theorem 3.10

of b dominates both the rank vector of a and c with respect to D. Therefore, b is the
unique winner after this modification. This is a P̃ -manipulation as the manipulator
prefers b strictly the most. Thus, no dominance extension of D is P̃ -strategyproof
if m ≥ 3, n ≥ 2 and n is even.
Next, we focus on the case that n is odd. In this case, consider the profile R2 shown
in Figure 3.9. This profile consists of (n − 3)/2 voters who submit a � b � c,
another (n − 3)/2 voters who submit b � a � c and three voters who submit a
Condorcet cycle. Observe that r∗(R1, a) = r∗(R1, b) and that the rank vector of c is
dominated by the rank vector of both a and b. Thus, f(R2) ⊆ {a, b}. We assume
again without loss of generality that a ∈ f(R2) as the case b ∈ f(R2) is symmetric.
In this situation, every voter i with b � a � c can P̃ -manipulate by exchanging a
and c in his preference. As consequence, the rank vector of b dominates all other
rank vectors with respect to D and therefore, b is the unique winner. As b is voter
i’s most preferred alternative, this is a P̃ -manipulation. Therefore, we can conclude
that every dominance extension of D is P̃ -manipulable if m ≥ 3, n ≥ 5 and n is
odd. �

Observe that the proof does not work if n = 3 because the profile R2 reduces to a
Condorcet cycle in this case. This means that c is not dominated with respect to D
anymore and might be chosen. Even more, the Condorcet cycle is the only profile
in which the rank vectors of a and b are equal if n = 3 and m = 3. As this is a key
idea of the proof, dominance extensions of D may be P̃ -strategyproof if n = 3. In
contrast, the profile R1 still suffices to show that every domination extension of D
is P̃ -manipulable if n = 2 and m ≥ 3. The reason for this that it is easier to ensure
that a and b have the same rank vector if the number of voters is even. Furthermore,
if m < 3, almost all dominance extensions of D are equal to the majority rule which
chooses the alternatives that are first-ranked by the most voters. As it is a well-
known result that this social choice function is P̃ -strategyproof, it follows that many
dominance extensions of D are P̃ -strategyproof if m ≤ 2. Thus, the axioms used
for Theorem 3.10 are independent.
Note that the last theorem leads to the question whether there is any natural relation
on vectors that leads to a P̃ -strategyproof dominance rule. As it is clear that this
relation must be rather weak, we try to find one that is contained in D. This
approach leads to the weak dominance relation defined next.
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Definition 3.18 (Weak dominance relation). A vector u = (u1, ..., un) weakly
dominates another vector v = (v1, ..., vn), denoted by u DW v, if ui < vi for all
i ∈ {1, ..., n}.

The weak dominance relation demands that every component of the dominating
vector is strictly smaller than the corresponding component of the dominated vector.
In contrast, the dominance relation D only requires that every component in the
first vector is not larger than the corresponding alternative in the second vector.
Thus, it follows directly that DW ( D. On the one side, this means that DW leads
to a rather indecisive dominance rule. On the other hand, we can prove that this
dominance rule is indeed P̃ -strategyproof.

Theorem 3.11. The dominance rule fDW : Sn 7→ 2A \ ∅ defined by the weak domi-
nance relation DW is P̃ -strategyproof.

Proof: This theorem follows from the observation that fDW is a coarsening of the
OMNI-rule. This is true because an alternative a is chosen by fDW if it is first-
ranked by at least one voter. If a voter prefers a the most, then r∗(R, a)1 = 1
and therefore, there is no alternative b with r∗(R, b)1 < r∗(R, a)1. Furthermore,
if OMNI(R) = {a} for an alternative a ∈ A, then every voter prefers a the most.
This means that fDW (R) = {a} as r∗(R, a) = (1, ..., 1) and the rank vector of every
other alternative is in {2, ...,m}n. Thus, we can use a remark of [Bra15] to derive
the P̃ -strategyproofness of fDW . This remark states that a coarsening g of a P̃ -
strategyproof SCF f is also P̃ -strategyproof if f(R) = g(R) for all profiles R with
|f(R)| = 1. If we choose the OMNI-rule as f and fDW as g, all requirements of this
result are met and therefore, fDW is P̃ -strategyproof. �

Note that this observation is interesting for various reasons. First of all, it shows
that there are P̃ -strategyproof dominance rules that are not independent rank-based
SCFs. Furthermore, fDw is another rank-based and P̃ -strategyproof social choice
function that is non-imposing. Even more, it follows from results in [Las96] that the
weak dominance rule fDW is Pareto-optimal. Therefore, fDW is the first social choice
function discussed in this chapter that is rank-based, P̃ -strategyproof and Pareto-
optimal and that does not refine the OMNI-rule. Thus, fDW might be the coarsest
P̃ -strategyproof and rank-based social choice function that is Pareto-optimal.

3.4 Rank-based Social Choice Functions in the Weak
Domain

Rank-based social choice functions have hitherto not been considered in the weak
domain. However, ties are often necessary for properly modelling preferences. Even
more, weak preferences often allow for stronger results. Therefore, we discuss in
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this section ideas on how to generalize the rank to the weak domain. However, it
is not straightforward to extend the definition of the rank of an alternative from
the strict domain to the weak one as it is not clear how to handle ties. Therefore,
we propose different rank extensions, i.e., generalizations of the rank to the weak
domain, in Section 3.4.1 and discuss their properties. Next, we try to find rank-
based social choice functions in the weak domain that are both Pareto-optimal and
P̃ -strategyproof in Section 3.4.2. Unfortunately, it turns out that there is no such
social choice function if there are at least four alternatives and three voters.

3.4.1 Ranks of Alternatives in the Weak Domain

In this section, we discuss various ideas on how to extend the concept of ranks and
rank-based social choice functions to the weak domain. As there are multiple feasible
ideas for approaching this problem, we propose various methods for generalizing the
rank to the weak domain. We refer to those ideas as rank extensions to clearly
distinguish them from the rank defined for the strict domain.
Before we discuss ideas for implementing rank extensions, we present a short list
of criteria that a rank extension should satisfy. We do not claim that this list is
complete or formally correct as its main goal is to provide an intuition about rank
extensions. Firstly, a rank extension should satisfy that if a voter is indifferent
between two alternatives, they obtain the same rank. Secondly, if a �i b in the
preference of voter i, then a should have a smaller rank than b. Lastly, a rank
extension should coincide with the rank in the strict domain. As these conditions
are rather weak, there are many possible rank extensions. Therefore, we propose
four different ideas that satisfy these conditions in the sequel.

Definition 3.19 (Rank extensions). Given an arbitrary preference Ri ∈ W and
an arbitrary alternative a ∈ A, we define the following rank extensions:

• r+(Ri, a) = 1 + |{x ∈ A | x �i a}|.

• rr(Ri, a) = 1 + |{X ⊆ A |∀x ∈ X : x �i a ∧ ∀x, y ∈ X : x ∼i y
∧ ∀x ∈ X, y ∈ A \X : x �i y ∨ y �i x}|.

• r−(Ri, a) = 1 + |{x ∈ A | x �i a}|.

• r=(Ri, a) = 1 + |{x ∈ A | x �i a}|+ 1
2
|{x ∈ A \ {a} | x ∼i a}|.

Based on a rank extension, we can define the rank vector, the rank matrix and
rank-based social choice functions as presented in Definition 3.2, Definition 3.3 and
Definition 3.4 where we use the rank extension instead of the rank. The used rank
extension is always indicated in the index, e.g., r∗+(R) denotes the rank matrix of R
where r+ is used as rank extension. Furthermore, instead of stating a social choice
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function is rank-based, we write r+-based, r−-based, etc. to indicate which rank
extension is used.

Next, we discuss the intuition behind the different rank extensions. The idea of r+
is to treat every alternative a as the best alternative within its indifference class
{x ∈ A | x ∼i a}. Thus, it is irrelevant for the rank of an alternative a whether it
is strictly or weakly preferred to an alternative b. A benefit of this rank extension
is that the best alternatives of every voter have rank 1. This property allows for a
straightforward extension of threshold rules to the weak domain as it ensures that
these rules are feasible. For instance, we can define an extension of the OMNI-
rule to the weak domain with the rank vector v = (1,m, ...,m) and r+ as rank
extension. This social choice function returns all alternatives that are among the
most preferred ones of at least one voter. Note that many theorems proven in the
strict domain also hold in the weak domain if we use r+ as rank extension. For
instance, the characterization of OMNI carries over to the weak domain if we use
r+. One disadvantage of this rank extension is that it does not always react to the
weakening of an alternative. For instance, consider the case where A = {a, b}. Then,
the rank of alternative a is 1 if a voter submits a � b and if he submits a ∼ b even
though the position of a in the second preference seems weaker. Finally, it should
be mentioned that this rank extension is often used in practice. For instance, r+ is
often used in tables of sport competitions if two teams are equally good.

The second rank extension rr arises naturally if we consider the preference of a
voter as a linear list of indifference classes, i.e., sets X ⊆ A such that x ∼ y for
all alternatives x, y ∈ X and x � y or y � x for all x ∈ X, y ∈ A \ X. The idea
of this definition is to assign the rank directly to the indifference classes instead of
the alternatives. If X denotes the j-th indifference class in the preference of voter
i, the set X is assigned rank j. This means that every alternative in X also has
rank j. More informally, the rank of an alternative with respect to rr denotes the
row in which it is written if we represent a preference profile as table. Note that
this rank extension is rather similar to r+ and it holds for all preferences Ri ∈ W
that rr(Ri, a) ≤ r+(Ri, a). The difference between rr and r+ is that the former
one avoids large gaps in the rank, e.g., if Ri = a1 ∼ a2 ∼ ... ∼ ak � b, then
r+(Ri, b) = k+ 1, whereas rr(Ri, b) = 2. It clearly depends on the application of the
rank extension whether this behavior is advantageous. Furthermore, observe that
the rank extension rr suffers from the same drawback as r+: If we switch from a � b
to a ∼ b, the rank of a does not change. Finally, it should be mentioned that this
rank extension is also often used in practice. For instance, if we sort items, such as
books or clothes, according to our preference, we usually refer to the different stacks
as most preferred items, second most preferred items, etc. This is exactly the idea
of rr.

The intuition behind the third rank extension r− is similar to r+. However, instead
of treating every alternative as the best alternative within its indifference class, we
treat it as the worst one. Thus, the rank of an alternative a with respect to r−
only depends on the number of alternatives that are strictly less preferred than a
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R1 : R2 : R3 : R4 :
1 1 1
a a b, c
b b d
c c a
d d

1 1 1
a a, b c
b c b
c d d
d a

1 1 1
a a b, c
b b, c d
c d a
d

1 1 1
a a, b c
b c b, d
c d a
d

R5 : R6 : R7 : R8 :
1 1 1

a, b, c, d a a
b c
c, d b, d

1 1 1
b, c a a
a, d b, c, d b, c, d

1 1 1
a b b

b, c, d a d
d a
c c

1 1 1
b b a

a, c, d a d
d b
c c

Figure 3.10: Preference profiles showing the independence of all rank extensions

and it is irrelevant whether a voter submits a ∼ b or b � a. Note that this rank
extension cannot be used to define reasonable threshold rules as every alternative
has rank m if a voter is indifferent between all alternatives. This is also reflected
in the following observation: If a voter switches from a � b to a ∼ b, the rank of b
does not increase. This clearly contradicts the intuition of a rank. Nevertheless, this
rank is sometimes used for generalizing scoring rules to the weak domain and it is
useful if the quality of an alternative a only depends on the number of alternatives
that are strictly worse than a.

The last rank extension r= can be seen as a mixture of r− and r+. It associates
an alternative with the average rank that it obtains if we transform a preference in
the weak domain to a preference in the strict domain by breaking ties uniformly at
random. The main advantage of this approach is that the rank of a decreases and
the rank of b increases if we switch from a � b to a ∼ b. Thus, it seems that this
definition results in the most reasonable rank extension as it formalizes the intuition
of the rank of an alternative very well. Unfortunately, this definition leads to a rather
weak variant of rank-basedness as only few preference profiles have the same rank
matrix with respect to r=. Another problem is that we cannot derive the number of
alternatives that are preferred to a from r=(Ri, a). For instance, the rank of c with
respect to r= is 3 in both R1 = a � b � c � d � e and R2 = a ∼ b ∼ c ∼ d ∼ e.
Nevertheless, it follows from a result in [Bra17] that this rank extension can be used
to define Borda’s rule in the weak domain.

Next, we illustrate the different rank extensions with an example which also shows
that the corresponding definitions of rank-basedness are all independent from each
other. Therefore, consider the preference profiles R1 to R8 shown in Figure 3.10.
First, observe that r∗+(R1) = r∗+(R2) because the only difference in these profiles is
the rank of b in the preferences of voter 2 and 3. Voter 2 places b second in R1

and first in R2 and voter 3 moves b vice versa. Thus, r∗+(R1, b) = r∗+(R2, b) and
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the rank vectors of the remaining alternatives with respect to r+ do not change
either. In contrast, r∗−(R1, a) 6= r∗−(R2, a) and r∗=(R1, a) 6= r∗=(R2, a) as the rank of
a gets larger with respect to r− and r= when voter 2 switches from a � b to a ∼ b.
Furthermore, r∗r(R

1, a) 6= r∗r(R
2, a) as a appears in R1 three times in the first row

and once in the third, whereas it is placed in the fourth row in R2
3. Thus, we see

that R1 and R2 only have the same rank matrix with respect to r+.

Moreover, note that r∗r(R
3) = r∗r(R

4) as every alternative appears in the same rows
of R3 and R4. The only difference between R3 and R4 is the position of b in the
preferences of voter 2 and 3. For going from R3 to R4, voter 2 reinforces b from
rank 2 to rank 1 and voter 3 equalizes this swap. Thus, r∗r(R

3, b) = r∗r(R
4, b)

and it is easy to see that this also holds for the other alternatives. In contrast,
r∗−(R3, a) 6= r∗−(R4, a) and r∗=(R1, a) 6= r∗=(R2, a) because voter 2 switches from
a � b to a ∼ b, which implies that the rank of a increases with respect to r− and r=.
Finally, r∗+(R3, d) 6= r∗+(R4, d) because the rank of d with respect to r+ decreases
from 3 to 2 in the preference of voter 3 and no other change involves d. Thus,
r∗r(R

3) = r∗r(R
4) and no other rank extension allows this equality.

Furthermore, it holds that r∗−(R5) = r∗−(R6) and that this equivalence is not true
for any other rank extension. The equality follows as r−(R5

1, x) = 4 for all x ∈ A as
voter 1 is indifferent between all alternatives. In contrast, r−(R6

1, b) = r−(R6
1, c) = 2

and the other two alternatives still have rank 4 in R6
1. This change is possible due

to voter 2 and 3 who ensure that the rank vector of no alternative changes. More
precisely, it holds that r−(R5

2, b) = r−(R5
3, c) = 2 and r−(R6

2, b) = r−(R6
3, c) = 4

as b and c are not strictly preferred to any other alternative in R6
2 and R6

3. Thus,
r∗−(R5, x) = r∗−(R6, x) for x ∈ {b, c} and since r−(R5

i , y) = r−(R6
i , y) for all voters

i ∈ N and alternatives y ∈ {a, d}, it holds that r∗−(R5) = r∗−(R6). Moreover, observe
that r∗+(R5, d) 6= r∗+(R6, d) and r∗r(R

5, d) 6= r∗r(R
6, d) because d is only first or third

ranked in R5 and second ranked in R6
2 with respect to these rank extensions. Finally,

r∗=(R5, b) 6= r∗=(R6, b) as b receives a rank of 1.5 in R6
1 and r(R5

i , b) ≥ 2 for all voters
i ∈ N . Thus, R5 and R6 are only related by r−-basedness.

Finally, we show that r∗=(R7) = r∗=(R8) and that this equality does hold for any
other rank extension. First note that the only difference between R7 and R8 are
the preferences of voter 1 and 3: In R7 voter 1 prefers a the most and is indifferent
between all other alternatives, which means that r=(R7

1, a) = 1 and r=(R7
1, x) = 3

for all x ∈ A \ {a}. In R8 voter 1 exchanges the roles of a and b and therefore, it
holds that r=(R8

1, b) = 1 and r=(R8
1, x) = 3 for all x ∈ A \ {b}. Thus, only the rank

vector of a and b are modified, which is equalized by voter 4 who ranks a first and
b third in R7 and vice versa in R8. As consequence, r∗=(R7) = r∗=(R8). In contrast,
r∗+(R7, a) 6= r∗+(R8, a) and r∗r(R

7, a) 6= r∗r(R
8, a) as voter 2 weakens a from rank 1 to

rank 2 while voter 4 strengthens a from rank 3 to rank 1 with respect to these rank
extensions. Furthermore, r∗−(R7, a) 6= r∗−(R8, a) because voter 2 weakens a from
rank 1 to rank 4 and voter 4 strengthens a from rank 3 to rank 1 with respect to r−.
Thus, we can finally derive that all rank extensions lead to independent definitions
of rank-basedness in the weak domain.
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As already discussed, every rank extension has its advantageous. However, a con-
sequence of the independence of the different variants of rank-basedness is that we
need for every rank extension a separate proof for a statement. This contradicts
the intuition that it should not matter which rank extension is used for a theorem.
Therefore, we develop another rather technical rank extension that refines the ones
introduced in Definition 3.19. The main idea for this extension is that we do not
require that the rank is a number for the definition of rank-based social choice func-
tions. Instead, we use a tuple stating how many alternatives are strictly preferred
to the considered alternative and how many alternatives are equally good. We refer
to this idea as rank tuple and formalize it next.

Definition 3.20 (Rank tuple of an alternative). The rank tuple r2 of an alter-
native a in the preference Ri ∈ W is defined as

r2(Ri, a) = (|{x ∈ A | x �i a}|, |{x ∈ A \ {a} | x ∼i a}|) .

Observe that we still use the standard definition of the rank vector r∗2(R, a) and
the rank matrix r∗2(R) in which we sort the rank tuples in lexicographical ascending
order. As consequence, the only difference between the rank extensions presented in
Definition 3.19 and the rank tuple is that the elements of the rank vector r∗2(R, x)
and the rank matrix r∗2(R) are tuples instead of numbers.
On the one hand, this definition does not agree with the intuitive understanding
of the rank anymore as it should be a number. However, we do not require this
intuition for the definition of rank-based social choice functions. These functions
only use the rank matrix for deciding the outcome of an election. However, it is
completely unclear how they choose the winners based on this information. From
this perspective, the rank tuple is more desirable than the previously discussed rank
extensions as it provides more information. We formalize this observation in the
following lemma by showing that we can recompute the rank extensions r+, r− and
r= from the rank tuple.

Lemma 3.6. It holds for all preference profiles R,R′ ∈ Wn with r∗2(R) = r∗2(R
′)

that r∗−(R) = r∗−(R′), r∗+(R) = r∗+(R′) and r∗=(R) = r∗=(R′).

Proof: This lemma follows from the observation that the rank extensions r−, r+ and
r= only depend on the rank tuple r2. Therefore, it is possible to define a mapping
from the rank tuple to these rank extensions. Explicitly, these mappings are defined
for all alternatives a ∈ A and preferences Ri ∈ W as follows:

• We obtain the rank extension r−(Ri, a) from the rank tuple r2(Ri, a) = (x1, x2)
by applying f−(x1, x2) = 1 + x1 + x2.

• We obtain the rank extension r+(Ri, a) from the rank tuple r2(Ri, a) = (x1, x2)
by applying f+(x1, x2) = 1 + x1.

• We obtain the rank extension r=(Ri, a) from the rank tuple r2(Ri, a) = (x1, x2)
by applying f=(x1, x2) = 1 + x1 + 0.5x2.
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R1 :

1 1
a, b a
d b
c c

d

R2 :

1 1
a a, b
b c
d d
c

Figure 3.11: Preference profiles showing the independence of r2-basedness and rr-
basedness

As consequence of these mappings, we can derive that r2(Ri, a) = r2(R
′
i, a) implies

that r−(Ri, a) = r−(R′i, a), r+(Ri, a) = r+(R′i, a) and r=(Ri, a) = r=(R′i, a) for all
alternatives a ∈ A and preferences Ri ∈ W . The reason for this is that we can simply
apply the respective mapping to both sides of the equation. Consequently, it follows
that r∗2(R) = r∗2(R

′) implies r∗−(R) = r∗−(R′), r∗+(R) = r∗+(R′) and r∗=(R) = r∗=(R′)
for all preference profiles R,R′ ∈ Wn. �

Observe that this lemma is not true for the rank extension rr. Consider the prefer-
ence profiles R1 and R2 shown in Figure 3.11 for a counter example. It holds that
r∗2(R

1) = r∗2(R
2) as these profiles only differ in which voter prefers a strictly to b and

which voter is indifferent between those alternatives. However, r∗r(R
1, c) 6= r∗r(R

2, c)
as c appears in R1 twice in the third row implying that r∗r(R

1, c) = (3, 3), whereas
rr(R

2
1, c) = 4. Thus, it follows that r∗r(R

1) 6= r∗r(R
2).

The last two observations lead to the question on the difference between the rank
extension rr and the other rank extensions. The answer to this is that r+(Ri, a),
r−(Ri, a) and r=(Ri, a) only depend on the number of alternatives that are strictly
preferred to a in Ri and the number of alternatives that are indifferent to a in
Ri. This dependency can be formalized by stating that these rank extensions only
depend on the rank tuple. In contrast, rr(Ri, a) additionally depends on the pref-
erences between alternatives that are strictly preferred to a. This is also the main
problem in the example shown in Figure 3.11. However, in many cases this depen-
dency is not desirable and therefore, we want to distinguish these two types of rank
extension. Thus, we introduce the class on r2-dependent rank extensions.

Definition 3.21 (r2-dependent rank extensions). A rank extension rx is r2-
dependent if there is a function f such that f(r2(Ri, a)) = rx(R, a) for all preferences
Ri ∈ W and alternatives a ∈ A.

It follows from Lemma 3.6 that r+, r− and r= are r2-dependent rank extensions.
Another consequence of this definition is that we can discuss all r2-dependent social
choice functions in one theorem if we work with r2-basedness in the proof. The reason
for this is that if r∗2(R) = r∗2(R

′) for two profiles R,R′ ∈ Wn, then r∗x(R) = r∗x(R
′)

for every r2-dependent rank extension rx as we simply can apply the mapping from
r2 to rx as explained in the proof of Lemma 3.6. Thus, we have found a convenient
way for working with rank extensions. However, note that rr is no r2-dependent
rank extensions. Thus, every result for rr requires a separate proof.
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Finally, note that we cannot think of any other reasonable rank extension but rr
that is not r2-dependent. This means that we cover all reasonable rank extensions
if we discuss r2-dependent rank extensions and rr.

3.4.2 Rank-basedness and P̃ -strategyproofness in the Weak
Domain

After discussing various rank extensions, we focus on properties of rank-based so-
cial choice functions in the weak domain. In particular, we are interested in P̃ -
strategyproof social choice functions that are rank-based and that try to choose
small choice sets. We formalize the latter condition by using Pareto-optimality.
Since there are not that many rank-based social choice functions that are both
Pareto-optimal and P̃ -strategyproof in the strict domain, it seems reasonable to
conjecture that there are no such functions in the weak domain. We prove as main
result of this section that this conjecture is true for all rx-based social choice func-
tions where rx denotes either rr or an arbitrary r2-dependent rank extension.
However, note that this impossibility works only if there are at least 4 alternatives.
Therefore, we discuss first the case that m ≤ 3. In this situation, we can show
that the Pareto-rule, i.e., the SCF that chooses all Pareto-optimal alternatives, is
r2-based. Thus, there is a r2-based social choice function that is both Pareto-optimal
and P̃ -strategyproof if m ≤ 3.

Lemma 3.7. The Pareto-rule is r2-based, Pareto-optimal and P̃ -strategyproof if
m ≤ 3.

Proof: First note that the Pareto-rule is known to be Pareto-optimal and P̃ -strategy-
proof in the weak domain [BSS]. Thus, we only need to prove that it is possible to
decide whether an alternative is Pareto-dominated in a profile R based on r∗2(R). For
showing this, we construct a preference profile for a given r2-rank matrix Q. Note
that we claim in the sequel often that some preferences are determined uniquely by
Q. This means only that there is a voter with the discussed preference, but it is not
clear which voter submits the preference. This is no problem as the Pareto-rule is
anonymous.
Next, we discuss the entries of Q in detail and distinguish the three possible values
for m. First, it should be mentioned that m = 1 is trivial as the single alternative is
always the unique winner. Even more, Q uniquely specifies all preferences if m = 2
as Q consists only of three different entries: (0, 0) indicating that the corresponding
alternative is uniquely first-ranked, (1, 0) denoting that the corresponding alterna-
tive is uniquely second ranked, and (0, 1) which means that a voter is indifferent
between both available alternatives. Furthermore, it is straightforward that if an
alternative has a (0, 0)-entry, then the other alternative has a (1, 0)-entry. Even
more, if an alternative has a (0, 1)-entry, the other alternative has a (0, 1)-entry,
too. These correspondences determine the preferences uniquely. Therefore, we can
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recompute the original preference profile from Q up to reordering the voters and
calculate the Pareto-rule on this profile.

Finally, consider the case m = 3. We also discuss in this case the possible entries
of the rank matrix Q. First note that if an alternative has the entry (0, 2), a voter
is indifferent between all three alternatives, which means that all other alternatives
have such an entry. Thus, these entries determine the preference of a voter uniquely
and therefore, we can dismiss them. Next, we consider the entries (x, 1) for x ∈
{0, 1}. We focus without loss of generality on the case that x = 0 as x = 1 is
symmetric. Our goal is to show these entries determine the preferences of some voters
uniquely. Therefore, let ni denote the number of (0, 1)-entries in Q corresponding
to the i-th alternative, i ∈ {1, 2, 3}. Intuitively, ni denotes the number of voters
that are indifferent between the i-th alternative and an arbitrary other alternative
and prefer both of these alternatives strictly to the last one. This means that every
voter contributes either to no ni, i ∈ {1, 2, 3}, or he increments ni and nj by 1,
i, j ∈ {1, 2, 3} and i 6= j. We use this observation to construct a system of linear
equations where we use the variables v(1,2), v(1,3) and v(2,3). These variables denote
how many voters are indifferent between the alternatives denoted in the superscript,
e.g., v(1,2) denotes how many voters are indifferent between the first and the second
alternative and prefer both of them strictly to the third one. This leads to the
following system of linear equations.

v(1,2) + v(1,3) = n1 v(1,2) + v(2,3) = n2 v(1,3) + v(2,3) = n3

This equation system has a unique solution with v(1,2) = n1+n2−n3

2
, v(1,3) = n1+n3−n2

2

and v(2,3) = n2+n3−n1

2
. As this solution is unique, there is only one way to distribute

ties involving two alternatives to the voters. Furthermore, if we know that a voter
prefers two alternatives the most, it follows that the remaining alternative is his least
preferred one. Thus, the (x, 1)-entries in Q, x ∈ {0, 1}, determine the preferences of
a subset of voters uniquely. Therefore, we also ignore them from now on.

Consequently, we can focus on the (0, 0)-, (1, 0)- and (2, 0)-entries inQ. These entries
correspond to strict preferences, which means that we can use results about the rank
in the strict domain. Unfortunately, these entries do not determine the preferences
uniquely. Instead, we prove that if Q corresponds to a preference profile R in which
an alternative a Pareto-dominates another alternative b, then a Pareto-dominates
b in every preference profile R′ with r∗2(R

′) = Q. As the voters who are indifferent
between some alternatives are uniquely determined, we can focus on the voters with
strict preferences. For these voters, we use a result proven in [Las96] stating that if
a Pareto-dominates b in a preference profile R ∈ Sn, then r∗(R, a)i < r∗(R, b)i for
all i ∈ {1, ..., n}. This means that if a Pareto-dominates b, then every voter i with
Ri ∈ S gives a a rank of 1 or 2 and b a rank of 2 or 3. Thus, it follows immediately
that a Pareto-dominates b regardless of how we place the alternatives in the strict
part of R as every rank of a is as least as good as every rank of b and ties are not
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Q =

(0, 0) (0, 1) (0, 1) (0, 2) (1, 0) (2, 0) (2, 0)
(0, 0) (0, 1) (0, 1) (0, 2) (1, 0) (2, 0) (2, 0)
(0, 0) (0, 1) (0, 1) (0, 2) (1, 0) (2, 0) (2, 0)



R1 :

1 1 1 1 1 1 1
a b c a, b a, c b, c a, b, c
b c a c b a
c a b

Figure 3.12: r2-majority matrix and preference profiles used for the explaining con-
structions in the proof of Lemma 3.7

allowed. Thus, it follows from these observations that we can indeed calculate the
Pareto-rule based on an r2-rank matrix if m ≤ 3. �

For a better understanding, we illustrate the construction of the preference profile
discussed in Lemma 3.7 for the case m = 3 with an example shown in Figure 3.12.
In this figure an r2-rank matrix Q is shown and we construct the profile R based on
its entries. Thus, note that the (0, 2)-entries in Q lead to the right most voter in R
who is indifferent between all alternatives. Furthermore, the (0, 1)-entries combined
with some (2, 0)-entries determine the preferences of voters 4 to 6 uniquely. The
remaining entries in Q correspond to the strict preferences in R. Note that we
can assign different preferences to the voters 1,2 and 3 to obtain these entries. For
instance, it is also possible that R1 = a � c � b, R2 = c � b � a and R3 = b � a � c.
Next, we focus on the situation that there are m ≥ 4 alternatives. As we show in
the sequel, no social choice function satisfies rank-basedness, Pareto-optimality and
P̃ -strategyproofness under this assumption. However, we want to focus in the proof
on preference profiles with a small number of alternatives and voters. Therefore, we
propose the following lemma which allows to generalize results for a fixed number
of voters and alternatives to arbitrary larger values.

Lemma 3.8. Consider a rank extension rx that is either rr or an r2-dependent rank
extension and assume that there is a social choice function f : Wn 7→ 2A \ ∅ that
satisfies P̃ -strategyproofness, Pareto-optimality and rx-basedness. It holds for all
n′ ≤ n and A′ ⊆ A that there is a social choice function g : Wn′ 7→ 2A

′ \ ∅ that
satisfies all previously mentioned axioms.

Proof: Consider a social choice function f : Wn 7→ 2A \ ∅ that satisfies all axioms
stated in the lemma, an arbitrary number of voters n′ ≤ n and a subset of alter-
natives A′ ⊆ A. We prove the existence of a SCF g : Wn′ 7→ 2A

′ \ ∅ that satisfies
all required axioms by providing induction steps with respect to n and m = |A|.
By repeatedly applying these induction steps, it follows that the statement holds
indeed for all n′ ≤ n and m′ = |A′| ≤ |A| = m.
We first construct a social choice function g1 defined on n voters and m− 1 alterna-
tives. Given a preference profile R, the social choice function g1 does the following:
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For every voter i ∈ N , we add a new alternative a as uniquely worst alternative to his
preference. This leads to a preference profile R′ defined on n voters and m alterna-
tives. Finally, we set g1(R) = f(R′). Note that a 6∈ f(R′) as it is Pareto-dominated
by every other alternative and therefore, g1 is well-defined. Furthermore, it is obvi-
ous that g1 inherits all required axioms from f . Thus, there is a P̃ -strategyproof,
rx-based and Pareto-optimal social choice function that is defined on n voters and
m− 1 alternatives.
Next, we discuss the induction step with respect to the voters. Hence, we construct
a rx-based, Pareto-optimal and P̃ -strategyproof social choice function g2 defined on
n − 1 voters and m alternatives. Given a preference profile R, this social choice
function adds a new voter to the profile that is indifferent between all alternatives.
This leads to a new preference profile R′ defined on n voters and m alternatives.
Finally, we set g2(R) = f(R′). It follows that g2 inherits the Pareto-optimality of
f as a voter who is indifferent between all alternatives does not change the set of
Pareto-optimal alternatives. Furthermore, if f is rx-based, then g2 is rx-based, too.
The reason for this that adding a voter that is indifferent between all alternatives
adds the same entry to the rank vector of every alternative. Consequently, two
profiles R1, R2 ∈ Wn−1 with r∗x(R

1) = rx(R
2) have also the same rank matrix after

adding a completely indifferent voter. Thus, g2 inherits also the rx-basedness of f .
Finally, it is obvious that g2 inherits the P̃ -strategyproofness of f and therefore, g2
satisfies all required axioms. Thus, we can inductively deduce this lemma. �

Observe that we use Lemma 3.8 in the inverse direction: We show that there is
no social choice function f that satisfies all axioms required by Lemma 3.8 for
a small number of voters and alternatives and, as a consequence of this lemma,
there is also no such social choice function if we increase the number of voters or
alternatives. With the help of this observation, we prove that there is no rank-based
social choice function that satisfies P̃ -strategyproofness and Pareto-optimality in
the weak domain if m ≥ 4 and n ≥ 3.

Theorem 3.12. Consider an arbitrary rank extension rx that is either r2-dependent
or equal to rr. There is no social choice function f : Wn 7→ 2A \ ∅ that satisfies
Pareto-optimality, P̃ -strategyproofness and rx-basedness if n ≥ 3 and |A| = m ≥ 4.

Proof: We prove the theorem for the case n = 3 and m = 4 as the remaining cases
follow from Lemma 3.8. Thus, assume for contradiction that there is a rank extension
rx that is either r2-dependent or equal to rr and a SCF f :Wn 7→ 2A \ ∅ satisfying
Pareto-optimality, P̃ -strategyproofness and rx-basedness. It should be mentioned
that we discuss in the sequel only rr-basedness and r2-basedness as r∗2(R) = r∗2(R

′)
implies r∗x(R) = r∗x(R

′) for every r2-dependent rank extension rx. Thus, we can
replace every application of r2-basedness with an application with rx-basedness,
which means that it suffices to consider r2 and rr.
Before we go into the details of the proof, we first discuss a short outline of its
key ideas because these ideas are also used in subsequent chapters. The first step
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1 1 1
R1 a � d ∼ b ∼ c a ∼ b � c ∼ d c ∼ d � a ∼ b
R2 a � d ∼ b ∼ c a ∼ c � b ∼ d b ∼ d � a ∼ c
R3 a � d ∼ b ∼ c a ∼ d � b ∼ c b ∼ c � a ∼ d
R4 a � b � c � d a ∼ d � b ∼ c b ∼ c � a ∼ d
R5 a � b � c � d a � b � c � d b ∼ c � a ∼ d
R6 a � b � c � d a � b � c � d b ∼ d � c � a
R7 a � b � c � d a ∼ c � b � d b ∼ d � c � a
R8 a � b � c � d a ∼ b � c � d c ∼ d � b � a
R9 a � b � c � d a � b � c � d c ∼ d � b � a
R10 a � b � c � d a ∼ b � c � d b ∼ d � c � a
R11 a ∼ c � b � d a ∼ b � c � d b ∼ d � c � a
R12 a ∼ b � c � d a ∼ b � c � d c ∼ d � b � a
R13 a � b � c � d a ∼ b � c � d c ∼ d � b � a

Figure 3.13: Preference profiles used in the proof of Theorem 3.12

in the proof is to find a preference profile R such that f(R) does not contain any
of the most preferred alternatives of a voter i ∈ N . After this, we use the combi-
nation of Pareto-optimality and P̃ -strategyproofness to construct a new preference
profile R′ which is even worse for voter i: The only winner in this profile is the
least preferred alternative of voter i. This means that this voter can reorder his
alternatives arbitrarily and the unique winner is still his worst alternative because
of P̃ -strategyproofness. Finally, we repeatedly use this observation combined with
rx-basedness to modify the preferences of the other voters without changing the
choice set. In this step, another central idea is applied: We can use different paths
to reach a preference profile, which means that the number of feasible choice sets
decreases. In the sequel, we apply this technique to deduce the choice sets for the
profiles R8 and R12 shown Figure 3.13. Finally, the contradiction is obtained by
showing that there is no valid choice for a preference profile left.

These ideas are implemented with the preference profiles shown in Figure 3.13.
As first step, we analyze the preference profiles R1, R2 and R3. Thus, note that
r∗x(R

1) = r∗x(R
2) = r∗x(R

3) for every rank extension allowed by this theorem and
that a Pareto-dominates b in R1, c in R2 and d in R3. Hence, rx-basedness and
Pareto-optimality imply that f(R1) = f(R2) = f(R3) = {a}. This means that
f(R3) does not contain any alternative that is among the most preferred ones of
voter 3.

As next step, we consider the profiles R4 and R5. In these profiles, voter 1 and 2
manipulate one after another such that they prefer a the most and b second most. It
follows from P̃ -strategyproofness that f(Ri) = {a} for i ∈ {4, 5} as otherwise a voter
can P̃ -manipulate by switching from Ri to Ri−1. Note that b Pareto-dominates both
c and d in R5. This observation is also true for R6 in which voter 3 ranks a uniquely
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the worst. Thus, we can deduce that f(R6) ⊆ {a, b}. Furthermore, if b ∈ f(R6),
voter 3 can P̃ -manipulate by switching from R5 to R6 as he prefers b strictly to a.
Hence, it follows from P̃ -strategyproofness that f(R6) = {a} which means that the
unique worst alternative of voter 3 is the only winner.

Subsequently, voter 2 manipulates such that he prefers a and c the most in the profile
R7. It follows from P̃ -strategyproofness that f(R7) ⊆ {a, c}; otherwise, voter 2 can
P̃ -manipulate by switching from R7 to R6. Thereafter, we apply rx-basedness to
derive R8 from R7: Voter 2 and 3 exchange their preferences over b and c. It should
be stressed that this modification does not change the rank matrix with respect to
rr or r2. Thus, it holds that f(R8) ⊆ {a, c}. Next, observe that we can go from
the profile R6 also to the profile R9 if voter 3 manipulates. It follows from the
P̃ -strategyproofness of f that f(R9) = {a}; otherwise, it is a P̃ -manipulation for
voter 3 to switch from R6 to R9. Furthermore, we derive the profile R8 from R9 by
letting voter 2 push b to the top. These observations imply that f(R8) ⊆ {a, b} as
otherwise voter 2 can P̃ -manipulate by switching back to R9. Thus, we can deduce
that f(R8) = {a}.
In the profiles R10 to R13, we repeat the steps explained in the last paragraph with
voter 1 and voter 3. First, voter 3 reorders his alternatives in the same way as in
R6, which leads to the profile R10. It follows from the P̃ -strategyproofness of f that
f(R10) = {a} as voter 3 can P̃ -manipulate otherwise. Thereafter, voter 2 pushes c
to the top in R11 implying that f(R11) ⊆ {a, c}. As r∗x(R

11) = r∗x(R
12), it results

from rx-basedness that f(R12) = f(R11) ⊆ {a, c}. Finally, R13 provides a second
path from R9 to R12: We first let voter 3 reorder his alternatives to deduce profile
R13 and it follows from P̃ -strategyproofness that f(R13) = {a}. Subsequently, voter
1 pushes b to the top to derive R12, which implies that f(R12) ⊆ {a, b} because of
P̃ -strategyproofness. Thus, we can deduce that f(R12) = {a} is true. However, it is
easy to see that a is Pareto-dominated by b in R12 implying that a 6∈ f(R12). This is a
contradiction and therefore, no social choice function satisfying P̃ -strategyproofness,
Pareto-optimality and rx-basedness exists if m ≥ 4 and n ≥ 3. �

As first remark, we discuss the independence of the axioms required for Theo-
rem 3.12. Hence, note that there are various r2-based social choice functions that
are P̃ -strategyproof but not Pareto-optimal, for instance the generalized OMNI-
rule which contains all most preferred alternatives of every voter. Furthermore,
the Pareto-rule is P̃ -strategyproof and Pareto-optimal but not r2-based if m ≥ 4.
Next, there are many Pareto-optimal and rank-based social choice functions that
are not P̃ -strategyproof, such as generalizations of dominance rules introduced in
Definition 3.17 where we replace the rank with r+. Even more, m ≥ 4 is required
as shown by Lemma 3.7. In contrast, we can show that n ≥ 3 is not necessary. For
proving this, consider the preference profiles R1 and R2 defined on n = 2 voters and
m = 5 alternatives that are depicted in Figure 3.14 and an arbitrary rank extension
rx that is either r2-dependent or equal to rr. Note that r∗x(R

1) = r∗x(R
2), which

implies that every rx-based social choice function returns the same winner for both
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R1 :

1 1
b, d c, e
a, e a
c b

d

R2 :

1 1
c, d b, e
a, e a
b c

d

Figure 3.14: Preference profiles used to show the independence of the bounds on n
and m in Theorem 3.12

profiles. Furthermore, e Pareto-dominates both a and c, and b Pareto-dominates
d in R1. Similarly, e Pareto-dominates b in R2, which implies that every rx-based
and Pareto-optimal social choice function f satisfies f(R1) = f(R2) = {e}. Thus,
it is easy to adapt the proof of Theorem 3.12 to start with the profiles R1 and R2

defined in the figure. In contrast, the Pareto-rule is also r2-based if n = 2 and
m = 4. We have derived this result by SAT-solving and omit the proof here. As
consequence, Theorem 3.12 does not hold for n = 2 voters and m = 4 alternatives
and therefore, we have a tight bound between possibility and impossibility results.
Finally, it should be mentioned that for n = 1, the Pareto-rule is obviously r2-based,
which means that n ≥ 2 is required.
A consequence of Theorem 3.12 is that no r+-based, r−-based, r=-based and rr-based
SCF can be both Pareto-optimal and P̃ -strategyproof if there is a sufficiently large
number of voters and alternatives. We can strengthen this observation and state
that we cannot think of any reasonable rank extension that avoids Theorem 3.12.
This means that rank-based social choice functions are in the weak domain either
P̃ -manipulable or choose unreasonably large choice sets. Thus, it seems valid to say
that there is no reasonable rank-based social choice function in the weak domain.
Hence, even though many rank-based social choice functions seem advisable and are
used in practice, we should be wary of possible disadvantages.

Patrick Lederer
Sticky Note
This counter example is wrong. Instead consider the following three profiles:

R^1: 1: {b,e},a,{c,d} 	2: {c,d},e,{a,b}
R^2: 1: {c,e},a,{b,d} 	2: {b,d},e,{a,c}
R^3: 1: {d,e},a,{b,c} 	2: {b,c},e,{a,d}

All have the same rank matrix, but the only alternative that is in non of these profiles Pareto-dominated is e. 



Chapter 4

Social Choice Functions in C2

One of the most important hierarchies of social choice functions has been introduced
in [Fis77]. This hierarchy distinguishes social choice functions with respect to the
information required for computing them. One of the classes within this hierar-
chy is called C2 and it contains all social choice functions that only depend on the
majorities between alternatives. This class contains a huge number of well-studied
social choice functions such as Black’s rule [BNM+58], Nanson’s rule [Cop51] and
Kemeny’s rule [Kem59, Lev75]. Furthermore, the class of C2-functions is a super-
set of the class of tournament solutions [BBH16] and therefore, it contains also
many P̃ -strategyproof social choice functions. However, the results with respect
to P̃ -strategyproofness only hold in the strict domain. Even more, the class of
C2-functions is only rarely considered in the weak domain. Thus, we focus in this
chapter on C2-functions in the weak domain and discuss them with respect to P̃ -
strategyproofness.

This chapter is organized as follows. First, we present a formal introduction to the
concept of C2 in Section 4.1. Next, we introduce P̃ -strategyproof C2-functions in the
weak domain in Section 4.2. While there are many P̃ -strategyproof C2-functions
that violate Pareto-optimality, only few of them additionally satisfy this axiom.
This observation leads to two necessary conditions for the P̃ -strategyproofness of
C2-functions which are discussed in Section 4.3. We even deduce a characterization
of the Pareto-rule from these requirements.

4.1 Introduction to Social Choice Functions in C2

In this section, we formally introduce the class C2, discuss some known results and
compare the concepts of rank-based social choice functions and C2-functions. This
is necessary as we need a strong understanding of majorities and C2 in the following
sections.

For introducing the class C2, we need to recall the concept of majorities of alterna-
tives against each other discussed in Definition 1.7. This term refers to the number
of voters that prefer an alternative a strictly to an alternative b. For convenience,
we present here the formal definition again.
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Definition 4.1 (Majority for a against b). Consider a preference profile R and
two alternatives a, b ∈ A. The majority for a against b in the profile R is denoted
by nab = |{i ∈ N | a �i b}|.

With the help of this term, it is easy to define C2-functions. These social choice
functions only rely on the majorities nab for all alternatives a, b ∈ A to compute
the choice set. Thus, we may also refer to them as majority-based social choice
functions. Formally, C2-functions are defined as follows.

Definition 4.2 (C2-functions). A social choice function f is a C2-function if
f(R) = f(R′) for all preference profiles R, R′ with nab = n′ab for all pairs of alter-
natives a, b ∈ A.

Note that we often write that a social choice function is in C2 or satisfies C2 in-
stead of stating that it is a C2-function. Furthermore, it should be stressed that
Definition 4.2 does not specify the domain or the number of voters used for defining
R and R′ as it does not depend on these details. Even more, C2-functions are in
the weak domain always defined on a variable electorate as there can be profiles R
and R′ defined on electorates with varying sizes that have the same majorities. For
instance, the profiles R and R′ = (R,Ri∗) in which voter i∗ is indifferent between
all alternatives have the same majorities and therefore, it every C2-function f is
required to return the same choice sets for these profiles. Another argument for
defining social choice functions in C2 on a variable electorate is that these functions
are often defined on weighted and directed graphs where the alternatives are the
nodes and there is an edge with weight nab between all nodes a, b ∈ A. Therefore,
we assume that C2-functions in the weak domain are always defined on a variable
electorate.
Note that the class of C2-functions contains many well-known social choice functions.
For instance, Kemeny’s rule [Kem59, Lev75], the maximin rule [You77], Black’s rule
[BNM+58], Nanson’s rule [Cop51], the ranked pairs method [Tid87] and the essential
set [DL99] are in C2. Even Borda’s rule discussed in the previous chapter can be
defined only based on the majorities [Bra17]. However, most of these functions are
only defined for the strict domain and therefore, they are not relevant for our results.
The only well-known C2-function that is P̃ -strategyproof in the weak domain is
the Pareto-rule which picks all Pareto-optimal alternatives as winners [BSS]. This
rule is formalized in C2 by choosing all alternatives a ∈ A such that nab > 0 or
nab = nba = 0 for all alternatives b ∈ A \ {a}. Even though this rule often chooses
large choice sets, it is Pareto-optimal. Thus, it shows that there are P̃ -strategyproof
and Pareto-optimal C2-functions.
Because of Borda’s rule, it follows that the set of C2-functions and the set of rank-
based SCFs are not disjoint. Nevertheless, it is easy to see that they are conceptually
rather different and their intersection does contain only very few interesting social
choice functions. Intuitively, rank-basedness is a row-wise concept, i.e., we can
reorder alternatives within a row in a preference profile, while we only have to ensure
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R1 :

1 1 1
a b c
b c d
c d b
d a a

R2 :

1 1 1
b b c
c a d
d c a
a d b

R3 :

1 1 1
b a c
d c b
c b d
a d a

Figure 4.1: Preference profiles used for comparing C2 and rank-basedness

that no alternative is placed twice in the preference of a voter. In contrast, C2 is a
column-wise concept: A voter can move an alternative arbitrarily in his preference
if other voters equalize the changes of the majorities. This intuition can be seen
in the example in Figure 4.1. In this example, profile R2 is deduced from R1 by
making a the worst alternative in the preference of voter 1. Furthermore, the other
two voters adapt the preferences such that n1

xy = n2
xy for all pairs of alternatives

x, y ∈ A. It follows that every C2-function f1 satisfies f1(R
1) = f1(R

2). In contrast,
rank-basedness does not relate R1 and R2 as r∗(R1) 6= r∗(R2). Moreover, the profile
R3 is deduced from profile R1 by switching the positions of a and b in the first row
and adapting the remaining rows to get a feasible preference profile. This means
that every rank-based SCF f2 satisfies f2(R

1) = f2(R
3). Furthermore, note that d is

Pareto-dominated by c in R1 but not in R3, which implies that a C2-function may
choose different choice sets for R1 and R3.

4.2 P̃ -strategyproof Social Choice Functions in C2

In this section, we focus on P̃ -strategyproof social choice functions that are defined
on the weak domain and that are in C2. While many social choice functions sat-
isfying these axioms are known for the strict domain, this problem has been rarely
considered in the weak domain. Even more, it turns out that it is very hard to find
Pareto-optimal SCFs that satisfy P̃ -strategyproofness and C2 and that are not equal
to the Pareto-rule. Therefore, we first discuss C2-functions that are P̃ -strategyproof
but not Pareto-optimal in Section 4.2.1. After that, we focus on P̃ -strategyproof
C2-functions that additionally satisfy Pareto-optimal in Section 4.2.2.

4.2.1 Social Choice Functions Violating Pareto-optimality

In this section, we discuss social choice functions in C2 that are P̃ -strategyproof
and that do not need to satisfy any other axiom. These assumptions make it easy
to find P̃ -strategyproof social choice functions as we can return rather large choice
sets. Even though one might criticize social choice functions with large choice sets
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R1 :

1 1 1
a, b a b
c b a
d c, d c, d

R2 :

1 1 1
a, b a b
d b a
c c, d c, d

Figure 4.2: Preference profiles showing that remark 2 of [Bra15] is not true in the
weak domain

as they are indecisive and fail important axioms such as Pareto-optimality, the
existence of these social choice functions shows that the Pareto-rule is not the only
P̃ -strategyproof C2-function. For finding P̃ -strategyproof C2-functions, we discuss a
strong criterion that implies the P̃ -strategyproofness of social choice functions. This
condition states that many coarsenings of P̃ -strategyproof social choice functions are
also P̃ -strategyproof. Note that we formalize this criterion as general as possible
and therefore, it can also be applied for SCFs that are not in C2.

Our idea for finding P̃ -strategyproof social choice functions in C2 is to consider
coarsenings of the Pareto-rule. As this social choice function is known to be P̃ -
strategyproof, it seems reasonable that its coarsenings satisfy this axiom, too. For
formally proving this intuition, we aim to generalize remark 2 in [Bra15] which
states that a coarsening g : Sn 7→ 2A \ ∅ of a P̃ -strategyproof social choice function
f : Sn 7→ 2A \ ∅ is also P̃ -strategyproof if f(R) = g(R) for all preference profiles
R ∈ Sn with |f(R)| = 1. Unfortunately, this result only holds in the strict domain.
An example proving this claim can be constructed with the help of the profiles R1

and R2 shown in Figure 4.2. Assume that there is a social choice function g with
g(R1) = {a, b, c} and g(R) = PO(R) otherwise. Clearly, voter 1 can P̃ -manipulate g
by switching from R1 to R2 as g(R2) = PO(R2) = {a, b}. However, g is a coarsening
of the Pareto-rule which satisfies that g(R) = PO(R) if |PO(R)| = 1. Thus, remark
2 of [Bra15] fails in the weak domain.

The problem in the last example is that voter 1 is indifferent between all alternatives
in PO(R1) = PO(R2). Furthermore, there are alternatives in g(R1) that are less
preferred than those in PO(R1). Thus, a voter can P̃ -manipulate by excluding the
alternatives in g(R1)\PO(R1) as he is indifferent between all alternatives in PO(R1).
This example shows that we have to be careful about the choice set of a coarsening g
of a P̃ -strategyproof SCF f if a voter is indifferent between all alternatives in f(R).
The reason for this is that g might be P̃ -manipulable in such a profile. Note that we
can also observe this problem in the strict domain. The second remark of [Bra15]
solves it by demanding that f(R) = g(R) if |f(R)| = 1. However, it turns out that
this assumption is often violated but g is still P̃ -strategyproof. For instance, we
consider in Theorem 3.4 coarsenings g of the OMNI-rule which are P̃ -strategyproof
even though they do not satisfy that g(R) = OMNI(R) if |OMNI(R)| = 1. In
contrast, if OMNI(R) = {a} for a preference profile R, then there is an alternative
b ∈ g(R′) such that a �i b for every profile R′ and voter i ∈ N with R−i = R′−i.
Thus, it is not necessary that f(R) = g(R) if a voter is indifferent between all
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alternatives in f(R). Instead, it suffices that g(R′) contains for every profile R′

such that R−i = R′−i for a voter i ∈ N a less preferred alternatives to avoid P̃ -
manipulability. We combine the last two observations to derive a new theorem
analyzing the P̃ -strategyproofness of coarsenings of P̃ -strategyproof social choice
functions.

Theorem 4.1. Let f : Wn 7→ 2A \ ∅ and g : Wn 7→ 2A \ ∅ denote social choice
functions such that f(R) ⊆ g(R) for all R ∈ Wn. Furthermore, assume for all
preference profiles R,R′ ∈ Wn and all voters i ∈ N such that R−i = R′−i and a ∼i b
for all a, b ∈ f(R)∪ f(R′) that either a ∼i b holds for all a, b ∈ g(R)∪ g(R′) or that
there are alternatives a ∈ g(R), b ∈ g(R′) with a �i b. If f is P̃ -strategyproof, then
g is also P̃ -strategyproof.

Proof: Consider two social choice functions f :Wn 7→ 2A \ ∅ and g :Wn 7→ 2A \ ∅ as
specified in the theorem and assume that f is P̃ -strategyproof. We have to show that
g is also P̃ -strategyproof. Thus, assume for contradiction that g is P̃ -manipulable,
i.e., there are preference profiles R,R′ ∈ Wn and a voter i ∈ N such that R−i = R′−i
and g(R′) P̃i g(R). We derive a contradiction to this assumption with the help of a
case distinction on f(R) and f(R′).
First, assume that there are alternatives a, b ∈ f(R) with a �i b. In this case, let
a∗ denote one of voter i’s best alternatives in f(R), i.e., a∗ �i x for all x ∈ f(R). It
holds that every set B ⊆ {a ∈ A | a �i a∗} is a P̃ -improvement to f(R) for voter
i as he prefers every alternative in B strictly to the alternative b ∈ f(R). Thus, it
follows from the P̃ -strategyproofness of f that there is an alternative c ∈ f(R′) with
a∗ �i c. As f(R) ⊆ g(R) and f(R′) ⊆ g(R′), it follows that a∗ ∈ g(R) and c ∈ f(R′)
contradicting that g(R′) P̃i g(R). Hence, there is no P̃ -manipulation possible in this
case.
Next, assume that a ∼i b for all alternatives a, b ∈ f(R) and there are alterna-
tives c, d ∈ f(R′) with c �i d. Furthermore, let a∗ denote one of voter i’s worst
alternatives in f(R′), i.e., x �i a∗ for all x ∈ f(R′). If a∗ �i a for an alternative
a ∈ f(R), voter i prefers a∗ weakly to all alternatives in f(R). Moreover, there is
by assumption an alternative in f(R′) that is strictly preferred to a∗, which means
that f(R′) P̃i f(R). This contradicts the P̃ -strategyproofness of f and therefore, a∗

is strictly less preferred to the alternatives in f(R). As g is a coarsening of f , this
implies that g cannot be P̃ -manipulated in this case either.
Finally, assume that a ∼i b for all alternatives a, b ∈ f(R) and c ∼i d for all
alternatives c, d ∈ f(R′). It follows directly from the P̃ -strategyproofness of f that
a ∼i b for all alternatives a, b ∈ f(R) ∪ f(R′). Otherwise, there are alternatives
a ∈ f(R), c ∈ f(R′) with a �i c, which implies that voter i can P̃ -manipulate by
switching from R′ to R, or with c �i a, which implies that voter i can P̃ -manipulate
by switching from R to R′. Thus, the assumptions of the theorem imply that either
a ∼i b for all a, b ∈ g(R) ∪ g(R′) or there are alternatives a ∈ g(R), b ∈ g(R′) with
a �i b. It is straightforward to deduce from these observations that voter i cannot
P̃ -manipulate and therefore, g is in all cases P̃ -strategyproof. �
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Note that the condition on g in the case that a ∼i b for all a, b ∈ f(R)∪f(R′) is rather
technical. However, it allows to prove the P̃ -strategyproofness of many coarsenings
and therefore, it is a very useful condition. Furthermore, we can deduce many
simplified variants of Theorem 4.1. For instance, if we require that f(R) = g(R) for
all preference profiles R where a voter i exists with a ∼i b for all a, b ∈ f(R) and
that f(R) ⊆ g(R) for all other profiles, we can still use the theorem to prove the P̃ -
strategyproofness of g. Thus, our results imply remark 2 in [Bra15]. Furthermore,
Theorem 4.1 is indeed more general than this remark as we can use it to prove
Theorem 3.4 by observing that all functions discussed in this result are coarsenings
of the OMNI-rule which satisfy the conditions of Theorem 4.1. Note that this
example shows that this theorem can also be applied for social choice functions that
are not in C2.

Furthermore, we can prove with the help of Theorem 4.1 that many C2-functions
that coarsen the Pareto-rule are P̃ -strategyproof. For example, consider the social
choice function f1(R) = {a ∈ A | @b ∈ A : nab = 0 ∧ nba ≥ 2}. Intuitively,
this social choice function chooses an alternative a if it is Pareto-optimal or if it is
Pareto-dominated by an alternative b but only a single voter prefers b strictly to
a. Therefore, it is obvious that f1 is a coarsening of the Pareto-rule. We want to
use Theorem 4.1 to prove the P̃ -strategyproofness of f1. Consequently, we focus on
preference profiles R,R′ ∈ Wn which contain a voter i such that R−i = R′−i and

a ∼i b for all a, b ∈ PO(R) ∪ PO(R′) as this is the only possibility to P̃ -manipulate
f1. Because the Pareto-rule always contains at least one of the most preferred
alternatives of every voter and a ∼i b for all a, b ∈ PO(R) ∪ PO(R′), it follows that
PO(R) and PO(R′) are subsets of voter i’s most preferred alternatives. Thus, if
a ∼i b for all a, b ∈ f1(R), we have no P̃ -manipulation is possible as f1(R) is a
subset of the most preferred alternatives of voter i. For this reason, assume that
there is an alternative b ∈ f1(R) that is not among the most preferred ones of voter
i. This means that for every alternative a with a �i b, there is either a voter j with
b �j a or every voter j ∈ N \ {i} submits a ∼j b. Both cases imply that there is no
alternative a with a �i b in R such that n′ba = 0 and n′ab ≥ 2 in R′ regardless of the
preference R′i. Thus, there is an alternative c ∈ f(R′) with b �i c as the dominance
relation implied by f1 is transitive. This means that there is an alternative c ∈ f(R′)
with b �i c. Therefore, the conditions of Theorem 4.1 hold and it follows that f1 is
P̃ -strategyproof. As it follows from the definition of f1 that this SCF is in C2, we
have found another P̃ -strategyproof C2-function but the Pareto-rule.

Another SCF for which we can apply Theorem 4.1 to show its P̃ -strategyproofness
is the weak Pareto-rule defined as f2(R) = {a ∈ A | @b ∈ A : nab = 0 ∧ nba = n}.
This social choice function does only exclude an alternative a from the choice set if
there is another alternative b such that b �i a for every voter i ∈ N . The arguments
showing why we can use Theorem 4.1 to prove the P̃ -strategyproofness of f2 are the
same as shown for f1 and therefore, we omit them here. Furthermore, it should be
mentioned that f2 is no C2-function as profiles have the same majorities if we add
a completely indifferent voter but the number of voters changes. Consequently, it
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is possible that f2(R) = {a} and f2(R
′) = A where R′ results from R by adding a

completely indifferent voter. This contradicts that f2 is in C2 as R and R′ have the
same majorities but not the same choice set. This example shows that Theorem 4.1
can also be used for social choice functions that are not in C2.
As consequence of Theorem 4.1, many coarsenings of the Pareto-rule are both in C2
and P̃ -strategyproof, for instance f1. Furthermore, it should be stressed that this
theorem can also be used to derive the P̃ -strategyproofness of social choice functions
that are not in C2, e.g., f2. However, all social choice functions derived with this
theorem from the Pareto-rule violate Pareto-optimality in the weak domain. Thus,
it does not seem promising to continue this line of work. Nevertheless, it shows that
there are other P̃ -strategyproof C2-functions but the Pareto-rule.

4.2.2 Social Choice Functions Satisfying Pareto-optimality

After discussing an approach for defining P̃ -strategyproof C2-functions that violate
Pareto-optimality, we focus next on the situation where this axiom is additionally
required. The question about social choice functions satisfying all these properties
is interesting as it is already known that no pairwise social choice function satisfies
both Pareto-optimaity and P̃ -strategyproofness. [BSS]. Recall that pairwiseness
demands from a social choice function f that f(R) = f(R′) for all preference profiles
R,R′ with nab−nba = n′ab−n′ba for all alternatives a, b ∈ A. Thus, this axiom is only
slightly stronger than C2, which leads to the question whether there are any social
choice functions in C2 that are Pareto-optimal and P̃ -strategyproof. It turns out
that it is easy to answer this question as the Pareto-rule satisfies all required axioms.
However, it is not clear whether there are any other P̃ -strategyproof and Pareto-
optimal C2-functions. Thus, we discuss two approaches for defining refinements of
the Pareto-rule which satisfy these properties.
Our first approach for deriving refinements of the Pareto-rule which are P̃ -strategy-
proof and in C2 is to focus on the case where all voters are indifferent between some
alternatives. Formally, we discuss sets of indistinguishable alternatives which are
introduced in the sequel.

Definition 4.3 (Sets of indistinguishable alternatives). We call two alterna-
tives a, b ∈ A indistinguishable in a preference profile R ∈ Wn if all voters are
indifferent between a and b. Furthermore, a set of indistinguishable alternatives B
is a set of alternatives such that a ∼i b for all alternatives a, b ∈ B and voters i ∈ N .

Intuitively, a set of indistinguishable alternatives consists only of clones of a single
alternative. Clearly, every voter is indifferent between an alternative and its clones,
which leads to a set of indistinguishable alternatives. It should be stressed that
sets of indistinguishable alternatives are by definition not inclusion-maximal. This
means that every singleton set is trivially also a set of indistinguishable alterna-
tives. Nevertheless, there is always a unique inclusion-maximal set of indistinguish-
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R :

1 1 1 1
a, b c c, d d
c, d a, b a, b c

d a, b

Figure 4.3: Preference profile used for explaining sets of indistinguishable alterna-
tives

able alternatives that contains a specific alternative because indistinguishability is
a transitive relation. Furthermore, we call a set of indistinguishable alternatives
Pareto-optimal if it contains only Pareto-optimal alternatives.
An example for a preference profile yielding a set of indistinguishable alternatives
with size larger than 1 can be seen in Figure 4.3. In this profile, every voter is indif-
ferent between a and b and therefore, {a, b} is a set of indistinguishable alternatives.
Even more, as voter 1 prefers a and b the most, {a, b} is a Pareto-optimal set of indis-
tinguishable alternatives. Finally, no other alternatives are indistinguishable from
each other and therefore, {c} and {d} are inclusion-maximal sets of indistinguishable
alternatives.
We are interested in sets of indistinguishable alternatives for a simple reason: It
is irrelevant for every voter with respect to the set extension P̃ whether the whole
set is in the choice set or just a single representative. This observation leads to the
social choice function f1 :Wn 7→ 2A \∅ that is defined as follows: f1(R) contains for
every Pareto-optimal and inclusion-maximal set of indistinguishable alternatives the
lexicographic smallest alternative. For instance, f(R) = {a, c, d} for the preference
profile R shown in Figure 4.3, whereas PO(R) = {a, b, c, d}. It is easy to see that f1
is a refinement of the Pareto-rule. Thus, it remains to show that this social choice
function is also P̃ -strategyproof and in C2.

Theorem 4.2. The social choice function f1 is P̃ -strategyproof and in C2.

Proof: First, we focus on proving that f1 is in C2. Note for this that for every pair of
alternatives a, b ∈ A and for all preference profiles R ∈ Wn, it holds that if a Pareto-
dominates b in R, then nab > 0 and nba = 0 and if a is indistinguishable from b,
then nab = nba = 0. Thus, we can detect all Pareto-optimal and inclusion-maximal
sets of indistinguishable alternatives based on majorities, which implies that f1 is
indeed in C2.
Next, we show that the social choice function f1 is also P̃ -strategyproof. Thus,
assume for contradiction that f1 is P̃ -manipulable, i.e., there is a voter i ∈ N and
preference profiles R,R′ ∈ Wn such that R−i = R′−i and f1(R

′) P̃i f1(R). This means
that x �i y for all alternatives x ∈ f1(R′), y ∈ f(R) and that this preference is strict
for at least one pair of alternatives. Moreover, note that f1(R) differs from PO(R)
only if there are alternatives a ∈ f1(R) and b ∈ PO(R) \ f(R) with a ∼j b for every
voter j ∈ N . As this observation also holds for f1(R

′) and PO(R′), it follows from
the transitivity of individual preferences that x �i y for all alternatives x ∈ PO(R′),
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R∗ :

1 1 1
a, c b, c d
e e a, b, e
b, d a, d c

Figure 4.4: Preference profile where f2 refines the Pareto-rule

y ∈ PO(R) and that this is also strict for at least one pair of alternatives. This means
that PO(R′) P̃i PO(R) which contradicts the P̃ -strategyproofness of the Pareto-rule.
Hence, our initial assumption is wrong and f1 is also P̃ -strategyproof. Thus, the
social choice function f1 satisfies all axioms required by this theorem. �

Note that there are many P̃ -strategyproof social choice functions in C2 that are
similar to f1 as a representative of a set of indistinguishable alternatives can be
chosen arbitrarily. Furthermore, we can also choose multiple representatives for a
single set. The P̃ -strategyproofness of such SCFs follows from the same argument
as provided in the proof of Theorem 4.2. However, note that these social choice
functions as well as f1 are not neutral. Even more, it is often assumed in the
literature that no alternatives are indistinguishable as it does usually not make a
difference whether all voters are indifferent between some alternatives or we replace
these alternatives with a single one.
As consequence of the last remarks, the question about the existence of social choice
functions that are neutral, P̃ -strategyproof and in C2 and that refine the Pareto-
rule arises. As we show in the sequel, there is a social choice function that satisfies
all required axioms. The main idea for defining this social choice function is best
explained by considering the preference profile R∗ shown in Figure 4.4. In this pro-
file every alternative is Pareto-optimal, i.e., PO(R∗) = {a, b, c, d, e}. Furthermore,
alternative e is Pareto-dominated in R∗−i for all i ∈ N . Thus, e is almost Pareto-
dominated and therefore, it might be possible to construct a social choice function
f2 such that f2(R

∗) = {a, b, c, d} and that satisfies Pareto-optimality, neutrality,
P̃ -strategyproofness and C2. It turns out that this conjecture is true. For proving
this claim, we first analyze the majorities of R∗ and their relation to the structure
of this profile. In particular, we show that all profiles with the majorities displayed
in Figure 4.5 consist of three voters that submit R∗ and k − 1 voters that submit
a ∼ b ∼ c ∼ d � e. Note that the majorities in Figure 4.5 are the majorities of R∗

if k = 1. Thus, the following lemma implies that R∗ is the only profile defined on
three voters that has these majorities.

Lemma 4.1. If a preference profile R satisfies the majorities shown in Figure 4.5
for an arbitrary k ≥ 1, then it consists of 3 voters who submit R∗, k− 1 voters who
submit a ∼ b ∼ c ∼ d � e and an arbitrary number of voters that are indifferent
between all alternatives.

Proof: Consider a profile R that satisfies the majorities shown in Figure 4.5 for an
arbitrary k ≥ 1. We prove this lemma by reconstructing R from its majorities.
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n∗xy a b c d e

a − 1 1 1 k
b 1 − 1 1 k
c 1 1 − 2 k + 1
d 1 1 1 − k
e 1 1 1 2 −

Figure 4.5: Majorities for Lemma 4.1

Therefore, we first focus on the majorities between the alternatives a, b, c and d as
these are independent of k. Note that there are two voters i1 and i2 who submit
c � d as ncd = 2 and a single voter i3 who submits d � c as ndc = 1; all other voters
are indifferent between c and d. Furthermore, observe that nac +nad +nca +nda = 4
and that every voter in I = {i1, i2, i3} contributes at least one to this sum. Moreover,
every voter in N\I contributes either 0 or 2 to this sum as these voters are indifferent
between c and d. Consequently, every voter in N \ I is indifferent between a, c and
d as otherwise nac + nad + nca + nda > 4. A symmetric argument for b implies that
every voter in N \ I is indifferent between all alternatives in A \ {e}.
Therefore, every profile that satisfies the majorities shown in Figure 4.5 between
alternatives in A \ {e} is defined on three voters. We can find all these profiles by
simply enumerating all profiles defined on four alternatives and three voters and
compute their majorities. The result of this search is shown in Figure 4.6 where
all profiles that satisfy the majorities n∗xy for all x, y ∈ A \ {e} are displayed up
to renaming the voters. Thus, every profile R′ that is defined on the alternatives
A \ {e} and that satisfies n′xy = n∗xy for all x, y ∈ A \ {e} consists of one of the
profiles shown in Figure 4.6 and an arbitrary number of voters that are indifferent
between all alternatives in A \ {e}.
Finally, we add alternative e to these profiles such that the majorities shown in
Figure 4.5 are satisfied. In this step, we use an induction on k to prove the lemma.
If k = 1 or k = 2, we can simply enumerate all possibilities to add e to see that
the lemma holds. This proves the induction basis. Next, consider an arbitrary
integer l ≥ 2 and assume that the lemma is true for all k ≤ l. We prove under this
assumption that the lemma also holds if k = l + 1 > 2 by showing that there is at
least one voter i who submits a ∼ b ∼ c ∼ d � e. This means that we can remove
voter i from the preference profile, which reduces all majorities nxe, x ∈ A \ {e}
by 1 and does not change the remaining majorities. Consequently, the induction
hypothesis can be used, which means that profile R−i consists of profile R∗ and l−1
voters who submit a ∼ b ∼ c ∼ d � e. Finally, the lemma follows by adding voter i
to the profile again.
Thus, it only remains to prove that there is a voter i who submits a ∼ b ∼ c ∼ d � e
if k > 2. It follows from k > 2 that there are at least nce + nec = (k + 1) + 1 ≥ 5
voters who are not indifferent between all alternatives. Furthermore, we know that
only three of these voters are not indifferent between all alternatives in A \ {e}.
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1 1 1
R1 a � c � b ∼ d b � c � a ∼ d d � a ∼ b ∼ c
R2 a � b ∼ c � d c � a ∼ b ∼ d d � b � a ∼ c
R3 b � a ∼ c � d c � a ∼ b ∼ d d � a � b ∼ c
R4 c � a ∼ d � b a ∼ b ∼ c � d b ∼ d � a � c
R5 c � b ∼ d � a a ∼ b ∼ c � d a ∼ d � b � c
R6 a ∼ c � d � b b ∼ c � d � a a ∼ b ∼ d � c
R7 a ∼ c � b ∼ d b ∼ c � a ∼ d d � a ∼ b � c

Figure 4.6: Preference profiles that agree with R∗ on all majorities defined on
{a, b, c, d}

Furthermore, only a single voter can submit e � a ∼ b ∼ c ∼ d as nec = 1.
Therefore, there is a voter who is not indifferent between all alternatives in A but
he is indifferent between the alternatives in A \ {e} and he prefers c weakly to e.
This implies that this voter submits a ∼ b ∼ c ∼ d � e, which proves the lemma. �

As consequence of Lemma 4.1, the profile R∗ yields a special structure that can be
recognized only based on its majorities. This means that we can use this profile to
design a social choice function f2 that is in C2 and that refines the Pareto-rule: If
the profile R consists of 3 voters i1, i2 and i3 such that R∗ = (Ri1 , Ri2 , Ri3) and
all other voters submit a ∼ b ∼ c ∼ d � e, then f2(R) = {a, b, c, d}. If the profile
R satisfies this condition after renaming the alternatives, then we simply rename
the alternatives in f2(R

∗) such that neutrality is satisfied. In all other cases, we set
f2(R) = PO(R). Note that f2 is only defined for the case that m = 5. Furthermore,
it is easy to see that f2 indeed refines the Pareto-rule. Therefore, it only remains to
show that it is neutral, P̃ -strategyproof and in C2.

Theorem 4.3. The social choice function f2 is P̃ -strategyproof, Pareto-optimal and
in C2.

Proof: First note that f2(R) ( PO(R) only if there are three voters that submit
a profile R such that R and R∗ are equal after renaming some alternatives and all
other voters prefer the alternatives in f2(R) the most. It follows from Lemma 4.1
that this profile has unique majorities and therefore, we can detect in C2 when
to refine the Pareto-rule. Thus, it is easy to see that f2 is in C2. Furthermore,
the SCF f2 is also neutral as the set of profiles R with f2(R) ( PO(R′) is closed
under renaming alternatives. More formally, if the profiles R and R′ are equal
after renaming alternatives, then f2(R) ( PO(R) if and only if f2(R

′) ( PO(R′).
Furthermore, as the social choice function f2 also renames the choice set correctly,
it follows that it is neutral.
Thus, it only remains to show that f2 is also P̃ -strategyproof. Therefore, assume for
contradiction that f2 is P̃ -manipulable, i.e., there are preference profiles R, R′ and a
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voter i such that R−i = R′−i and f2(R
′) P̃i f2(R). We derive a contradiction to this

assumption by making a case distinction distinguishing whether f2(R) ( PO(R) and
f2(R

′) ( PO(R′) or not. First, consider the case that f2 agrees with the Pareto-rule
on the choice sets for both R and R′. In this case, f2 cannot be P̃ -manipulable as
otherwise the Pareto-rule is P̃ -manipulable, too. However, this SCF is known to be
P̃ -strategyproof and therefore, f2 also satisfies this property if f2(R) = PO(R) and
f2(R

′) = PO(R′).

Next, consider the case that f2(R) ( PO(R). This means that f2(R) = {a, b, c, d}
for some alternatives in a, b, c, d ∈ A. Furthermore, there are is a set of three voters
I = {i1, i2, i3} such that R∗ = (Ri1 , Ri2 , Ri3) after renaming alternatives and all
other voters prefer the alternatives in {a, b, c, d} the most. Thus, no voter in N \ I
can P̃ -manipulate as a subset of his most preferred alternatives is chosen. This
means that the manipulator i is a voter in I. Moreover, observe that f2(R) contains
some of the most preferred alternatives of every voter in I. Thus, a voter can only
P̃ -manipulate if f2(R

′) is a subset of his most preferred alternatives. This implies
that |f2(R′)| ≤ 2 as the set of most preferred alternatives of every voter in R∗ has
at most size 2. Consequently, f2(R

′) = PO(R′) as |f2(R′)| = 4 if f2 refines the
Pareto-rule. We can derive from these observations that there are profiles R and R′

such that PO(R) contains alternatives that are not among the most preferred ones
of voter i, PO(R′) is a subset of voter i’s most preferred alternatives and R−i = R′−i.

Consequently, the Pareto-rule is P̃ -manipulable which is known to be false. Thus,
the assumption is wrong and f2 is P̃ -strategyproof if f2(R) ( PO(R).

Finally, consider the case that f2(R) = PO(R) and f2(R
′) ( PO(R′). As the

Pareto-rule contains at least one of the most preferred alternatives of every voter
and f2(R) = PO(R), it follows that voter i can only P̃ -manipulate if f2(R

′) is a
subset of his most preferred alternatives. Furthermore, as f2(R

′) ( PO(R′), there
are four alternatives a, b, c, d ∈ A such that f2(R

′) = {a, b, c, d}. Thus, voter i prefers
these alternatives the most in R. Even more, there are three voters I = {i1, i2, i3}
in R′ such that R∗ = (R′i1 , R

′
i2
, R′i3) after renaming alternatives and all other voters

in N \ I prefer the alternatives in f2(R
′) the most. If the manipulator is not among

the voters in I, then f2(R) = {a, b, c, d} ( PO(R) as all voters in N \ I prefer the
alternatives in f2(R

′) the most in R. This contradicts that f2(R) = PO(R) and
therefore, i ∈ I. Finally, note that e is Pareto-dominated in R′−j for all j ∈ I. In
particular, e is Pareto-dominated in R′−i = R−i and voter i prefers all alternatives
weakly to e in Ri. This means that e is also Pareto-dominated in R and therefore,
f2(R) = PO(R) ⊆ {a, b, c, d} is true. Thus, f2(R) is already a subset of voter i’s
most preferred alternatives in R, which means that he cannot P̃ -manipulate in this
case either. Hence, f2 is in all cases P̃ -strategyproof, which proves the theorem. �

As consequence of the last theorem, it follows that there are also neutral and P̃ -
strategyproof C2-functions that refine the Pareto-rule. Thus, the Pareto-rule is not
the only social choice function that satisfies P̃ -strategyproofness, Pareto-optimality,
neutrality and C2. Furthermore, it should be mentioned that the SCF f2 is only
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defined for five alternatives. Nevertheless, it is easy to increase the number of
alternatives by demanding that we only refine the Pareto-rule if there is a set of
alternatives B such that |B| = 5, f2(R|B) ( PO(R|B) and all alternatives in A \ B
are Pareto-dominated. It is easy to adapt the arguments in the proof of Theorem 4.3
to show that this approach leads to neutral and P̃ -strategyproof refinements of the
Pareto-rule in C2 that are defined on more than five alternatives.

4.3 Requirements for P̃ -strategyproof C2-Functions

In this section, we focus on necessary conditions for the P̃ -strategyproofness of C2-
functions in the weak domain. As in the previous section, we try to formalize the
criteria as general as possible and therefore, they sometimes do not require C2.
Unfortunately, it is very hard to find strong criteria. Thus, we always use additional
axioms in our results. More precisely, we discuss when a P̃ -strategyproof and neutral
C2-function is allowed to return a single winner in Section 4.3.1. Furthermore,
we analyze the combination of Pareto-optimality, P̃ -strategyproofness and C2 in
Section 4.3.2. In this section, we can prove that the choice set of every social
choice function satisfying these axioms contains at least one of the most preferred
alternatives of every voter. This criterion has many important implications such as
a characterization of the Pareto-rule discussed in Section 4.3.3.

4.3.1 P̃ -strategyproofness and Neutrality

In this section, we focus on properties of P̃ -strategyproof and neutral social choice
functions in the weak domain. Note that neutrality is a very common property of
social choice functions and therefore, we can derive many implications on the P̃ -
strategyproofness of SCFs. However, this also means that the required axioms are
rather weak. As consequence, we cannot prove results that affect all preference pro-
files. Instead, we focus on preference profiles for which a neutral and P̃ -strategyproof
social choice function returns a single winner and discuss the properties of the win-
ning alternative.

Therefore, we observe that many P̃ -strategyproof social choice functions in the weak
domain only return a single winner if this alternative is strongly preferred by many
voters. For instance, the Pareto-rule and the OMNI-rule, which are known to be
P̃ -strategyproof in the weak domain, return only a single winner if an alternative
is first-ranked by every voter. Even P̃ -strategyproof social choice functions in the
strict domain need to suffice strong requirements for picking a single winner. For
instance, all P̃ -strategyproof tournament solutions return only a single winner if it
is the Condorcet winner.
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Thus, we want to show that only strongly preferred alternatives are chosen as single
winner by a P̃ -strategyproof and neutral social choice function. We first prove a very
weak variant of this claim: If a P̃ -strategyproof and neutral social choice function
returns a single winner, then this alternative is not Pareto-dominated.

Theorem 4.4. Let f : Wn 7→ 2A \ ∅ denote a neutral and P̃ -strategyproof social
choice function. If f(R) = {a} for an arbitrary alternative a ∈ A and preference
profile R ∈ Wn, then a is Pareto-optimal in R.

Proof: Consider an arbitrary social choice function f : Wn 7→ 2A \ ∅ that satisfies
neutrality and P̃ -strategyproofness and let R ∈ Wn denote a preference profile such
that f(R) = {a} for an arbitrary alternative a ∈ A. Furthermore, assume for
contradiction that a is Pareto-dominated by an alternative b in R, i.e., ∀i ∈ N : b �i
a and ∃i ∈ N : b �i a.
Next, we determine the set Nb�a = {i ∈ N | b �i a} which contains all voters who
prefer b strictly to a. We let every voter i ∈ Nb�a manipulate one after another in
the following way: First, we determine the sets Ui = {x ∈ A | x �i a} containing
all alternatives strictly preferred to a by voter i and Li = {x ∈ A \ {a} | a �i x}
containing all alternatives which are weakly less preferred than a. Thereafter, we
change the preference of voter i to R′i in which he is indifferent between all alterna-
tives in Ui ∪{a} and prefers all alternatives in Ui ∪{a} strictly to all alternatives in
Li. Formally,

R′i = {(x, y) | x, y ∈ Ui ∪ {a}} ∪ {(x, y) | x ∈ Ui ∪ {a}, y ∈ Li} ∪ R|Li
.

This leads to a sequence of preference profiles Ri0 = R, Ri1 , ..., Rik = R∗, where
{i1, ..., ik} = Na�b and Rij differs from Rij−1 by replacing the current preference of
voter ij with R′ij . This process leads to the preference profile R∗ which satisfies

that f(R∗) = {a}; otherwise, there is a voter ij ∈ Na�b such that f(Rij) 6= {a} and
f(Rij−i) = {a}. If an alternative b ∈ Lij is in f(Rij), then voter ij can P̃ -manipulate
by switching from Rij to Rij−1 as a is one of his most preferred alternatives in Rij .
Thus, Lij∩f(Rij) = ∅. Furthermore, if an alternative b ∈ Uij is in f(Rij), then voter

ij can P̃ -manipulate by switching from Rij−1 to Rij as he prefers all alternatives in
f(Rij) \ {a} strictly to those in f(Rij−1) = {a}. Hence, this is also not possible
because of the P̃ -strategyproofness. Consequently, there cannot exists such a voter
ij, which implies that f(R∗) = {a}.
Finally, note that every voter is indifferent between a and b in the profile R∗ as every
voter i ∈ Nb�a changed his preference to b ∼i a and all other voters j ∈ N \ Nb�a
have already been indifferent between a and b in R. Thus, we can apply neutrality
to rename a to b and vice versa and the profile does not change. However, the
winner changes as f(R∗) = {a} and after renaming a to b, the winner is b because
of neutrality. This is a contradiction as f(R∗) = {a} and f(R∗) = {b} cannot be
simultaneously true, which means that the initial assumption is wrong. Hence, if
f(R) = {a}, then a is Pareto-optimal in R. �
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R :

1 1 1 1 1
a, b c c b b
c a, b b a, c a

a c

R∗
1 1 1 1 1
a, b c a, b, c b, a b, a
c a, b c c

Figure 4.7: Preference profiles illustrating the proof of Theorem 4.4

Next, we discuss an example of the construction used in the proof of Theorem 4.4
with the help of the profiles shown in Figure 4.7. We assume for this example that
f denotes a neutral and P̃ -strategyproof SCF with f(R) = {a}. Furthermore, note
that b Pareto-dominates a in R. According to the proof of Theorem 4.4, the first two
voters do not change their preferences as they are indifferent between a and b. In
contrast, the other three voters manipulate such that they are indifferent between
a and all alternatives that are originally strictly preferred to a. As consequence
of these modifications, every voter is indifferent between a and b in R∗. However,
f(R∗) = {a}, which contradicts neutrality.
It should be stressed that Theorem 4.4 does not require C2. Even more, we do
not need neutrality as it suffices that two alternative are treated equally if they are
indistinguishable. Formally, this means that a ∈ f(R) if and only if b ∈ f(R) for
all preference profiles R and indistinguishable alternatives a, b in R. Observe that
this condition is very weak and arises naturally. Thus, almost every P̃ -strategyproof
social choice function is forbidden to choose a Pareto-dominated alternative as single
winner.
Unfortunately, Theorem 4.4 is also a rather weak result and can only rarely be
used to disprove the P̃ -strategyproofness of a social choice function. Therefore,
we strengthen this result next. However, it seems that we cannot improve the last
theorem without assuming additional axioms. Therefore, we focus on neutral and P̃ -
strategyproof C2-functions and prove that these social choice functions only choose
a single alternative if it is a Condorcet winner.
For proving this claim, we first discuss the combination of C2 and P̃ -strategyproof-
ness. More precisely, we prove two lemmas which state that these two axioms imply
properties similar to set-monotonicity for a restricted set of preference profiles.

Lemma 4.2. Let f : Wn 7→ 2A \ ∅ denote a P̃ -strategyproof C2-function and let
R ∈ Wn denote an arbitrary preference profile such that f(R) = {a} for an arbitrary
alternative a ∈ A and there is a voter i ∈ N with a �i b for all alternatives
b ∈ A \ {a}. Then, it holds that f(R′) = {a} for all preference profiles R′ ∈ Wn

such that a �j b if and only if a �′j b and b �j a if and only if b �′j a for all voters
j ∈ N and alternatives b ∈ A \ {a}.

Proof: Consider an arbitrary social choice function f : Wn 7→ 2A \ ∅ that is P̃ -
strategyproof and in C2. Furthermore, let R ∈ Wn denote a preference profile such
that f(R) = {a} for an arbitrary alternative a ∈ A and there is a voter i ∈ N such
that a �i b for all b ∈ A \ {a}. For proving the theorem, we show that every voter
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can reorder the unchosen alternatives arbitrarily without changing the choice set of
f if these modifications do not affect preferences involving a. This means that f
satisfies a conditioned variant of independence of unchosen alternatives.
For proving this lemma, we focus on a single voter j ∈ N and show that he can
reorder the unchosen alternatives. As we can simply repeat this argument for every
voter, the lemma follows. First, assume that j = i, i.e., we focus on a voter who
prefers a uniquely the most in R. It is easy to see that this voter can reorder all
alternatives b ∈ A \ {a} without affecting the choice set as long as a remains his
uniquely most preferred alternative. If this was not the case, then there is a profile
R′ = (R−i, R

′
i) with f(R′) 6= {a} and voter i’s most preferred alternative in R′ is a.

Thus, voter i can P̃ -manipulate by switching from R′ to R, which contradicts the
P̃ -strategyproofness of f . Consequently, f(R′) = {a} for all profiles R′ = (R−i, R

′
i)

in which voter i prefers a strictly the most.
Next, consider a voter j who does not prefer a the most and a profile R′ = (R−j, R

′
j)

where the preferences of voter j that involve a do not change. We show in the sequel
that f(R′) = {a} by constructing a path of preference profiles from R to R′ such
that a is the unique winner for every profile on this path. Therefore, consider the
sets Uj = {x ∈ A | x �j a} containing all alternatives that voter j prefers strictly
to a, Lj = {x ∈ A | a �j x} containing all alternatives that voter j prefers strictly
less than a and Ij = {x ∈ A \ {a} | x ∼j a} containing all alternatives that are
indifferent to a in Rj. With the help of these sets, we can represent the preference
of voter j as follows.

Rj = Rj|Uj
∪Rj|Ij∪{a} ∪Rj|Lj

∪
(
Uj × (Lj ∪ Ij ∪ {a})

)
∪
(

(Ij ∪ {a})× Lj
)

We use in this definition the cross product X×Y between sets X, Y as abbreviation
indicating that all alternatives in X are strictly preferred to all alternatives in Y .
Furthermore, note that Uj, Lj and Ij do not change if we define these sets with
respect to R′j as voter j is only allowed to reorder alternatives in Uj and Lj. Formally,
this means that he can only modify a preference x �j y if x, y ∈ Uj or x, y ∈ Lj.
As a 6∈ Uj ∪ Lj, we aim to derive R′j from Rj by first letting voter i reorder the
alternatives in Uj and Lj in the same way as in R′j and then exchange the preferences
of voter i and j with C2. In the first step, we let voter i switch from his current
preference Ri to the preference R1

i in which he orders the alternatives in Uj and Lj
according to R′j. Formally, this is defined as follows.

R1
i =

(
{a} × (A \ {a})

)
∪R′j|Uj

∪R′j|Ij ∪R′j|Lj
∪
(
Uj × (Lj ∪ Ij)

)
∪
(
Ij × Lj

)
It should be stressed that it is irrelevant how we order the sets Uj, Lj and Ij in R1

i as
only the preferences between alternatives in Uj and Lj are important. Furthermore,
it follows from previous observations that voter i can switch to this preference and
the unique winner in the profile R1 = (R−i, R

1
i ) is still a. Next, we can use C2 and
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R :

1 1
a b
d c
e a
b, c d, e

R1 :

1 1
a b
c c
b a
d d, e
e

R2 :

1 1
a c
b b
c a
d, e d

e

R′ :

1 1
a c
d b
e a
b, c d

e

Figure 4.8: Preference profiles illustrating the proof of Lemma 4.2

let voter i and j exchange their preferences over Uj and Lj. Formally, the preferences
of voter i and j are now defined as follows.

R2
i =

(
{a} × (A \ {a})

)
∪Rj|Uj

∪Rj|Ij ∪Rj|Lj
∪
(
Uj × (Lj ∪ Ij)

)
∪
(
Ij × Lj

)
R2
j = R′j|Uj

∪R′j|Ij∪{a} ∪R′j|Lj
∪
(
Uj × (Lj ∪ Ij ∪ {a})

)
∪
(

(Ij ∪ {a})× Lj
)

It follows from C2 that this step results in a profile R2 with f(R2) = f(R1) = {a}.
Furthermore, note that R2

j = R′j and therefore, we only have to revert the preference
of voter i back to Ri to arrive at R′. This is possible as a is the unique winner in R2

and voter i prefers this alternative the most in R and R2. Thus, a is still the unique
winner after voter i changes his preference back to Ri, i.e., f(R′) = {a}. Otherwise,
he can P̃ -manipulate by switching from R′ to R2 as a is his uniquely most preferred
alternative in R′i. This means that every voter j ∈ N can reorder the alternatives
in Uj and Lj arbitrarily, which proves the lemma. �

Next, we discuss an example of the constructions in the proof of Lemma 4.2. There-
fore, consider the preference profiles shown in Figure 4.8 and assume that f denotes
a P̃ -strategyproof C2-function with f(R) = {a}. We want to change the preferences
of voter 2 from R2 = b � c � a � d ∼ e to R′2 = c � b � a � d � e. Hence, we
first calculate that U2 = {b, c}, L2 = {d, e} and I2 = ∅. Subsequently, we use the
P̃ -strategyproofness of f to reorder the alternatives in U2 and L2 in the preference
of the first voter according to R′2. This leads to the profile R1 and we know that
f(R1) = {a} because of P̃ -strategyproofness. Thereafter, we use C2 to exchange the
preferences of voter 1 and 2 between the alternatives in U2 = {b, c} and L2 = {d, e},
which implies that f(R2) = {a}. Finally, we use again the P̃ -strategyproofness of f
to let voter 1 switch back to his original preference. Thus, voter 2 has changed his
preference to R′2 and a is still the unique winner.
As consequence of Lemma 4.2, every P̃ -strategyproof C2-function f satisfies inde-
pendence of unchosen alternatives if f(R) = {a} and a voter prefers a uniquely the
most. This is already a very powerful result because it allows us to reorder many al-
ternatives arbitrarily. Even more, we can prove that voters can reinforce the unique
winner if it is the uniquely most preferred alternative of a voter.
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Lemma 4.3. Consider a social choice function f : Wn 7→ 2A \ ∅ that is P̃ -
strategyproof and in C2. Furthermore, let R ∈ Wn denote an arbitrary preference
profile such that f(R) = {a} for an arbitrary alternative a ∈ A and there is a voter
i ∈ N with a �i b for all b ∈ A \ {a}. Then, it holds that f(R′) = {a} for all voters
j ∈ N and preference profiles R′ = (R−j, R

′
j) such that a �j b implies a �′j b for all

b ∈ A \ {a} and there is no alternative b ∈ A \ {a} with a ∼′j b.

Proof: Consider a P̃ -strategyproof C2-function f : Wn 7→ 2A \ ∅ and a preference
profile R ∈ Wn such that f(R) = {a} for an arbitrary alternative a ∈ A and there
is a voter i ∈ N who prefers a uniquely the most. We show that an arbitrary voter
j ∈ N can reinforce a in his preference without changing the choice set if there
are no ties involving a in his new preference R′j. Note that this lemma also allows
for reordering unchosen alternatives. However, after we place a correctly in the
preference of voter j, we can use Lemma 4.2 to reorder the alternatives. Thus, it
suffices to focus on how to reinforce a.

Therefore, consider an arbitrary voter j ∈ N and a preference profile R′ ∈ Wn

as specified in the lemma. We prove that f(R′) = {a} by constructing a path of
preference profiles from R to R′ such that a is the unique winner for every preference
profile on this path. As this sequence is rather complicated, we discuss an example
for the transformation after the proof. As in the proof of Lemma 4.2, we first focus
on a voter i who prefers a uniquely the most in R. As in the last lemma, it holds
that f(R+) = {a} for all preference profiles R+ = (R−i, R

+
i ) with a �+

i b for all
b ∈ A \ {a}. Hence, the lemma holds for this voter.

Next, consider a voter j 6= i who does not prefer i uniquely the most. Thus, we
first determine the sets Uj = {x ∈ A | x �j a} containing all alternatives that are
strictly preferred to a in Rj, Lj = {x ∈ A | a �j x} containing all alternatives that
are strictly less preferred than a and Xj = {a ∈ A | x �j a∧ a �′j x} containing the
alternatives that are weakly preferred to a in Rj and that are strictly less preferred
than a in R′j. Note that Xj contains all alternatives b ∈ A \ {a} with a ∼j b in R
as no alternative is allowed to be tied with a in R′j. With the help of these sets, we
can formalize the required preference profiles. First, we let voter j ensure that there
are no alternatives z ∈ A \ (Xj ∪{a}), y ∈ Xj such that y �j z �j a. Formally, this
leads to the following preference.

R1
j = Rj|Uj\Xj

∪ Rj|Lj∪Xj∪{a} ∪
(

(Uj \Xj)× (Xj ∪ Lj ∪ {a})
)

Note that we use the cross product X × Y between sets X, Y to indicate that all
alternatives in X are strictly preferred to those in Y . The intuition in this step is to
push the alternatives in Uj \Xj away from a such that they are not affected by the
following steps. The reason for this is that the alternatives Uj \Xj are still strictly
preferred to a in R′j, whereas the alternatives in Xj are less preferred than a in R′j.
Furthermore, observe that the profile R1 = (R−j, R

1
j ) satisfies f(R1) = {a} because

we derive it by an application of Lemma 4.2.



Requirements for P̃ -strategyproof C2-Functions 99

Subsequently, we let voter i reorder his alternatives such that only alternative a is
preferred to the alternatives in Xj. Furthermore, we reorder the alternatives in Xj

according to Rj. Formally, this results in the following preference.

R2
i =

(
{a} × (A \ {a}

)
∪
(
Xj × (A \ (Xj ∪ {a}))

)
∪ Rj|Xj

∪ Ri|A\(Xj∪{a})

It follows again from Lemma 4.2 that f(R2) = {a} where R2 = (R1
−i, R

2
i ). There-

after, we use C2 to exchange the preferences of voter i and j over the alternatives
in Xj ∪ {a}. This means that voter i prefers now the alternatives in Xj the most
and voter j prefers a strictly to the alternatives in Xj. Formally, this leads to the
following preferences.

R3
i = R2

j |Xj∪{a} ∪R2
i |A\(Xj∪{a}) ∪

(
(Xj ∪ {a})× (A \ (Xj ∪ {a}))

)
R3
j = R2

i |Xj∪{a} ∪
(

(Uj \Xj)× (Xj ∪ Lj ∪ {a})
)
∪
(

(Xj ∪ {a})× Lj
)

In the preference of voter j, only the preferences between a and the alternatives in Xj

change because we have already ensured in the first step that the alternatives in Xj

are placed directly above a. Furthermore, as voter i prefers only a to the alternatives
in Xj, it follows that R2 and R3 = (R−{i,j}, R

3
i , R

3
j ) have the same majorities and

therefore, f(R3) = f(R2) = {a} as f is in C2. Next, we let voter i switch back to his
original preference Ri, which leads to the profile R4 = (R3

−i, Ri). It follows from the

P̃ -strategyproofness of f that f(R4) = {a} as otherwise voter i can P̃ -manipulate
by switching from R4 back to R3. Finally, note that the preferences involving a in
R4
j are equal to those in R′j, which means that we can use Lemma 4.2 to derive R′j

from R4
j . This leads to the preference profile R′ and it holds that f(R′) = {a} as

we deduce this profile with the help of Lemma 4.2. Thus, we have shown that an
arbitrary voter can reinforce the unique winner a of a P̃ -strategyproof C2-function
arbitrarily if there are no ties involving a in his new preference. �

Note that even though Lemma 4.3 looks at first glance like a conditioned variant of
set-monotonicity, it is not. While set-monotonicity also allows for going from b � a
to b ∼ a, Lemma 4.3 does not allow such a modification. Even more, we strongly
believe that there is no relation between the combination of P̃ -strategyproofness
and C2 and arbitrary variants of set-monotonicity.
As next point, we discuss an example for the proof of the last lemma with the help
of the preference profiles in Figure 4.9. For this example, assume that f denotes
a P̃ -strategyproof C2-function with f(R) = {a}. Furthermore, voter 2 wants to
change his preference from R2 = d � c � a ∼ b to R′2 = c � a � b ∼ d. Therefore,
we first swap d and c in the preference of voter 2 to deduce R1 because alternative
c is strictly preferred to a in R′2. Subsequently, voter 1 ensures that b and d are
placed directly under a, which leads to R2. It holds that f(R2) = f(R1) = {a}
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R :

1 1
a d
b c
c a, b
d

R1 :

1 1
a c
b d
c a, b
d

R2 :

1 1
a c
d d
b a, b
c

R3 :

1 1
d c
b, a a
c d

b

R4 :

1 1
a c
b a
c d
d b

R′ :

1 1
a c
b a
c b, d
d

Figure 4.9: Preference profiles illustrating the proof of Lemma 4.3

because of Lemma 4.2. After this, we use C2 to exchange the preferences of voter
1 and 2 over {a, b, d}. Therefore, f(R3) = f(R2) = {a}. As fourth step, we use
the P̃ -strategyproofness of f to let voter 1 switch back to his original preference
R1, which results in R4. Finally, voter 2 applies Lemma 4.2 to order the unchosen
alternatives according to R′2 and consequently, we can deduce that f(R′) = {a}.
Thus, we have derived two powerful lemmas to manipulate preference profiles where
a P̃ -strategyproof C2-function returns a single winner and this winner is first-ranked
by at least one voter. Note that the constraint that a voter must prefer the winner
uniquely the most is very weak as P̃ -strategyproofness allows to manipulate the pref-
erence of a voter such that he prefers the unique winner the most without changing
the choice set. This is also one of the key ideas of the proof of the next theorem
stating that a P̃ -strategyproof and neutral C2-function only returns a single winner
if it is a Condorcet winner.

Theorem 4.5. Let f :Wn 7→ 2A \ ∅ denote a social choice function that is neutral,
P̃ -strategyproof and in C2. If f(R) = {a} for a preference profile R ∈ Wn and an
alternative a ∈ A, then a is the Condorcet winner in R.

Proof: Let f : Wn 7→ 2A \ ∅ denote a social choice function that is neutral, P̃ -
strategyproof and in C2. Furthermore, let R ∈ Wn denote a preference profile such
that f(R) = {a} for an arbitrary alternative a ∈ A and assume for contradiction
that a is no Condorcet winner in R. We know already from Theorem 4.4 that a is
not Pareto-dominated by an alternative b. Furthermore, we can deduce from the
neutrality of f that there is no alternative b such that every voter is indifferent
between a and b. Thus, there is an alternative b with nba ≥ nab ≥ 1. This means
that there is a voter i ∈ N with a �i b. We let this voter modify his preference
by pushing a to the top. This leads to a new profile R1 which only differs from R
in the fact that a is the uniquely preferred alternative of voter i. We can deduce
that f(R1) = {a} as otherwise voter i can P̃ -manipulate by switching from R1 to R.
Furthermore, we can now use Lemma 4.2 and Lemma 4.3. Thus, we repeatedly use
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R :

1 1 1 1 1
b b c c c
a c a b a, b
c a b a

R1 :

1 1 1 1 1
b b a c c
a c c b a, b
c a b a

R2 :

1 1 1 1 1
b b a b c
a a b a a, b
c c c c

R3 :

1 1 1 1 1
a a a b c
b b b a a, b
c c c c

R4 :

1 1 1 1 1
b b b a c
a a a b a, b
c c c c

Figure 4.10: Preference profiles illustrating the proof of Theorem 4.5

Lemma 4.3 to go from R1 to a profile R2 in which every voter with a � b prefers a
uniquely the most and b uniquely the second most and every voter with b � a prefers
b uniquely the most and a uniquely second most; the preferences of voters with a ∼ b
are not modified. As consequence of Lemma 4.3, it holds that f(R2) = {a}.
Next, define the majority margin between a and b in R2 as k = n2

ba − n2
ab ≥ 0, i.e.,

there are k more voters in R2 who prefer b strictly to a than voters who prefer a
strictly to b. Subsequently, we use again Lemma 4.3 to let k voters with b � a in R2

switch to a � b. This leads to a preference profile R3 with n3
ab = n2

ba, n
3
ba = n2

ab and
all other majorities stay the same as all voters either are indifferent between a and
b or prefer both a and b strictly to all other alternatives. Furthermore, f(R3) = {a}
as we derive this profile with the help of Lemma 4.3. Finally, we apply neutrality to
rename a to b and vice versa, which leads to a preference profile R4 with f(R4) = {b}.
As consequence of this renaming, we have that n4

ab = n3
ba = n2

ab and n4
ba = n3

ab = n2
ba

and all other majorities are not affected. Thus, R4 and R2 have the same majorities
but a different outcome, which contradicts that f is in C2. Therefore, the initial
assumption is wrong and a is the Condorcet winner in R. �

As first remark, we discuss an example of the constructions used in the proof of
the last theorem. Thus, consider the preference profiles shown in Figure 4.10 and
assume that f is a P̃ -strategyproof and neutral C2-function with f(R) = {a} even
though nba > nab. As first step, we let the only voter with a � b, the third one,
push a uniquely to the top to derive R1. It follows from P̃ -strategyproofness that
f(R1) = {a}. Thereafter, we use Lemma 4.3 to deduce the profiles R2 and R3.
Note that n2

ba − n2
ab = 2 and therefore, we let two voters in R2 swap from b � a

to a � b. Finally, we apply neutrality to derive R4 by renaming a to b and b to a,
which means that f(R4) = {b}. Thus, f(R2) 6= f(R4) even though the majorities
of R4 equals those of R2. This contradicts that f is in C2 and therefore, one of the
initial assumptions is wrong.

Note that Theorem 4.5 provides a strong criterion on the preference profiles for which
a P̃ -strategyproof and neutral C2-function is allowed to return a single alternative.
For instance, it follows from this theorem that the maximin rule and Borda’s rule
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are not P̃ -strategyproof as they are neutral and in C2 and they can return a single
winner that is no Condorcet winner. Even more, this result shows that there is no
large gap between required conditions on P̃ -strategyproof and neutral C2-functions
in the weak domain and impossibility results. The reason for this is that the main
result of [Bra11] states that every Condorcet extension defined on the weak domain
is P̃ -manipulable if there are sufficiently many voters. Thus, it is a requirement for
P̃ -strategyproofness that neutral C2-functions choose the Condorcet winner if they
return a single winner. However, this SCF is not allowed to pick a Condorcet winner
whenever it exists because of the result in [Bra11].

4.3.2 P̃ -strategyproofness and Pareto-optimality

In this section, we discuss further requirements for the P̃ -strategyproofness of social
choice functions in C2. While the main focus of the last section is the combination
of P̃ -strategyproofness and neutrality, we analyze in this section the combination
of P̃ -strategyproofness and Pareto-optimality. We prove a strong condition that is
necessary for P̃ -strategyproof and Pareto-optimal C2-functions stating that every
such function returns at least one of the most preferred alternatives of every voter
for every preference profile. This condition strongly restricts P̃ -strategyproof and
Pareto-optimal C2-functions and has many important consequences. For instance,
we can derive with the help of this theorem a simple proof for the impossibility of
P̃ -strategyproof, Pareto-optimal and pairwise SCFs discussed in [BSS].

As the proof of our main result is rather difficult, we break it down into multiple
lemmas and give a short overview first. In the first two lemmas, we focus on the
opposite setting assuming that there is a preference profile R and a P̃ -strategyproof
and Pareto-optimal C2-function f such that f(R) does not contain any of the most
preferred alternatives of voter i. We prove that this implies that there is a profile R′

such that f(R′) = {a} for an alternative a ∈ f(R), a voter i prefers a uniquely the
least and every other voter prefers a uniquely the most. Thus, we know a lot about
the structure of a profile for which a voter does not get any of his most preferred
alternatives. This information is used in Lemma 4.6, Lemma 4.7 and Lemma 4.8
where we prove the with an induction on n that every P̃ -strategyproof and Pareto-
optimal C2-function returns at least one of the most preferred alternatives of every
voter if there are only three alternatives. Finally, we generalize this result from
m = 3 alternatives inductively to an arbitrary larger number of alternatives as
shown in Theorem 4.6. Note that not all lemmas need all axioms and therefore, the
intermediate steps may also be used in different contexts.

It should be mentioned that our results require that m ≥ 3 alternatives are available.
The reason for this is that the majority rule satisfies C2, Pareto-optimality and P̃ -
strategyproofness if m = 2. This social choice function returns {a} if nab > nba,
{a, b} if nab = nba, and {b} otherwise. It is easy to see that the majority rule satisfies
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all required axioms and that its choice set may not include the most preferred
alternative of a voter. Thus, m ≥ 3 is indeed required for our main theorem.
Furthermore, we assume in all lemmas that n ≥ 2. The reason for this is that if
there is only a single winner, then only his most preferred alternatives are Pareto-
optimal, which means that every Pareto-optimal social choice function can only
return a subset of his most preferred alternatives. Thus, our claim holds trivially in
this case. Finally, it should be mentioned that we work in this section always with
social choice function defined on a fixed electorate even though C2-functions in the
weak domain are usually defined on a variable electorate. The reason for this is that
a fixed electorate is easier to handle and still sufficiently strong. Furthermore, all
results carry over to social choice functions defined on a variable electorate as these
functions imply SCFs with fixed electorates.

As a first step of proving the main result of this section, we assume that there is a
preference profile R and a Pareto-optimal and P̃ -strategyproof social choice function
f such that f(R) does not contain any of voter i’s most preferred alternatives. We
can deduce from this assumption that there is a preference profile R′ such that
f(R′) = {a} and a is not among the most preferred alternatives of voter i. The
reason why we are interested in such a profile R′ is that P̃ -strategyproofness becomes
much more powerful if only a single winner is chosen.

Lemma 4.4. Consider a social choice function f : Wn 7→ 2A \ ∅ that is defined
on m ≥ 3 alternatives and n ≥ 2 voters and that satisfies Pareto-optimality and
P̃ -strategyproofness. Furthermore, assume that there is a preference profile R ∈ Wn

and a voter i ∈ N such that none of voter i’s most preferred alternatives are in
f(R). Then, there is a profile R′ such that f(R′) = {a} for an alternative a ∈ f(R)
and a is not among the most preferred alternatives of voter i in R′.

Proof: Consider an arbitrary social choice function f :Wn 7→ 2A\∅ and a preference
profile R ∈ Wn as specified in the lemma. Furthermore, let i denote a voter in R
such that none of his most preferred alternative are in f(R). This means formally
that the set X = {a ∈ A | @b ∈ A : b �i a} containing all of voter i’s most preferred
alternatives and f(R) are disjoint, i.e., f(R)∩X = ∅. In the sequel, we explain how
to construct the profile R′ required by this lemma.

Therefore, we first iterate over all voters j ∈ N \ {i} and let them manipulate one
after another in the following way: Every voter j ∈ N \ {i} switches from Rj to a
preference R1

j such that the alternatives in f(R) are his most preferred alternatives,
i.e., it holds in the new preference that x ∼1

j y for all x, y ∈ f(R) and x �1
j y for all

x ∈ f(R), y ∈ A\f(R). The alternatives in A\f(R) can be ordered arbitrarily. This
leads to a new preference profile R1 and it holds that f(R1) ⊆ f(R); otherwise, there
is a voter j ∈ N \ {i} such that a subset of f(R) is chosen before his manipulations,
but afterwards an alternative c ∈ A \ f(R) is element of the choice set. This voter
can P̃ -manipulate by undoing the manipulation as he prefers the alternatives in
f(R) strictly to all other alternatives in R1

j . Thus, f(R1) ⊆ f(R).
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Furthermore, it follows from Pareto-optimality that only the alternatives of f(R)
that voter i prefers the most can be in f(R1) as the remaining alternatives of f(R)
are Pareto-dominated. We use this fact to ensure that only a single alternative
of f(R) is chosen. Hence, let voter i pick an arbitrary alternative a ∈ f(R) and
change his preference to R2

i in which he prefers the alternatives in X the most,
the alternative a uniquely second most and the remaining alternatives are ordered
arbitrarily. Formally, this preference is defined as follows.

R2
i = Ri|X ∪ Ri|A\(X∪{a}) ∪ {(x, y) | x ∈ X, y ∈ A\X} ∪ {(a, y) | y ∈ A\(X∪{a})}

Note that we copy the preferences of Ri on the alternatives in A \ (X ∪ {a}) for
simplicity as they are immaterial. This leads to a preference profile R2 = (R1

−i, R
2
i )

such that f(R2) = {a}. The reason for this is the that every voter but i prefers the
alternatives in f(R) the most and voter i prefers a ∈ f(R) strictly to all alternatives
in A \ (X ∪ {a}). Thus, a Pareto-dominates all alternative in A \ (X ∪ {a}) and
therefore, f(R2) ⊆ X ∪ {a}. Furthermore, as f(R1) ⊆ f(R), it follows that no
alternative in X is chosen in f(R1). As the set X contains the most preferred
alternatives of voter i, it follows that none of these alternatives can be chosen for R2

either; otherwise, voter i can P̃ -manipulate by switching from R1 to R2. Thus, it
holds that f(R2) = {a}, which means that we have found a preference profile that
satisfies all requirements of the lemma. �

First, we illustrate the proof of Lemma 4.4 with the preference profiles shown in
Figure 4.11. Note that the naming of the profiles in the example does not coincide
with the naming in the proof of Lemma 4.4. Furthermore, assume that f denotes
a P̃ -strategyproof and Pareto-optimal social choice function with f(R1) = {a, d, e}.
This implies that {b, c}∩f(R1) = ∅, which means that f(R1) contains no alternatives
that are among the most preferred ones of voter 1. Thus, we can apply Lemma 4.4.
The first step in the proof of this lemma is to let every voter except the first one
manipulate such that they prefer the alternatives in f(R1) = {a, d, e} the most. This
step results in the profile R2 and it follows from P̃ -strategyproofness and Pareto-
optimality that f(R2) ⊆ {a, e}. Next, we let voter 1 manipulate such that a Pareto-
dominates both d and e to derive R3. Consequently, f(R3) = {a} as otherwise either
a Pareto-dominated alternative is chosen or voter 1 can P̃ -manipulate by switching
from R2 to R3. Thus, we have now a single winner that is not among the most
preferred alternatives of the first voter.
As consequence of Lemma 4.4, if a Pareto-optimal and P̃ -strategyproof social choice
function does not choose any of the most preferred alternatives of a voter, we can
go to a profile with the same situation for this voter where only a single winner is
chosen. This situation is desirable as P̃ -strategyproofness becomes more powerful
if a social choice function returns only a single winner for a profile. For instance,
it becomes possible to use Lemma 4.2 and Lemma 4.3 if the social choice function
additionally is in C2 and a voter prefers the unique winner the most.
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R1 :

1 1 1
b, c d a, d
a, e a e
d e b, c

b, c

R2 :

1 1 1
b, c a, d, e a, d, e
a, e b, c b, c
d

R3 :

1 1 1
b, c a, d, e a, d, e
a b, c b, c
d
e

Figure 4.11: Preference profiles illustrating the proof of Lemma 4.4

Next, we show that we can derive a profile R′′ that is even worse for voter i: If a
social choice function satisfies Pareto-optimality and P̃ -strategyproofness, we can go
from a profile with a unique winner that is not among the most preferred alternatives
of voter i to a profile where the unique winner is the worst alternative of voter i.

Lemma 4.5. Consider a social choice function f : Wn 7→ 2A \ ∅ that is defined
on n ≥ 2 voters and m ≥ 3 alternatives and that satisfies Pareto-optimality and
P̃ -strategyproofness. Furthermore, assume that there is a profile R ∈ Wn and a
non-empty set of voters I ⊆ N such that f(R) = {a} even though there is an
alternative b ∈ A that is among the most preferred alternatives of every voter in I
and b �i a for all i ∈ I. Then, there is a profile R′ ∈ Wn such that f(R′) = {a}
and a is the uniquely worst alternative of every voter in I and the uniquely best
alternative of every voter in N \ I.

Proof: Consider an arbitrary SCF f :Wn 7→ 2A \ ∅ that satisfies Pareto-optimality
and P̃ -strategyproofness and a profile R ∈ Wn such that f(R) = {a}. Furthermore,
assume that there is an alternative b ∈ A and a non-empty set of voters I ⊆ N such
that b �i a for all i ∈ I and b is among the most preferred alternatives of every voter
in I. Note that I 6= N as otherwise b Pareto-dominates a and thus, f(R) = {a}
cannot be true. In the sequel we provide a sequence of profiles starting at R and
leading to a profile R2 that satisfies all requirements of the lemma.
Thus, we first iterate over all voters j ∈ N \ I and let them manipulate one after
another in the following way: The currently considered voter j modifies his pref-
erence such that a is his uniquely most preferred alternative and b is his uniquely
second most preferred alternative in his new preference. The order of the remaining
alternatives does not matter. After every voter j ∈ N \ I manipulated this way,
we derive a new preference profile R1 for which f(R1) = {a} is true; otherwise,
there is a voter j such that a is the unique winner before his modifications but not
afterwards. This means that voter j can P̃ -manipulate by inverting his changes as
he prefers a uniquely the most after the modification.
Note that b Pareto-dominates every alternative in A \ {a, b} as every voter in I
prefers this alternative the most and every voter in N \ I ranks b strictly over
every other alternative but a. We use this observation to derive the profile R′ by
letting each voter i ∈ I manipulate one after another in the following way: Every
voter i ∈ I switches from his current preference to a preference where he prefers
b uniquely the most and a uniquely the least. The remaining alternatives can be
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R3 :

1 1 1
b, c a, d, e a, d, e
a b, c b, c
d
e

R4 :

1 1 1
b, c a a
a b b
d d, e d, e
e c c

R5 :

1 1 1
b a a
c b b
d d, e d, e
e c c
a

Figure 4.12: Preference profiles illustrating the proof of Lemma 4.5

ordered arbitrarily. This leads to a sequence of profiles that starts at R1, ends at
R2 and two consecutive profiles differ only in the discussed modifications of a single
voter. Note that the preference profile R2 satisfies the required form of the lemma:
Every voter in I prefers a uniquely the least and every voter in N \ I prefers a
uniquely the most in this profile.

Thus, it only remains to show that f(R2) = {a}. Assume for contradiction that
this is not true. This means that there are two preference profiles R3 and R4 in
the sequence of profiles starting at R1 and ending at R2 such that f(R3) = {a},
f(R4) 6= {a} and R3

−i = R4
−i for a voter i ∈ I. Note that every voter in I prefers b

the most in R4 and every voter in N \ I prefers b uniquely second most. This means
that f(R4) ⊆ {a, b} because every other alternative is Pareto-dominated by b. Thus,
f(R4) 6= {a} implies that b ∈ f(R4) and therefore, voter i can P̃ -manipulate as he
prefers b strictly to a. However, this contradicts that f is P̃ -strategyproof and
therefore, the initial assumption is wrong. Hence, f(R4) = {a} and consequently,
f(R2) = {a}. This means that R2 satisfies all requirements of the lemma. �

We illustrate the proof of this lemma by continuing the example in Figure 4.11.
Thus, consider the profiles shown in Figure 4.12 and note that the naming of the
profiles in the proof of Lemma 4.5 and the example differs. Furthermore, recall that
f denotes a Pareto-optimal and P̃ -strategyproof social choice function and that
f(R3) = {a}. This means that none of the most preferred alternatives of the first
voter are in f(R3). The first step of the proof of Lemma 4.5 is that every voter
but the first one manipulates such that a is his uniquely best alternative and b his
uniquely second best alternative. This leads to the profile R4 for which f(R4) = {a}
is true because of P̃ -strategyproofness. Subsequently, voter 1 manipulates such that
b is his most preferred alternative and a his least preferred one. This leads to the
profile R5 which satisfies that f(R5) = {a} because of Pareto-optimality and P̃ -
strategyproofness. Finally, we have derived a profile in which the unique winner is
the unique worst alternative of a voter.

As consequence of Lemma 4.4 and Lemma 4.5, it follows that if a Pareto-optimal and
P̃ -strategyproof social choice function does not contain any of the most preferred
alternatives of every voter for every preference profile R, then there is a profile R′

such that f(R′) = {a}, a voter prefers a the least and the remaining voters prefer
a the most. This is a very powerful setting as it follows from P̃ -strategyproofness
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that both the voters who prefer a uniquely the most and the voter who prefers a
uniquely the least can modify their preferences without affecting the choice set.
We use this observation to derive a contradiction if the SCF f additionally satisfies
C2. However, it is difficult to find this contradiction if n and m are arbitrary and
therefore, we focus on the simplified setting with m = 3 alternatives. Unfortunately,
even with only three alternatives, we need auxiliary lemmas to derive the contra-
diction. Thus, we first discuss some properties of social choice functions that are
P̃ -strategyproof, Pareto-optimal and in C2. More precisely, we focus on the profiles
that we derive by applying the previous lemmas, i.e., those where all voters but
one agree on a uniquely most preferred alternative a, the remaining voter dislikes
a uniquely the most and a is the unique winner. We show in the next lemma that
if such a profile exists for a P̃ -strategyproof and Pareto-optimal SCF, then it holds
that f(R) = {x} as soon as n−1 voters agree that x is the uniquely best alternative.

Lemma 4.6. Consider a social choice function f :Wn 7→ 2A\∅ defined on n ≥ 2 vot-
ers and m = 3 alternatives that satisfies Pareto-optimality and P̃ -strategyproofness.
If there is a preference profile R ∈ Wn such that n−1 voters agree on an alternative
a ∈ A as the uniquely best alternative, the last voter prefers a uniquely the least and
f(R) = {a}, then f(R′) = {x} for all alternatives x ∈ A and preference profiles
R′ ∈ Wn in which n− 1 voters agree that x is the uniquely best alternative.

Proof: Consider an arbitrary social choice function f : Wn 7→ 2A \ ∅ that satisfies
all axioms required by the lemma. Furthermore, assume that there is a preference
profile R such that f(R) = {a} for an arbitrary alternative a ∈ A, n−1 voters prefer
a uniquely the most and the last voter prefers a uniquely the least. It follows from
the P̃ -strategyproofness of f that f(R′) = {a} for all profiles R′ ∈ Wn that result
from R if the voter who prefers a the least changes his preference. Furthermore, all
other voters can reorder their unchosen alternatives because of P̃ -strategyproofness
without affecting the choice set. Even more, we can rename the voters without
changing the choice set because f is in C2. This means that f(R∗) = {a} for all
profiles R∗ where n− 1 voters agree that a is the uniquely best alternative.
Next, we show that this result also holds if n−1 voters agree that another alternative
b 6= a is the uniquely best one. Note that it suffices to show that there is a profile
R′ ∈ Wn such that f(R′) = {b} and b is the uniquely most preferred alternative of
n − 1 voters and the least preferred alternative of the last voter. If such a profile
exists, we can simply apply the same arguments discussed in the last paragraph to
show that f(R∗) = {b} for all profiles R∗ ∈ Wn where n − 1 voters agree that b is
the uniquely best alternative. Thus, consider the profiles shown in Figure 4.13.
It follows from the explanations in the first paragraph that f(R1) = {a}. Moreover,
we let every voter but the first one manipulate one after another such that he prefers
a and b the most. Note that c cannot be chosen as consequence of these modifica-
tions; otherwise, there is a voter such that c is not chosen before his modification,
but it is afterwards. Hence, this voter can P̃ -manipulate by undoing this modifica-
tion, which contradicts the P̃ -strategyproofness of f . Therefore, this process leads
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1 n− 1
R1 c � b � a a � b � c
R2 c � b � a a ∼ b � c
R3 c � b � a b � c � a
R4 c � a � b b � c � a

Figure 4.13: Preference profiles used in the proof of Lemma 4.6

to the profile R2 and P̃ -strategyproofness implies that f(R2) ⊆ {a, b}. Even more,
f(R2) = {b} because b Pareto-dominates a in R2.
Subsequently, we let every voter but the first one change his preference one after
another from a ∼ b � c to b � c � a in R2. This leads to a preference profile R3 and
it follows from the P̃ -strategyproofness of f that f(R3) = {b}. Furthermore, note
that c Pareto-dominates a in R3. We use this fact to derive the profile R4 by letting
voter 1 manipulate such that b is his uniquely worst alternative. As c still Pareto-
dominates a in R4, it holds that a 6∈ f(R4) and it follows from P̃ -strategyproofness
that c 6∈ f(R4); otherwise, voter 1 can P̃ -manipulate by switching from R3 to R4.
Thus, R4 satisfies all of our requirements: It holds that f(R4) = {b}, n − 1 voters
prefer b the most and the last voter prefers b the least. �

Note that this lemma even holds if there are n = 2 voters. This implies that
f(R) 6= {a} for all P̃ -strategyproof and Pareto-optimal C2-functions f defined on
two voters and preference profiles R ∈ W2 where one voter prefers a the most and
the second voter prefers a the least. Otherwise, we can deduce from Lemma 4.6
that f(R′) = {a} and f(R′) = {c} are simultaneously true for all profiles R′ where
n− 1 = 1 voter prefers a uniquely the most and n− 1 = 1 voter prefers c uniquely
the most. This is a contradiction and therefore, it follows that the assumptions of
Lemma 4.6 are never true for such social choice functions defined on n = 2 voters.
We want to derive a similar contradiction if there are more than two voters. Un-
fortunately, it becomes more difficult to deduce this result in this case. Therefore,
we first provide another auxiliary lemma. We assume for this lemma that there
is a social choice function f defined on n voters that satisfies P̃ -strategyproofness,
Pareto-optimality and C2 and for which there is a profile R such that f(R) = {a}
even though at least two voters prefer another alternative b the most. Based on
this social choice function, we show how to construct a P̃ -strategyproof and Pareto-
optimal C2-function g defined on n− 1 voters for which a profile R′ ∈ Wn−1 exists
such that g(R′) = {a} even though a voter prefers another alternative b the most.

Lemma 4.7. Consider a Pareto-optimal and P̃ -strategyproof C2-function f :Wn 7→
2A defined on n ≥ 3 voters and m = 3 alternatives. Furthermore, assume that there
is a profile R ∈ Wn such that f(R) = {a} even though at least two voters prefer
another alternative b uniquely the most. Then, there is a P̃ -strategyproof and Pareto-
optimal C2-function g : Wn−1 7→ 2A \ ∅ for which a preference profile R′ ∈ Wn−1

exists such that b 6∈ g(R′) even though a voters prefers b uniquely the most.
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1 1 n− 2
R1 b � c � a b � c � a a � c � b
R2 b ∼ c ∼ a b � c � a a � c � b
R3 - b � c � a a � c � b

Figure 4.14: Preference profiles used in the proof of Lemma 4.7

Proof: Consider a social choice function f : Wn 7→ 2A \ ∅ that is defined on m = 3
alternatives and an arbitrary number of voters n ≥ 3 and that satisfies all axioms
specified in the lemma. Furthermore, assume that there is a profile R∗ ∈ Wn such
that f(R∗) = {a} even though there are at least two voters who prefer another
alternative b 6= a uniquely the most. We construct with the help of f a social
choice function g :Wn−1 7→ 2A \ ∅ that satisfies the axioms required by the lemma.
This SCF g is defined as follows: Given a preference profile R ∈ Wn−1, this SCF
adds a new voter i∗ who is indifferent between all alternatives to obtain the profile
R′ = (R,Ri∗). Then, g(R) = f(R′). Clearly, g is Pareto-optimal, P̃ -strategyproof
and in C2; otherwise, f violates these properties, too.

Thus, it only remains to show that there is a profile R′ ∈ Wn−1 such that b 6∈ g(R′)
even though a voter prefers b uniquely the most. Therefore, recall that there is a
profile R ∈ Wn such that f(R) = {a} even though two voters prefer b uniquely
the most. It follows from Lemma 4.5 that there is a preference profile R′′ ∈ Wn

such that f(R′′) = {a} even though there are two voters who prefer b uniquely the
most and a uniquely the least and every other voter prefers a uniquely the most.
Furthermore, we can also reorder unchosen alternatives with the help of Lemma 4.2
and voters because of C2 and therefore, we can deduce that f(R1) = {a} where
R1 is shown in Figure 4.14. Next, we let the first voter in R1 manipulate such
that he is indifferent between all alternatives. This leads to the profile R2 and it
holds that f(R2) = {a}; otherwise, voter 1 can P̃ -manipulate by switching from
R1 to R2. Finally, consider the profile R3 defined on n− 1 voters and observe that
g(R3) = f(R2). Thus, it follows that g(R3) = {a} even though a voter prefers b
uniquely the most. Consequently, the SCF g satisfies indeed all required axioms. �

Note that we use Lemma 4.7 is in the inverse direction, i.e., we show that there is
no P̃ -strategyproof and Pareto-optimal C2-function g defined on n − 1 voters for
which a profile R exists such that f(R) = {a} if a voter prefers another alternative
uniquely the most. It follows from this statement and Lemma 4.7 that there is
no social choice function f defined on n voters that satisfies the same axioms as
g and that returns a as unique winner even though two voters agree that another
alternative is the uniquely best one. This allows us to deduce the contradiction
inductively. We assume that no such social choice function g defined on n−1 voters
exists. Additionally, we prove that if there is a P̃ -strategyproof and Pareto-optimal
C2-function f defined on n voters and a profile R such that such that f(R) = {a}
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even though two voters prefer another alternative b uniquely the most, there is a
profile R′ such that f(R′) = {b} and a voter prefers another alternative c uniquely
the most. This contradicts the induction hypothesis because of Lemma 4.7. Even
more, this approach is also the main idea for proving the following lemma.

Lemma 4.8. Consider a social choice function f :Wn 7→ 2A \ ∅ defined on m = 3
alternatives and n ≥ 2 voters that satisfies P̃ -strategyproofness, Pareto-optimality
and is in C2. For every preference profile R ∈ Wn and every voter i ∈ N , it holds
that f(R) contains at least one of voter i’s most preferred alternatives.

Proof: We prove this lemma by an induction on the number of voters n. Thus, we
first focus on the base case n = 2, i.e., we consider an arbitrary P̃ -strategyproof and
Pareto-optimal C2-function f :W2 7→ 2A\∅. Furthermore, assume for contradiction
that there is a profile R ∈ W2 and a voter i ∈ N such that f(R) does not contain any
of voter i’s most preferred alternatives. These assumptions imply that we can use
Lemma 4.4 and Lemma 4.5 to construct a preference profile R′ such that f(R′) = {a}
for an alternative a ∈ f(R), voter i prefers a uniquely the least and the other voter
prefers a uniquely the most. Consequently, we can use Lemma 4.6 which implies
that f(R) = {x} for all preference profiles in which n − 1 = 1 voter prefers an
arbitrary alternative x ∈ A the most. However, this means that f(R) = {a} and
f(R) = {b} are simultaneously true if the first voter prefers a the most and the
second voter prefers b the most in R. This is a contradiction and therefore, it holds
for all P̃ -strategyproof and Pareto-optimal C2-functions f , all preference profiles
R ∈ W2 and all voters i ∈ N that f(R) contains at least one of the most preferred
alternatives in Ri.
Next, we focus on the induction step. Thus, assume that this lemma holds for every
P̃ -strategyproof and Pareto-optimal C2-function g defined on n−1 voters and m = 3
alternatives. Furthermore, consider a social choice function f : Wn 7→ 2A \ ∅ that
satisfies the same axioms as g and assume for contradiction that there is a profile
R ∈ Wn such that f(R) does not contain any of voter i’s most preferred alternatives.
Thus, we can use Lemmas 4.4 to 4.6 to derive that f(R1) = {a} for an alternative
a ∈ f(R) where R1 is shown in Figure 4.15. We derive from the profiles shown in this
figure that f(R10) = {b} even though two voters prefer c uniquely the most. This
means that we can use Lemma 4.7 to construct a social choice function g defined
on n− 1 voters that satisfies the same axioms as f and for which there is a profile
R′ ∈ Wn−1 such that f(R′) = {b} even though a voter prefers c uniquely the most.
This contradicts the induction hypothesis and therefore, f cannot exist.
It remains to prove that f(R10) = {b}. For explaining this claim, we use the
preference profiles shown in Figure 4.15. Note that this table only summarizes all
required profiles as the second column is associated with an arbitrary number of
voters. As already explained, it holds that f(R1) = {a}. Next, we derive the profile
R2 by letting the last voter manipulate. As a is his least preferred alternative in
R1, it follows that f(R2) = {a} because of P̃ -strategyproofness. As consequence of
this modification a Pareto-dominates b in R2. Thereafter, we let voter n− 1 switch
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1 n− 3 1 1
R1 a � c � b a � b � c a � b � c c � b � a
R2 a � c � b a � b � c a � b � c c � a ∼ b
R3 a � c � b a � b � c a ∼ b � c c � a ∼ b
R4 a � c � b a ∼ b � c a ∼ b � c c � b ∼ a
R5 a � c � b a ∼ b � c a ∼ b � c c � b � a
R6 a � c � b a ∼ b � c b � a � c c � a ∼ b
R7 a � c � b a ∼ b � c b � a � c c � b � a
R8 a � c � b b � a � c b � a � c c � b � a
R9 a � c � b b � a � c b � a � c b � c � a
R10 c � a � b b � a � c b � a � c c � b � a

Figure 4.15: Preference profiles used in the proof of Lemma 4.8

from a � b � c to a ∼ b � c to derive the profile R3. Observe that a still Pareto-
dominates b in R3 and therefore, b 6∈ f(R3). Furthermore, c 6∈ f(R3) as otherwise
voter n − 1 can P̃ -manipulate by switching from R3 to R2. Thus, f(R3) = {a}.
Thereafter, we let the other n − 3 voters that have the same preference as voter
n − 1 manipulate one after another in the same way. This leads to the profile R4

and it follows from the same argument as for R3 that neither b nor c can be chosen,
i.e., f(R4) = {a}.
After that, we let voter n modify his preference by making a his least preferred
alternative. Note that we lose in this step the information about the exact choice
set. Nevertheless, it follows from P̃ -strategyproofness that c 6∈ f(R5) as voter n can
P̃ -manipulate otherwise. Subsequently, we use C2 to exchange the preferences of
voter n and n−1 over b and c to derive the profile R6. Consequently, f(R5) = f(R6)
which means that c is still not chosen. Furthermore, as voter n is indifferent between
a and b, and c is his uniquely most preferred alternative in R6, it follows again from
P̃ -strategyproofness that he can switch from a ∼ b to b � a without making c
win. This leads to the profile R7 which satisfies that c 6∈ f(R7). It is easy to see
that we can repeat this process for all n − 3 voters who are indifferent between a
and b in R7 without making c win. This leads to the profile R8 and to the fact that
c 6∈ f(R8). Furthermore, note that f(R9) = {b} because of Lemma 4.6. This implies
that f(R8) 6∈ {{a}, {a, b}} as otherwise voter n can P̃ -manipulate by switching from
R8 to R9. Thus, we can conclude that f(R8) = {b}. This observation leads to the
profile R10 by letting voter 1 switch from a � c � b to c � a � b. As b is his
uniquely least preferred alternative in R8, it follows from P̃ -strategyproofness that
f(R10) = {b}. Hence, this proves the claim and therefore, we can derive with the
help of Lemma 4.7 a contradiction to the induction hypothesis. Hence, the initial
assumption is wrong and it holds for all P̃ -strategyproof and Pareto-optimal C2-
functions f , preference profiles R ∈ Wn and voters i ∈ N that f(R) contains at
least one of the most preferred alternatives in Ri. �
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Note that this lemma provides a strong requirement for P̃ -strategyproof and Pareto-
optimal social choice functions in C2 if there are only m = 3 alternatives. How-
ever, only considering social choice functions defined on three alternatives is very
restrictive. Therefore, we generalize this result to an arbitrary larger number of
alternatives. We use an induction on m for this task for which the base case is
covered by Lemma 4.8. More precisely, we assume that there is a P̃ -strategyproof
and Pareto-optimal C2-function f defined on m > 3 alternatives and n voters for
which a profile R exists such that b 6∈ f(R) even though a voter prefers b the most.
These assumptions imply that there is a social choice function g defined on m − 1
alternatives that satisfies all these axioms, too. However, this is a contradiction to
the induction hypothesis stating that no such function exists. This idea leads to
our main theorem stating that the choice set of every P̃ -strategyproof and Pareto-
optimal C2-function contains for every voter and every preference profile at least
one of his most preferred alternatives

Theorem 4.6. Consider a social choice function f :Wn 7→ 2A \∅ defined on m ≥ 3
alternatives that satisfies P̃ -strategyproofness, Pareto-optimality and C2. For every
preference profile R ∈ Wn and every voter i ∈ N , it holds that f(R) contains at
least one of voter i’s most preferred alternatives.

Proof: First note that if n = 1, the theorem is trivially true as only the most
preferred alternatives of the single voter are Pareto-optimal. Thus, every Pareto-
optimal social choice function chooses a subset of the most preferred alternatives of
this voter, which proves the theorem in this case.
Next, we focus on the more complicated case that n ≥ 2. In this case, we prove
the theorem by an induction on the number of alternatives m. Note that the base
case m = 3 is covered in Lemma 4.8 and therefore, we only focus on the induction
step. Hence, assume that the theorem holds for all P̃ -strategyproof and Pareto-
optimal C2-functions g that are defined on n voters and m − 1 ≥ 3 alternatives.
Furthermore, consider an arbitrary P̃ -strategyproof and Pareto-optimal C2-function
f : Wn 7→ 2A \ ∅ defined on n voters and m alternatives. We prove that the
intersection of f(R) and the set of most preferred alternatives of voter i in R is
non-empty for every voter i ∈ N and every preference profile R ∈ Wn.
For this reason, assume for contradiction that there is a profile R such that f(R)
does not contain any of the most preferred alternatives of a voter. We derive from
this assumption a contradiction to the induction hypothesis by constructing a social
choice function g : Wn 7→ 2A

′
with |A′| = m − 1 that satisfies all required axioms

and for which a preference profile R∗ exists such that b 6∈ g(R∗) even though a voter
prefers b uniquely the most. This is a contradiction to the induction hypothesis
because the theorem implies that an alternative is chosen if a voter prefers it uniquely
the most. The social choice function g is defined as follows: Given a preference profile
R, it appends a new alternative c 6∈ A′ as the uniquely least preferred alternative
to the preference of every voter. This leads to a new preference profile R′ defined
on m alternatives. Finally, we set g(R) = f(R′). Note that g is well-defined as a
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is Pareto-dominated in R′ by every alternative and therefore, it is not chosen by
f . Furthermore, it is obvious that g inherits P̃ -strategyproofness, Pareto-optimality
and C2 from f ; otherwise, f violates these properties itself.

Thus, the only point left to prove is that there is also a profile R∗ defined on m− 1
alternatives such that b 6∈ g(R∗) for an alternative b ∈ A′ that is uniquely most
preferred by at least one voter. Therefore, we discuss how to construct a profile R+

defined on m alternatives such that b 6∈ f(R+) for an alternative b ∈ A, a voter
prefers b uniquely the most and there is an alternative c ∈ A that is uniquely least
preferred by every voter. Then, it follows that R∗ = R+|A\{c} which implies that
g(R∗) = f(R+). Thus, recall that, by assumption, there is a preference profile R
such that b 6∈ f(R) and a voter prefers b uniquely the most. We can apply Lemma 4.4
and Lemma 4.5 to this profile to deduce that there is a preference profile R1 such
that f(R1) = {a} for an alternative a ∈ f(R), a single voter prefers b uniquely the
most and a uniquely the least and every other voter prefers a uniquely the most.
After that, we use Lemma 4.3 to reinforce a in the preference of the voter who
prefers b the most such that there is an alternative c with a � c. Finally, we use
Lemma 4.2 to reorder the unchosen alternatives in the preferences of the voters who
prefer a uniquely the most to ensure that every voter prefers c uniquely the least.
Note that the last two steps do not affect the choice set and therefore, we have found
a profile R+ such that b 6∈ f(R+) = g(R∗). Hence, if there is a P̃ -strategyproof and
Pareto-optimal and C2-function f defined on n voters and m > 3 alternatives for
which there is a profile R such that f(R) does not contain any of the most preferred
alternatives of a voter, then there is also such a social choice function g defined
on n voters and m − 1 alternatives. This contradicts the induction hypothesis
and therefore, all P̃ -strategyproof and Pareto-optimal C2-functions return for all
preference profiles R ∈ Wn and all voters i ∈ N an alternative that is among the
most preferred ones in Ri. �

It should be stressed here that Theorem 4.6 provides a very strong restriction on
P̃ -strategyproof and Pareto-optimal C2-functions. A consequence of this theorem is
that the choice sets of such functions are usually rather large. Even more, there is
no large gap between satisfying this theorem and violating Pareto-optimality. Thus,
Theorem 4.6 implies that there can only be few P̃ -strategyproof and Pareto-optimal
C2-functions. Furthermore, it should be stressed here that this theorem also holds
if we allow social choice functions defined on variable electorates. The reason for
this is that a SCF with variable electorate implies SCFs with fixed electorates for
which Theorem 4.6 can be applied.

Note that the main theorem has many important consequences and is often used
in subsequent sections. For instance, we can use it to reproof theorem 2 in [BSS]
by hand. This theorem states that there is no P̃ -strategyproof, Pareto-optimal and
pairwise social choice function in the weak domain if m ≥ 3 and n ≥ 3. Recall
that a social choice function f is pairwise if f(R) = f(R′) for all preference profiles
R,R′ with nab − nba = n′ab − n′ba for all a, b ∈ A. It follows immediately that pair-
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R1 :

1 1 1
a a, b a, b
b c c
c

R2 :

1 1 1
a a b
b b a
c c c

Figure 4.16: Preference profiles used for re-proving theorem 2 of [BSS]

wise SCFs are in C2 and therefore, Theorem 4.6 can be used for P̃ -strategyproof,
Pareto-optimal and pairwise social choice functions. However, it is easy to construct
a preference profile R for such social choice functions such that the choice set does
not contain any of the most preferred alternatives of a voter. For example, con-
sider the profiles R1 and R2 shown in Figure 4.16. Note that a Pareto-dominates
b in R1 and therefore, it cannot be chosen by a Pareto-optimal social choice func-
tion. Furthermore, the majority margins nab − nba are equal in R1 and R2 for all
a, b ∈ A. Thus, b is not chosen by a Pareto-optimal and pairwise SCF even though
the last voter prefers this alternative the most. This contradicts Theorem 4.6 and
therefore, no pairwise social choice function satisfies both Pareto-optimality and
P̃ -strategyproofness.
Finally, it should be mentioned that we can deduce a result similar to Theorem 4.6
from the proof of Theorem 3.12 for P̃ -strategyproof, Pareto-optimal and rank-based
social choice functions in the weak domain. Thus, it seems reasonable to conjecture
that all P̃ -strategyproof, Pareto-optimal and anonymous social choice functions re-
turn for every preference profile R ∈ Wn and voter i ∈ N an alternative that is
among the most preferred ones in Ri if there are sufficiently many voters and al-
ternatives. Unfortunately, we can disprove this conjecture. For showing this claim,
we construct a social choice function that refines the Pareto-rule. Therefore, note
that the Pareto-rule is defined by a dominance relation. In particular, we can de-
fine the function t1(R) = {(a, b) ∈ A2 | nab > 0 ∧ nba = 0} that computes all
Pareto-dominance relations for the input profile R and define the Pareto-rule as
PO(R) = {a ∈ A | @b ∈ A : (b, a) ∈ t1(R)}. Our goal is to find a stronger domi-
nance relation than Pareto-dominance and use it to define a P̃ -strategyproof social
choice function. Therefore, consider the following function.

t2(R) = {(a, b) ∈ A2 | nab = n− 1 ∧ nba = 1 ∧ a is first-ranked by n− 1 voters}

This function computes a dominance relation for an input profile R that prefers an
alternative a to an alternative b if n− 1 voters prefer a the most and a strictly to b
and the last voter prefers b strictly to a. Finally, we set t(R) = t1(R) ∪ t2(R) and
define the SCF f ∗(R) = {a ∈ A | @b ∈ A : (b, a) ∈ t(R)}.
First of all, we prove that f ∗ is well-defined, i.e., it returns always a non-empty
choice set. Therefore, we show that t(R) is for every preference profile R′ ∈ Wn

asymmetric and transitive, which implies that there are always maximal elements.
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Lemma 4.9. The dominance relation t(R) is asymmetric and transitive for all
preference profiles R ∈ Wn if n ≥ 3.

Proof: Consider an arbitrary preference profile R ∈ Wn. First, we prove that t(R)
is asymmetric. Thus, we assume that (a, b) ∈ t(R) and show that (b, a) 6∈ t(R).
First note that if a = b, then (a, b) 6∈ t(R) as both t1(R) and t2(R) demand that
nab > 0. Furthermore, it is easy to see that both t1(R) and t2(R) are asymmetric if
n ≥ 3. Thus, it only remains to show that if (a, b) ∈ t1(R), then (b, a) 6∈ t2(R) and if
(a, b) ∈ t2(R), then (b, a) 6∈ t1(R). Therefore, assume first that (a, b) ∈ t1(R). This
means that nba = 0, which contradicts that nba = n− 1 required for (b, a) ∈ t2(R).
Furthermore, if (a, b) ∈ t2(R), then nab = n − 1 and nba = 1. This means that b
does not Pareto-dominate a as nba > 0 and therefore, (b, a) 6∈ t1(R). Consequently,
t(R) is indeed asymmetric.

Next, we prove that t(R) is also transitive. Thus, consider three arbitrary alter-
natives a, b, c ∈ A with (a, b) ∈ t(R) and (b, c) ∈ t(R). We have to show that
(a, c) ∈ t(R) in order to prove the transitivity of t(R). For this proof, we make a
case distinction with respect to (a, b) ∈ t1(R) or (a, b) ∈ t2(R) and (b, c) ∈ t1(R) or
(b, c) ∈ t2(R). First, assume that (a, b) ∈ t1(R) and (b, c) ∈ t1(R). This means that
a Pareto-dominates b and b Pareto-dominates c. As Pareto-dominance is transitive,
it follows that (a, c) ∈ t1(R) ⊆ t(R). As second case, assume that (a, b) ∈ t1(R) and
(b, c) ∈ t2(R). This means that there are n−1 voters who prefer b the most and who
submit b � c. As a Pareto-dominates b, it follows that each of these n − 1 voters
prefers a also the most and that they submit a � c. Thus, either (a, c) ∈ t1(R) if the
last voter prefers a weakly to c, or (a, c) ∈ t2(R) if the last voter prefers c strictly
to a. Both cases imply that (a, c) ∈ t(R). Next, assume that (a, b) ∈ t2(R) and
(b, c) ∈ t1(R). Then, every voter prefers b weakly to c and there are n−1 voters who
prefer a strictly to b and prefer a the most. Consequently, these n− 1 voters prefer
a also strictly to c. This means that (a, c) ∈ t1(R) if the last voter prefers a weakly
to c, or (a, c) ∈ t2(R) if the last voter prefers c strictly to a. Thus, it also holds in
this case that (a, c) ∈ t(R). Finally, assume that (a, b) ∈ t2(R) and (b, c) ∈ t2(R).
This assumption is a contradiction as it means that n − 1 voters prefer b the most
and nab = n − 1, which cannot be simultaneously true if n ≥ 3. Thus, this case is
impossible and we can deduce for all other cases that (a, c) ∈ t(R). This shows that
t(R) is indeed transitive. �

Note that Lemma 4.9 has significant consequences for the social choice function
f ∗(R) = {a ∈ A | @b ∈ A : (b, a) ∈ t(R)}. Most importantly, it implies that f ∗ is
well-defined. Even more, it follows from the transitivity of t(R) that if a 6∈ f(R),
then there is an alternative b ∈ f(R) with (b, a) ∈ t(R). This observation plays an
important role when we prove the P̃ -strategyproofness of f ∗. However, before we
discuss this axiom, it should be mentioned that f ∗ is clearly anonymous, neutral
and Pareto-optimal. Furthermore, f ∗(R) does not contain any of the most preferred
alternatives of a voter if n − 1 voters agree that a is the uniquely best alternative
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and a single voter prefers b uniquely the most. Thus, it only remains to show that
f ∗ is indeed P̃ -strategyproof to complete our counter example.

Lemma 4.10. The social choice function f ∗ : Wn 7→ 2A \ ∅ is P̃ -strategyproof if
n ≥ 3 and m ≥ 3.

Proof: Assume for contradiction that f ∗ is P̃ -manipulable. Therefore, there are
preference profiles R,R′ ∈ Wn and a voter i ∈ N such that R−i = R′−i and

f ∗(R′) P̃i f
∗(R). For deriving a contradiction to this assumption, we make a case

distinction with respect to f ∗(R). Therefore, let Xi = {a ∈ A | ∀b ∈ A : a �i b}
denote the set of voter i’s most preferred alternatives in R.
First, assume that f ∗(R)∩Xi 6= ∅, i.e., some of voter i’s most preferred alternatives
are chosen. This means that voter i can only P̃ -manipulate if f ∗(R′) ⊆ Xi and there
is an alternative a ∈ f ∗(R) \ Xi. As a ∈ f ∗(R), it follows that there is no b ∈ Xi

with (b, a) ∈ t(R). Furthermore, as t(R′) is transitive and a 6∈ f(R′) ⊆ Xi, we can
deduce that there is a c ∈ Xi such that (c, a) ∈ t(R′). However, it is straightforward
that (c, a) 6∈ t1(R

′) as c �i a and (c, a) 6∈ t1(R). These observations imply that
there is a voter j 6= i with a �j c and thus, c cannot Pareto-dominate a in R′. We
can similarly reason that (c, a) 6∈ t2(R

′): As (c, a) 6∈ t2(R) and (c, a) 6∈ t1(R), it
follows that there are not n− 1 voters in R who rank c first, nca < n− 1 or nac > 1.
None of these conditions can be fixed if voter i reorders his alternatives because he
already prefers c the most and submits c �i a. This implies that (c, a) 6∈ t2(R′) and
therefore, (c, a) 6∈ t(R′) for every c ∈ Xi. It follows from the transitivity of t(R′) that
either a ∈ f ∗(R′) or there is an alternative b ∈ f ∗(R′) with a �i b. Consequently,
f ∗(R′) ⊆ Xi cannot be true, which means that f ∗ is P̃ -strategyproof in this case.
Next, assume that f ∗(R) ∩Xi = ∅. This means that there is a tuple (a, b) ∈ t2(R)
with a 6∈ Xi. Otherwise, there is a Pareto-optimal alternative c ∈ Xi∩f ∗(R). Thus,
the set B = {a ∈ A | ∀b ∈ A, j ∈ N \ {i} : a �j b} containing all alternatives
that are first-ranked by all voters in N \ {i} is non-empty. Observe that for every
alternative y ∈ A \ B, there is a voter j ∈ N \ {i} with x �i y for all x ∈ B;
otherwise, y is in B, too. Furthermore, let c denote an alternative in B that voter i
prefers the most, i.e., c �i x for all x ∈ B. It follows for all x ∈ A that (x, c) 6∈ t2(R)
as nxc ≤ 1 because n− 1 voters prefer c the most. Even more, (x, c) 6∈ t1(R) for all
x ∈ A because only alternatives in B can Pareto-dominate c. However, all voters
j ∈ N \ {i} are indifferent between all alternatives in B and c �i x for all x ∈ B.
This means that c ∈ f ∗(R). Even more, every alternative x ∈ A with c �i x is
Pareto-dominated by c as every other voter submits c � x. This implies that c is
among voter i’s least preferred alternatives in f ∗(R).
Furthermore, note that (x, c) 6∈ t2(R′) for all x ∈ A \ {c} as c is among the most
preferred alternatives of n − 1 voters, which implies that nxc ≤ 1 regardless of the
preference of voter i. Furthermore, (x, c) ∈ t1(R) is only possible for an alternative
x ∈ B since there is for every alternative y ∈ A \ B a voter j ∈ N \ {i} with
c �j y. This implies that if (x, c) ∈ t(R′), then c �i x. Because of the transitivity
of f(R′), it follows that there is an alternative x ∈ f ∗(R′) with c �i x. If there is an
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alternative b ∈ f ∗(R) with b �i c, then b �i x contradicting that f ∗(R′) P̃i f
∗(R).

As c is among voter i’s least preferred alternative in f ∗(R), it follows that this voter
is indifferent between all alternatives in f ∗(R). As consequence, every voter j ∈ N
satisfies c �j x for all x ∈ f ∗(R). If this preference is strict for an alternative x and
a voter, then the alternative x is Pareto-dominated. Thus, every voter is indifferent
between all alternatives in f ∗(R), i.e., all chosen alternatives are indistinguishable.
Combined with the transitivity of t(R), this implies that (b, c) ∈ t(R) for every
alternative b ∈ A with b �i c. Even more, it follows from b �i c that c does not
Pareto-dominate b and therefore, we can deduce that (b, c) ∈ t2(R). Thus, every
voter j ∈ N \ {i} prefers c strictly to all alternatives b with b �i c and c is among
his most preferred alternatives. Consequently, no alternative with b �i c can be
chosen in f ∗(R′) because (c, b) ∈ t2(R

′) if b �′i c and (c, b) ∈ t1(R) if c �′i b.
Therefore, c is among voter i’s most preferred alternatives in f ∗(R′) contradicting
that f ∗(R′) P̃i f

∗(R). This implies that f ∗ is P̃ -strategyproof. �

As consequence of this lemma, it follows that Theorem 4.6 cannot be generalized
to use anonymity and neutrality instead of C2. However, it is unclear whether it
is possible that two voters agree on a uniquely most preferred alternative and it is
not in the choice set of an anonymous, neutral, Pareto-optimal and P̃ -strategyproof
social choice function in the weak domain. Thus, it might still be possible to derive
a weaker form of Theorem 4.6 for such social choice functions. However, it clearly
is a lot harder to prove such a result.

4.3.3 A Characterization of the Pareto-rule

In this section, we prove that the Pareto-rule is the only reasonable P̃ -strategyproof
and Pareto-optimal social choice function in C2. Therefore, we provide two char-
acterizations of this rule which show that every other C2-function violates an im-
portant axiom. In particular, we show that the Pareto-rule is the only social choice
function that satisfies P̃ -strategyproofness, Pareto-optimality, neutrality and a new
axiom which we call C2-monotonicity if there are m ≥ 3 alternatives. Even more,
we prove that the Pareto-rule is the only P̃ -strategyproof, Pareto-optimal and neu-
tral C2-function if we restrict the number of alternatives to 3 ≤ m ≤ 4. Thus, the
Pareto-rule is the only reasonable social choice function in C2.

Our idea for proving these characterizations of the Pareto-rule is to use Theorem 4.6.
Consequently, we have to show that every P̃ -strategyproof refinement f of the
Pareto-rule which is in C2 has a profile R such that f(R) does not contain any
of the most preferred alternatives of a voter. Unfortunately, this claim is in general
not true as the social choice function f1 defined in Section 4.2.2 satisfies C2, P̃ -
strategyproofness and Pareto-optimality and f1(R) contains at least one of the most
preferred alternatives of every voter for every preference profile R. However, f1 only
refines the Pareto-rule if there are indistinguishable alternatives by non-neutrally
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R∗ :

1 1 1
a, c b, c d
e e a, b, e
b, d a, d c

R′ :

1 1 1
e b, c d
a, c a, d a, b
b, d e c

e

n∗xy a b c d e

a − 1 1 1 1
b 1 − 1 1 1
c 1 1 − 2 2
d 1 1 1 − 1
e 1 1 1 2 −

n′xy a b c d e

a − 1 1 1 2
b 1 − 1 1 2
c 1 1 − 2 2
d 1 1 1 − 2
e 1 1 1 1 −

Figure 4.17: Preference profiles used for explaining C2-monotonicity

picking only a single alternative instead of the whole set of indistinguishable alter-
natives. Therefore, we additionally require neutrality for the characterization of the
Pareto-rule. Unfortunately, the social choice function f2 defined in Section 4.2.2
still satisfies all conditions. Thus, we have to strengthen or add an axiom for the
characterization of the Pareto-rule such that f2 violates it.
For finding an axiom that is satisfied by the Pareto-rule and violated by f2, we
analyze the profiles R such that f2(R) ( PO(R). Thus, note that all these profiles
contain three voters who submit the preference profile R∗ shown in Figure 4.17. In
this profile e is Pareto-optimal but f2 does not choose it. In contrast, it holds for
the profile R′ shown next to R∗ that f2(R

′) = A. This is possible as neither C2
nor P̃ -strategyproofness relates R′ and R∗. However, if we analyze the majorities
of these profiles, we see that n∗xe ≤ nxe and n∗ex ≥ n′xe for all x ∈ A \ {e} and the
remaining majorities are equal in R∗ and R′. The detailed majorities are shown in
Figure 4.17. Intuitively, this means that the position of e weakens and the remaining
alternatives are not affected when switching from R∗ to R′. Nevertheless, e 6∈
f2(R

∗) but e ∈ f(R′). This contradicts the intuition of monotonicity stating that
a chosen alternative should also be chosen after reinforcing it. However, it turns
out that monotonicity is not sufficient to formalize this problem as it is defined on
preference relations instead of majorities. Therefore, we introduce a new variant of
monotonicity which we refer to as C2-monotonicity.

Definition 4.4 (C2-monotonicity). A social choice function f satisfies C2-mo-
notonicity if for all preference profiles R, R′ and sets of indistinguishable alternatives
B such that nab ≥ n′ab, nba ≤ n′ba for all a ∈ A \ B, b ∈ B and nab = n′ab for all
a, b ∈ A \B and a, b ∈ B, it holds that b ∈ f(R) ∩B implies b ∈ f(R′).

Intuitively, C2-monotonicity states that a chosen alternative is still chosen if its
majorities increase and nothing else changes. Furthermore, it should be stressed
that we discuss sets of indistinguishable alternatives instead of single alternatives in
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this definition. The reason for this is that we can always clone alternatives without
violating an axiom. This leads to new social choice functions which still do not
suffice the intuition of monotonicity, but a definition based on alternatives is not
sufficient to formalize this behavior. Furthermore, note that the Pareto-rule and the
social choice function f1 discussed in Section 4.2.2 satisfy C2-monotonicity because
Pareto-optimal alternatives stay Pareto-optimal if we reinforce their majorities. In
contrast, the social choice f2 discussed in Section 4.2.2 violates this axiom as the
profiles in Figure 4.17 show.
Next, observe that every C2-monotonic social choice function is monotonic. This
follows from the fact that if a voter reinforces an alternative, its majorities can
only increase. Hence, we can consider this alternative as singleton set of indistin-
guishable alternatives and therefore, a chosen alternative is still in the choice set
of a C2-monotonic social choice function after reinforcing it. Furthermore, every
C2-monotonic social choice function is also in C2. The reason for this is that C2-
monotonicity also allows to compare preference profiles with equal majorities. Thus,
we can deduce from C2-monotonicity that a ∈ f(R1) if and only if a ∈ f(R2) for all
alternatives a ∈ A and preference profiles R1 and R2 with n1

xy = n2
xy for all x, y ∈ A.

This means that f is in C2. However, the inverse is not true: The combination
of monotonicity and C2 does not imply C2-monotonicity. For seeing this, consider
the preference profiles shown in Figure 4.17. We know that if the alternative e is
chosen in R′ by a C2-monotonic social choice function, then it is also chosen in R∗.
However, if we want to derive R∗ from R′ by applying monotonicity and C2, we can
only use C2 to weaken e in the preference of the second voter. This requires that
we break the tie a ∼3 b ∼3 e before we weaken e. Unfortunately, we cannot do this
without losing the information whether f is still chosen. Thus, C2-monotonicity is
stronger than the combination of C2 and monotonicity.
Finally, we use this new axiom and Theorem 4.6 to prove the characterization of
the Pareto-rule. Therefore, note that if a Pareto-optimal alternative a is not chosen
by a C2-monotonic social choice function f , then a voter can prefer a uniquely the
most and all other voters prefer it uniquely the least and a is still not chosen as
its majorities only worsen. As consequence of Theorem 4.6, we can deduce that f
cannot be additionally Pareto-optimal and P̃ -strategyproof. This idea has also been
used to derive the profile R′ from R∗ shown in Figure 4.17. Thus, we only have to
formalize this approach to prove the characterization of the Pareto-rule.

Theorem 4.7. The Pareto-rule is the only social choice function satisfying Pareto-
optimality, neutrality, P̃ -strategyproofness and C2-monotonicity if m ≥ 3.

Proof: First note that it is trivial that the Pareto-rule satisfies Pareto-optimality,
neutrality, P̃ -strategyproofness and C2-monotonicity. Thus, we focus on showing
that no other social choice function satisfies these axioms if m ≥ 3. Therefore,
assume for contradiction that there is another social choice function f that satisfies
Pareto-optimality, neutrality, P̃ -strategyproofness and C2-monotonicity and that is
defined on m ≥ 3 alternatives. As f is Pareto-optimal but not equal to the Pareto-
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rule, there is a profile R such that a Pareto-optimal alternative b is not chosen, i.e.,
b 6∈ f(R). By neutrality, it follows that all alternatives that are indistinguishable to
b are not in f(R) either. Thus, there is a Pareto-optimal and inclusion-maximal set
of indistinguishable alternatives B such that f(R)∩B = ∅. If n = 1, this means that
f(R) is empty or not Pareto-optimal as there is only a single Pareto-optimal and
inclusion-maximal set of indistinguishable alternatives. Hence, the characterization
holds in this case trivially.

Therefore, assume that n ≥ 2. As B is a Pareto-optimal and inclusion-maximal set
of indistinguishable alternatives, it follows that nca ≥ 1 for all c ∈ B, a ∈ A \ B.
Thus, we can use the C2-monotonicity of f to modify the preference profile R in the
following way: The first voter prefers the alternatives in B the most and every other
voter prefers the alternatives in B the least; the preferences between the remaining
alternatives are not affected. This leads to a new profile R′ and the majorities
involving alternatives in B only worsen by going from R to R′. In particular, it
holds that n′ca = 1 and n′ac = n − 1 for all c ∈ B, a ∈ A \ B and nxy = n′xy for all
other majorities. Consequently, C2-monotonicity implies that B∩f(R′) = ∅ because
B ∩ f(R) = ∅. This means that we have derived a profile R′ such that f(R′) does
not contain any of the most preferred alternatives of the first voter. Thus, we can
use Theorem 4.6 to derive that f violates P̃ -strategyproofness, Pareto-optimality
or C2. This implies that there is no other P̃ -strategyproof, Pareto-optimal, neutral
and C2-monotonic social choice function but the Pareto-rule if m ≥ 3. �

First, we discuss the independence of the axioms used in the characterization of
the Pareto-rule. Therefore, note that the social choice function f1 discussed in
Theorem 4.2 satisfies all axioms of the characterization but neutrality. Further-
more, many ideas for neutral, P̃ -strategyproof and C2-monotonic social choice func-
tions that violate Pareto-optimality arise from the results in Section 4.2.1. It is
also straightforward that there are neutral, Pareto-optimal and C2-monotonic so-
cial choice functions that are not P̃ -strategyproof such as the intersection of the
Pareto-rule and the Condorcet-rule. Even more, C2-monotonicity is independent
from the remaining axioms of the characterization as the social choice function f2
discussed in Section 4.2.2 only violates this axiom. Finally, even the condition m ≥ 3
is required as the majority rule satisfies all axioms if m = 2.

Next, note that we can weaken neutrality and still derive Theorem 4.7. It suffices
that all indistinguishable alternatives are treated equally, i.e., if a and b are in-
distinguishable in a preference profile R, then a ∈ f(R) if and only if b ∈ f(R).
Even more, if we assume that no alternatives are indistinguishable in the pref-
erence profile for which a social choice function refines the Pareto-rule, then we
can completely omit neutrality in the characterization. However, it is not possible
to remove all profiles with indistinguishable alternatives from the weak domain as
the proof of Lemma 4.4 may lead to a profile with indistinguishable alternatives.
Furthermore, the social choice functions discussed in Section 4.2.1 also imply that
Pareto-optimality cannot be weakened without making the characterization of the
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Pareto-rule invalid. The reason for this is that social choice functions such as the
SCF f(R) = {a ∈ A | @b ∈ A : nab = 0 ∧ nba > 1} satisfy all axioms of the char-
acterization but Pareto-optimality. Finally, the social choice function f2 shows that
we cannot weaken C2-monotonicity without violating Theorem 4.7.
However, observe that the idea for defining the social choice function f2 requires at
least five alternatives. Thus, it might be possible to derive a stronger characteriza-
tion of the Pareto-rule if we restrict the number of alternatives to m ≤ 4. As we
show in the sequel, this conjecture is true and we can characterize the Pareto-rule as
the only P̃ -strategyproof, Pareto-optimal and neutral C2-function if 3 ≤ m ≤ 4. As
in the proof of Theorem 4.7, we use Theorem 4.6 to show that no refinement of the
Pareto-rule can be simultaneously P̃ -strategyproof, neutral and in C2. Therefore,
we prove that every refinement f of the Pareto-rule which satisfies all these axioms
has a profile R such that f(R) does not contain any of the most preferred alterna-
tives of a voter. However, as we do not require C2-monotonicity anymore, it is more
complicated to derive such a profile. Therefore, we discuss in the next lemma a
sufficient condition on Pareto-optimal and P̃ -strategyproof C2-functions that allows
to make an unchosen and Pareto-optimal alternative to the uniquely most preferred
alternative of a voter.

Lemma 4.11. Consider a Pareto-optimal and P̃ -strategyproof C2-function f and
a profile R such that c 6∈ f(R) even though c is Pareto-optimal. Furthermore,
assume that there are disjoint sets Xi for all voters i ∈ N such that x �i y for all
alternatives x ∈ A \ Xi, y ∈ Xi and

⋃
i∈N

Xi = A \ {c}. Then, there is a profile R′

such that c 6∈ f(R′) even though a voter prefers c uniquely the most.

Proof: Consider an arbitrary Pareto-optimal and P̃ -strategyproof C2-function f and
a profile R such that a Pareto-optimal alternative c is not in f(R). Furthermore,
assume that there are disjoint sets Xi for all voters i ∈ N such that x �i y for all
alternatives x ∈ A \Xi, y ∈ Xi and

⋃
i∈N

Xi = A \ {c}. In the sequel, we explain how

to modify the preference profile R to derive a profile R′ such that c 6∈ f(R′) even
though c is the uniquely most preferred alternative of a voter. As a first step, we add
a new voter i∗ who is indifferent between all alternatives to the profile R. This leads
to a new preference profile R1 = (R,Ri∗) that satisfies that f(R1) = f(R) because
f is in C2 and a completely indifferent voter does not affect the majorities. Next,
we let voter i∗ change his preference such that he prefers c uniquely the least and
is indifferent between all other alternatives. This leads to a new preference profile
R2 and c 6∈ f(R2) holds because of P̃ -strategyproofness. Otherwise, voter i∗ can
P̃ -manipulate by switching from R1 to R2 as c 6∈ f(R1). Finally, we let every voter
i ∈ N \{i∗} change his preference such that he prefers the alternatives in Xi strictly
to all alternatives in A \Xi, which leads to the preference profile R3. Formally, the
preference of voter i in R3 is defined as follows.

R3
i = R|Xi

∪R|A\Xi
∪ {(x, y) | x ∈ Xi, y ∈ A \Xi}
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R :

1 1
b a
c d
a c
d b

R1 :

1 1 1
b a a, b, c, d
c d
a c
d b

R2 :

1 1 1
b a a, b, d
c d c
a c
d b

R′ :

1 1 1
a b c
d a a, b, d
b d
c c

Figure 4.18: Preference profiles illustrating the proof of Lemma 4.11

As voter i initially prefers every alternative in A \Xi strictly to every alternative in
Xi, this change increases the majorities nxy by 1 and decreases the majorities nyx
by 1 for all x ∈ Xi, y ∈ A \ Xi. This holds for every voter i ∈ N \ {i∗} and as⋃
i∈N\{i∗}

Xi = A\{c} and Xi∩Xj = ∅ for all i, j ∈ N \{i∗}, i 6= j, it follows that this

step does not affect the majorities between alternatives in A \ {c}. Furthermore,
n3
xc = n2

xc + 1 and n3
cx = n2

cx − 1 for all x ∈ A \ {c}. Thus, if voter i∗ changes his
preference such that c is his uniquely most preferred alternative, then we arrive at
a profile R4 with the same majorities as R2. Consequently, f(R4) = f(R2) because
of C2, which means that c 6∈ f(R4) even though c is the uniquely most preferred
alternative of voter i∗. Hence, we have found the required profile. �

First, we illustrate the construction used in the proof of Lemma 4.11 with an exam-
ple. Therefore, consider the preference profiles shown in Figure 4.18 and let f denote
a Pareto-optimal and P̃ -strategyproof C2-function with f(R) = {a, b}. In the first
step, we add a new voter who is indifferent between all alternatives to derive R1.
This implies that f(R1) = f(R) = {a, b} as f is in C2. Next, we let the new voter
manipulate such that his preference is a ∼ b � c. This leads to the profile R2 and
it follows from P̃ -strategyproofness that c 6∈ f(R2) as otherwise the new voter can
P̃ -manipulate by switching from R2 to R1. Finally, we compute that X1 = {a, d}
and X2 = {b}, and change the preferences of voter 1 and 2 such that they prefer
these sets the most. Furthermore, we let the third voter switch from a ∼ b � c to
c � a ∼ b to derive the profile R′. It can be easily checked that R′ and R2 have
the same majorities and therefore, f(R′) = f(R2) which means that c is not chosen
even though it is the most preferred alternative of a voter.

It should be mentioned that Lemma 4.11 can be used for an arbitrary number of
alternatives. However, there are preference profiles that do not yield suitable sets
Xi and therefore, this lemma is not always applicable. For instance, the profile R∗

shown in Figure 4.17 does not yield suitable sets if alternative e is not chosen and we
want to make it to the uniquely most preferred alternative of a voter. Therefore, this
lemma does not affect the social choice function f2 that shows that C2-monotonicity
is required for the characterization of the Pareto-rule if there are arbitrarily many
alternatives. Nevertheless, Lemma 4.11 is rather powerful if there are only few
alternatives as it becomes easy to find the sets Xi in this situation. Furthermore, if
we can apply this lemma, then Theorem 4.6 implies that the corresponding social
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choice function violates either Pareto-optimality, P̃ -strategyproofness or C2. This is
the main idea for characterizing the Pareto-rule as the only P̃ -strategyproof, Pareto-
optimal and neutral C2-function if 3 ≤ m ≤ 4.

Theorem 4.8. The Pareto-rule is the only P̃ -strategyproof, Pareto-optimal and
neutral C2-function if 3 ≤ m ≤ 4.

Proof: First note that the Pareto-rule obviously satisfies all required axiom. There-
fore, we focus on proving that there is no other P̃ -strategyproof, Pareto-optimal
and neutral C2-function if 3 ≤ m ≤ 4. Thus, assume for contradiction that there
is another social choice function f but the Pareto-rule that satisfies all required ax-
ioms and that is defined on 3 or 4 alternatives. As f is Pareto-optimal but no equal
to the Pareto-rule, there is a profile R such that f(R) does not contain a Pareto-
optimal alternative c. Furthermore, because of the neutrality of f , every alternative
that is indistinguishable from c is also not in f(R). Thus, there are at least two
inclusion-maximal sets of indistinguishable alternatives as the alternatives in f(R)
and c are distinguishable. Even more, if there are exactly two inclusion-maximal
sets of indistinguishable alternatives in R, then these sets are f(R) and A \ f(R) as
these sets are non-empty and neutrality implies that either all alternatives in a set
of indistinguishable alternatives or none of them are chosen. Furthermore, there is
a voter who prefers all alternatives in A \ f(R) strictly to all alternatives in f(R) as
otherwise the alternatives in A \ f(R) are not Pareto-optimal. This contradicts our
assumptions as c ∈ A \ f(R) and c is Pareto-optimal. Thus, we can directly apply
Theorem 4.6 as none of the most preferred alternatives of a voter are chosen and
deduce that f violates P̃ -strategyproof, Pareto-optimality or C2. Consequently, we
assume that there are 3 or 4 inclusion-maximal sets of indistinguishable alternatives
in R and we treat every set as single alternative, i.e., we assume in the sequel that all
alternatives are distinguishable from each other. This is possible because the SCF
f satisfies neutrality and therefore, it treats indistinguishable alternatives equally.
Next, we choose a set of voters I ⊆ N such that ncx ≥ 1 for all x ∈ A \ c in the
profile R−I and |I| is maximal. Note that the set N \ I contains at most m − 1
voters because there must be for every voter i ∈ N \ I an alternative a ∈ A such
that c �i a and a �j c for every other voter j ∈ N \ I. Otherwise, ncx ≥ 1 also
holds for all x ∈ A\c in the profile R−I∪{i} contradicting that I is among the largest
sets that satisfy this property. Furthermore, if |N \ I| = 1, then a single voter
prefers c strictly to all other alternatives. This means that c is his uniquely most
preferred alternative and therefore, we can use Theorem 4.6 to derive that f violates
Pareto-optimality, P̃ -strategyproofness or C2. Moreover, if |N \ I| = m− 1, there is
a unique alternative bi ∈ A \ {c} for every voter i ∈ N \ I such that c �i bi. If this
is not true, there is a voter who prefers c strictly to two or more alternatives. This
implies that we only need at most m− 2 voters such that ncx ≥ 1 for all x ∈ A \ {c}
as there is for every voter i ∈ N \ I an alternative b ∈ A \ {c} such that c �i b
and b �j c for all other voters j ∈ A \ {I}. Thus, every voter i ∈ N \ I prefers c
strictly to a single alternative bi if |N \I| = m−1. This implies that bi is the unique
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worst alternative of voter i. Hence, we can use Lemma 4.11 as the sets Xi = {bi}
for i ∈ N \ I and Xi = ∅ for i ∈ I are disjoint and their union is A\{c}. This means
that there is a profile R′ such that c is the most preferred alternative of a voter and
c 6∈ f(R′) if |N \ I| = m− 1. Thus, Theorem 4.6 implies that f violates one of the
axioms of this characterization.

As consequence of these observations, there is no refinement of the Pareto-rule that
satisfies P̃ -strategyproofness, neutrality and C2 if m = 3. The reason for this is
that 1 ≤ |N \ I| ≤ m− 1 = 2, which means that only the two previously discussed
situations are possible. Even more, if m = 4, the only case that remains open is
|N \ I| = 2. Therefore, we assume that |N \ I| = 2 and analyze the preference of
the voters i1, i2 ∈ N \ I in detail. Thus, observe that there are alternatives a, b ∈ A
such that b �i1 c �i1 a and a �i2 c �i2 b. Furthermore, there is a fourth alternative
d ∈ A and at least one voter in {i1, i2} submits c � d. Next, we make a case
distinction with respect to the preferences of voter i1 and i2 over d. First, assume
that d is not among the least preferred alternatives of voter i1. This means that a
is his least preferred alternative as b �i1 c �i1 a. Furthermore, if voter i2 prefers c
strictly to both b and d, then we can set Xi1 = {a}, Xi2 = {b, d} and Xj = ∅ for
all voters in N \ I to apply Lemma 4.11. If voter i2 prefer c not strictly to both d
and b, then he submits d �i2 c as c �i2 b is true by our assumptions. This implies
that voter i1 prefers c strictly to d as otherwise ncd = 0 in R−I . Hence, we set
Xi1 = {a, d}, Xi2 = {b} and Xj = ∅ for all j ∈ I to apply Lemma 4.11. This means
that we can derive a profile R′ such that c is the most preferred alternative of a
voter but c 6∈ f(R′) if voter i1 does not prefer d the least. Therefore, it follows from
Theorem 4.6 that f violates P̃ -strategyproofness, Pareto-optimality or C2. Even
more, we can deduce from a symmetric argument that f also violates one of these
axioms if d is not among the least preferred alternatives of voter i2.

Thus, it only remains to consider the case where d is the least preferred alternative
of both voter i1 and i2. This means that b �i1 c �i1 a �i1 d and a �i1 c �i1 b �i1 d.
If voter i1 prefers a strictly to d, we can exchange the preferences of voter i1 and
i2 on the alternatives a and c without changing the majorities. This leads to a new
profile R′ in which voter i2 prefers c uniquely the most. However, c 6∈ f(R′) because
we derive the profile R′ with C2. Thus, we can use again Theorem 4.6 to show that
f violates an axiom of this characterization. Even more, a symmetric argument can
be applied if voter i2 prefers b strictly to d.

Thus, the only case that is left open is that voter i1 is indifferent between a and d and
voter i2 is indifferent between b and d. In this case, we let the voters in I manipulate
their preferences one after another in the following way: Every voter i ∈ I switches
to a preference in which he prefers c uniquely the least and is indifferent between
all other alternatives. As consequence of these changes, c cannot be chosen as
otherwise there is a voter such that c is not chosen before his modification, but it is
afterwards. Thus, this voter can P̃ -manipulate by undoing the modification. This
process results in a profile R1 after every voter i ∈ I manipulated his preference for
which c 6∈ f(R1) is true. Furthermore, d is Pareto-dominated in R1 and therefore,
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f(R1) ⊆ {a, b}. Next, we add a new voter i3 to the profile R1 who is indifferent
between all alternatives. This step leads to the profile R2 = (R1, Ri3) which satisfies
that f(R2) = f(R1) as voter i3 does not affect the majorities. Thereafter, voter
i3 changes his preference to a ∼ b � d � c and the choice set of the resulting
profile R3 does still not contain c and d. Otherwise, voter i3 can P̃ -manipulate by
switching back to R2. Finally, we change the profile such that voter i3 is indifferent
between a, b and d, voter i2 prefers b strictly to d and voter i1 prefers a strictly
to d. We call the resulting preference profile R4. This step does not affect the
majorities and therefore, f(R4) = f(R3), i.e., c is still not chosen. Furthermore,
voter i1 prefers a strictly to d and therefore, we can use the steps explained in the
last paragraph to deduce a contradiction. Thus, we have derived a contradiction in
all cases, which means that there is no other P̃ -strategyproof, Pareto-optimal and
neutral C2-function but the Pareto-rule if 3 ≤ m ≤ 4. �

Note that all axioms in this characterization of the Pareto-rule are independent.
Most importantly, the bounds on m are tight, i.e., if m = 2, the majority rule
satisfies all axioms of the characterization and if m = 5, the SCF f2 discussed in
Section 4.2.2 satisfies all axioms. Furthermore, C2 is independent of the remaining
axioms as the social choice function discussed in Lemma 4.10 is Pareto-optimal, P̃ -
strategyproof and neutral but not in C2. The independence of the remaining axioms
follows from the same examples discussed in the remarks after Theorem 4.7 because
C2-monotonicity implies C2.
As consequence of Theorem 4.8, there is no other reasonable P̃ -strategyproof and
Pareto-optimal C2-function but the Pareto-rule if m = 3 or m = 4. Therefore,
this rule is uncontroversial if we require a C2-function that is defined on three or
four alternatives in the weak domain. Even more, if m ≥ 5, the Pareto-rule is
the most preferable C2-function because of Theorem 4.7. This result requires C2-
monotonicity instead of C2, which restricts its strength only slightly. The reason for
this is that C2-monotonicity is a very desirable axiom that only translates monoto-
nicity into the C2-setting. Therefore, we deem the Pareto-rule as the most desirable
C2-function in the weak domain.
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Chapter 5

Responsively Efficient Social
Choice Functions

As we have seen in the last chapters, there are many strong results on P̃ -strategy-
proof and Pareto-optimal social choice functions in the weak domain. For instance,
it is known that no such function can be additionally pairwise [BSS] and we have
proven in Theorem 3.12 that no P̃ -strategyproof and Pareto-optimal SCF can be
rank-based. However, there are P̃ -strategyproof and Pareto-optimal social choice
functions, such as the Pareto-rule. This rule satisfies many other axioms such as
monotonicity, neutrality and anonymity. Hence, we need a stronger notion of ef-
ficiency than Pareto-optimality in order to find an impossibility result based on
P̃ -strategyproofness and anonymity. Therefore, we discuss a new axiom called re-
sponsive efficiency in this chapter. This axiom generalizes Pareto-optimality from
single alternatives to sets of alternatives and therefore, it is more restrictive. Thus,
it seems reasonable to conjecture that there is no social choice function that satisfies
P̃ -strategyproofness, responsive efficiency and anonymity.

For answering this conjecture, we formally introduce the concept of responsive ef-
ficiency in Section 5.1. As the pure technical introduction leaves many questions
about this axiom open, we thoroughly analyze the axiom itself in Section 5.2. Fi-
nally, we discuss social choice functions that are P̃ -strategyproof and responsively
efficient in Section 5.3. We can show that there is a P̃ -strategyproof social choice
function that satisfies responsive efficiency but violates anonymity. Furthermore, we
prove two impossibility results that rule out that simple social choice functions sat-
isfy P̃ -strategyproofness, responsive efficiency and anonymity. However, we cannot
completely disprove the existence of such social choice functions.

5.1 Introduction to Responsive Efficiency

In this section, we formally introduce a new axiom called responsive efficiency. Simi-
lar to Pareto-optimality, this axiom tries to formalize the idea that many choice sets
are not reasonable because they contain alternatives such that every voter agrees
that there are better options. However, Pareto-optimality allows only to compare
individual alternatives, which does not seem sufficient in the context of set-valued
social choice functions. For instance, consider the profile shown in Figure 5.1. It
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R :

1 1 1 1
a a b b
c d c d
b b a a
d c d c

Figure 5.1: Preference profile used for explaining responsive efficiency

can be easily seen that every alternative is Pareto-optimal in R and therefore, a
Pareto-optimal social choice function might return {a, b, c, d}. However, it is not
reasonable to return this set because every voter seems to prefer the set {a, b} to
the set {c, d}. Thus, a more appropriate choice set for R is {a, b}.
The intuition of responsive efficiency is to formalize the behavior seen in the last
example: A set of alternatives can be more desirable than another set for every voter
and therefore, the latter set should not be a subset of the choice set. However, this
intuition leaves it open when we consider a set of alternatives preferable to another
one. We solve this problem in the following definition.

Definition 5.1 (Responsive dominance). A set of alternatives X ⊆ A respon-
sively dominates another set Y ⊆ A in a preference profile R if |X| = |Y | and for
every voter i ∈ N , there is a bijection πi : X 7→ Y such that x �i πi(x) for all x ∈ X
and there is an alternative x∗ ∈ X and a voter j ∈ N such that x∗ �j πj(x∗).

This definition only allows to compare sets that have the same size as it requires
bijections between the sets. The intuitive meaning of these bijections is that for
every voter i ∈ N and alternative x ∈ X, there is a unique alternative y ∈ Y that
is less preferred than x by voter i. Thus, if every alternative in Y is chosen, we
can replace Y with X in the choice set and every voter favors the new outcome.
Furthermore, we demand that at least one preference with respect to πi is strict for
at least one voter i ∈ N to ensure that a set does not responsively dominate itself.
Moreover, note that if there are sets X = {x} and Y = {y} such that X responsively
dominates Y , then alternative x Pareto-dominates alternative y. Even more, the in-
verse is also true, i.e., if x Pareto-dominates y, then {x} responsively dominates {y}.
Thus, we see that responsive dominance is indeed stronger than Pareto-dominance.
It should be mentioned that it is rather restrictive that we only allow to compare
sets of the same size in Definition 5.1. However, if we allow sets with different size,
we cannot use a bijection for comparing them anymore. This leads to difficult work-
arounds and less intuitive definitions. Furthermore, by using a restrictive definition,
we strengthen the impossibility results that are discussed in subsequent sections.
Nevertheless, we want to mention a reasonable method to generalize responsive
dominance to sets with different size. For instance, if we allow sets X, Y with
|X| ≤ |Y |, we may require that there is for every voter i ∈ N a surjection πi : Y 7→ X
such that πi(y) �i y for all y ∈ Y and this preference is strict for at least one
voter and one alternative. This leads to a variant of responsive dominance that
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R′ :

1 1 1 1 1 1
a a a b b b
c d e c d e
d e c d e c
b b b a a a
e c d e c d

Figure 5.2: Preference profile used to show the differences between variants of re-
sponsive dominance

is reasonable and even stronger than Definition 5.1. For instance, consider the
preference profile R′ shown in Figure 5.2. It seems that every voter prefers the set
{a, b} to the set {c, d, e}. Even more, it can be easily checked that the strengthened
variant of responsive dominance implies that {a, b} dominates {c, d, e}. In contrast,
no sets are responsively dominated with respect to Definition 5.1 in the profile R′.
The reason for this is that for every subset {x, y} ( {c, d, e} there is a voter who
prefers this subset strictly to a or b. Thus, the variant suggested in this paragraph
is indeed stronger that Definition 5.1. Nevertheless, we discuss in the sequel the
weaker version of responsive efficiency based on bijections.
Even though the definition of responsive dominance is rather interesting and allows
for many variations, we want to analyze social choice functions. Therefore, we
introduce an axiom called responsive efficiency that is defined similarly to Pareto-
optimality. Thus, recall that a SCF is Pareto-optimal if its choice set never contains
a Pareto-dominated alternative. It is straightforward to generalize this approach to
responsive dominance by demanding that a responsively efficient SCF never contains
a responsively dominated subset.

Definition 5.2 (Responsive efficiency). We call a set of alternatives X ⊆ A
responsively efficient if it does not contain a responsively dominated subset. Fur-
thermore, we call a social choice function f responsively efficient if f(R) is for
every preference profile R responsively efficient.

As consequence of this definition, every responsively efficient social choice function
f satisfies that {c, d} 6⊆ f(R) for the profile R shown in Figure 5.1 because {a, b}
responsively dominates {c, d} in this profile. For instance, f(R) = {a, b, c} is a
valid choice. Note that it is no problem that c is chosen as responsive efficiency only
requires that not both c and d are chosen. As a consequence of this observation, it is
not possible to define a social choice function that returns the maximal responsively
efficient set as this set is not unique. For instance, both {a, b, c} and {a, b, d} are
maximal and responsively efficient choice sets for the profile R shown in Figure 5.1.
Hence, there is no responsively efficient social choice function that can be compared
to the Pareto-rule. Due to this observation, it is also rather hard to check whether
a social choice function is responsively efficient. This makes it difficult to discuss
this axiom and therefore, we analyze it in detail in the next section.
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5.2 Analysis of Responsive Efficiency

As we have already explained in the last section, responsively efficient social choice
functions may behave rather unexpected and it is hard to check whether a social
choice function satisfies responsive efficiency. Therefore, we discuss in this section
the responsive dominance relation itself with respect to two goals: Firstly, we want
to improve the understanding of this relation and therefore, we propose some lem-
mas about responsive dominance. Secondly, we aim to introduce approaches for
constructing responsively efficient social choice functions. We are able to prove that
various social choice functions, for instance Borda’s rule, are responsively efficient.
However, all social choice functions introduced in this section are P̃ -manipulable.
Our first idea for defining a responsively efficient social choice function is to simply
remove all responsively dominated sets from the choice set. However, it is easy to
see that this approach does not lead to a well-defined social choice function as often
all alternatives are part of a responsively dominated set. For instance, consider the
profile R1 shown in Figure 5.3. In this profile, c is Pareto-dominated by b and d
is Pareto-dominated by a. Thus, the sets {c} and {d} are responsively dominated.
These observations imply that {a, b} responsively dominates {a, c} and that {a, b}
responsively dominates {b, d}. Therefore, every alternative is indeed element of a
responsively dominated set.
The problem in this example is that we compare intersecting sets with respect to
responsive dominance. This means that we only have to find two sets X and Y such
that X responsively dominates Y . Then, we can add an alternative z 6∈ X ∪ Y to
both sets and it holds that X ∪{z} responsively dominates Y ∪{z}. Therefore, z is
also part of a responsively dominated set. Thus, it follows that all alternatives can
be element of a responsively dominated set.
As a consequence of this observation, it seems reasonable to discuss only disjoint sets
with respect to responsive dominance. However, even if we only consider disjoint
sets, all alternatives may still be element of a responsively dominated set. For
instance, consider the profile R2 shown in Figure 5.3. In this profile, every voter
prefers d the least and is indifferent between the three remaining alternatives a, b
and c. Consequently, d is Pareto-dominated by every alternative. Furthermore, it
is easy to see that every subset of size 2 of {a, b, c} responsively dominates the set
consisting of d and the remaining alternative. Thus, every alternative is element of
a responsively dominated set, even if we only discuss disjoint sets. Hence, we do not
obtain a well-defined social choice function by deleting all responsively dominated
sets, even if we only discuss disjoint sets with respect to responsive dominance.
Note that both previously explained examples rely on the fact that sets containing
a Pareto-dominated alternative are often also responsively dominated. However,
we actually do not have to worry about these sets for constructing a responsively
efficient social choice function if we simply remove the Pareto-dominated alternatives
from the choice set. For instance, a responsively efficient social choice function f is
only required to satisfy that f(R1)∩{c, d} = ∅ for the profile R1 shown in Figure 5.3.
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R1 :

1 1 1
a b b
d c c
b a a
c d d

R2 :
1 1 1

a, b, c, a, b, c, a, b, c,
d d d

Figure 5.3: Preference profiles used for explaining problems with responsive domi-
nance

This observation leads to the notion of minimal responsive dominance, i.e., we are
only interested in the fact that X responsively dominates Y if no set X ′ ( X
responsively dominates a subset Y ′ ( Y . The reason for this is that the choice set
of a responsively efficient social choice function is no superset of Y ′ and therefore,
it is also no superset of Y . This intuition is formalized in the following definition.

Definition 5.3 (Minimal responsive dominance). A set of alternatives X ⊆ A
minimally responsively dominates another set Y ⊆ A in a preference profile R if
X responsively dominates Y in R and no set X ′ ( X responsively dominates a set
Y ′ ( Y .

For observing the difference between minimal responsive dominance and responsive
dominance, consider the profile R1 shown in Figure 5.3. In this profile, {a} min-
imally responsively dominates {d}, but {a, b} only responsively dominates {b, d}.
Thus, it follows that removing all alternatives that are element of a minimally re-
sponsively dominated set leads to a non-empty choice set. Even more, it is enough
to consider minimal responsive dominance to derive a responsively efficient social
choice function. Therefore, we investigate minimal responsive dominance in more
detail. Unfortunately, this dominance relation is rather difficult to understand and
to analyze. One reason for this is that it is not straightforward to decide whether a
set is minimally responsively dominated or only responsively dominated. Further-
more, minimal responsive dominance can behave rather unexpected if we modify a
preference profile. For instance, a minimally responsively dominated set might grow
larger if we swap to alternatives in a preference profile.
Therefore, we first discuss the minimal responsive dominance relation in more de-
tail and analyze its properties. As a first step, we prove that if a set minimally
responsively dominates another set, then these sets are disjoint.

Lemma 5.1. If a set X responsively dominates another set Y in a profile R ∈ Wn,
then X \ Y responsively dominates Y \X in R.

Proof: We prove this lemma by an induction on size of the intersection X∩Y . Thus,
consider an arbitrary preference profile R ∈ Wn and two sets X and Y such that X
responsively dominates Y in R. The base case |X ∩ Y | = 0 is trivially true as this
assumption implies that X \ Y = X and Y \X = Y .
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Next, we focus on the induction step. Thus, assume that |X ∩ Y | = k for some
k ∈ {1, ...,m} and that the lemma is already proven for all sets X ′, Y ′ such that
|X ′ ∩ Y ′| = k− 1 and X ′ responsively dominates Y ′ in R. In the sequel, we explain
how to remove an alternative a ∈ X ∩ Y from X and Y while maintaining that
X \{a} responsively dominates Y \{a}. Then, the lemma follows from the induction
hypothesis and this claim. Thus, consider an arbitrary alternative a ∈ X ∩ Y and a
voter i ∈ N and let πi : X 7→ Y denote the bijection of voter i required for showing
that X responsively dominates Y . As a ∈ Y , there is an alternative b ∈ X such that
πi(b) = a. Furthermore, there is also an alternative c ∈ Y with πi(a) = c as a ∈ X.
By the definition of responsive dominance, it follows that b �i a �i c. Thus, we can
define a new bijection π′i : X \ {a} 7→ Y \ {a} that is required to show that X \ {a}
responsively dominates Y \ {a}. This bijection π′i maps b to c and is equal to πi
otherwise. As we can apply this construction for every voter, it follows that X \{a}
responsively dominates Y \ {a}. Finally, note that the intersection of these two sets
has size k − 1 and therefore, the lemma follows from the induction hypothesis. �

As a consequence of this lemma, a set can only minimally responsively dominate
another set if they are disjoint. Otherwise, we can simply remove the intersection
from both sets and still have a responsive dominance relation between the sets,
which contradicts the minimality assumption. Furthermore, note that Lemma 5.1
also holds if a ∈ X and b ∈ Y and a is indistinguishable from b. The reason for
this is that we can exchange a with b in X and then apply the lemma. Moreover,
as a consequence of Lemma 5.1, it suffices to consider responsive dominance only
between sets X, Y with |X| = |Y | ≤ m/2 as all other dominance relation cannot be
minimal. This means that if m ≤ 3, responsive dominance and Pareto-dominance
are equal. Consequently, the Pareto-rule is responsively efficient if m ≤ 3. This
observation shows also why it is hard to work with responsively efficient social
choice functions: We need many alternatives such that responsive efficiency becomes
restrictive. However, this makes it hard to find interesting profiles.
Note that Lemma 5.1 provides a simple criterion for deciding whether a responsive
dominance relation is minimal. However, it is clearly not enough to characterize all
minimally responsively dominated sets. Therefore, we propose another lemma on
minimal responsive dominance that focuses on the situation when two responsive
dominance relations are defined on the same set of alternatives.

Lemma 5.2. Consider an arbitrary preference profile R ∈ Wn and sets of alterna-
tives X1, Y1, X2 and Y2 such that X1 responsively dominates Y1, X2 responsively
dominates Y2, X1 ∩ Y1 = X2 ∩ Y2 = ∅ and X1 ∪ Y1 = X2 ∪ Y2. Then X1 ∩ X2

responsively dominates Y1 ∩ Y2 in R.

Proof: Consider an arbitrary preference profile R ∈ Wn and sets X1, Y1, X2 and
Y2 as specified in the lemma, i.e., X1 ∩ Y1 = X2 ∩ Y2 = ∅, X1 ∪ Y1 = X2 ∪ Y2 and
Xi responsively dominates Yi, i ∈ {1, 2}. First note that if X1 = X2, then it holds
that Y1 = Y2 and therefore, the lemma is trivially true. Therefore, we assume in
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the sequel that X1 ∩X2 6= ∅. Furthermore, note that |X1| = |X2| = |Y1| = |Y2| and
|X1 ∩X2| = |Y1 ∩ Y2| follows from our assumptions.

As Xj responsively dominates Yj, j ∈ {1, 2}, there are bijections πji : Xj 7→ Yj for
every voter i ∈ N and j ∈ {1, 2} such that x �i πji (x) for all alternatives x ∈ Xj.
We use these bijections to construct a new bijection π3

i : X1 ∩ X2 7→ Y1 ∩ Y2 for
every voter i ∈ N that shows that X1 ∩X2 responsively dominates Y1 ∩ Y2. Thus,
consider an arbitrary alternative a ∈ X1 ∩X2 and voter i ∈ N . If π1

i (a) ∈ Y1 ∩ Y2,
we set π3

i (a) = π1
i (a). Otherwise, it follows that π1

i (a) 6∈ Y2 as π1
i (a) ∈ Y1 because

of the definition of π1
i . This implies that π1

i (a) ∈ X2 as X1 ∪ Y1 = X2 ∪ Y2 and
therefore, π2

i (π
1
i (a)) is well-defined. If this alternative is in Y1 ∩ Y2, then we set

π3
i (a) = π2

i (π
1
i (a)). Otherwise, we can repeat this argument with X1 and Y1, i.e.,

we apply π1
i again. Hence, we alternate between applications of π1

i and π2
i until

πji (π
k
i (...π1

i (a))) = y ∈ Y1 ∩ Y2 and set π3
i (a) = y. Note that we eventually arrive

at an element in Y1 ∩ Y2 as π1
i and π2

i are bijections and X1 ∩ Y1 = X2 ∩ Y2 = ∅.
This means that every alternative in Y1 \ Y2 = Y1 ∩X2 and Y2 \ Y1 = Y2 ∩X1 has
a unique successor and a unique predecessor with respect to π1

i and π2
i . Thus, no

alternative can appear twice in this sequence for deriving y, which means that we
eventually reach an element in Y1 ∩ Y2. Furthermore, for a, b ∈ X1 ∩ X2, a 6= b, it
holds that π3

i (a) 6= π3
i (b) as otherwise there are alternatives c, d ∈ Xj, c 6= d, and

j ∈ {1, 2} such that πji (c) = πji (d), which contradicts that πji is a bijection. Thus,
it follows that π3

i defines indeed a bijection from X1 ∩ X2 to Y1 ∩ Y2 as these two
sets have the same size. Finally, note that x �i π1

i (x) �i π2
i (π

1
i (x)) �i ... �i π3(x)

for all x ∈ X1 ∩X2 and that this preference is strict for at least one voter and one
alternative. As we can construct the bijection π3

i for every voter i ∈ N , it shows
that X1 ∩X2 responsively dominates Y1 ∩ Y2 in R. �

As consequence of this lemma, there is at most one minimal dominance relation
defined on X ∪Y . For instance, this implies that there can only be a single minimal
responsive dominance relation involving sets of size 2 if m = 4. Thus, responsive
efficiency is not very restrictive in this case.

Unfortunately, neither Lemma 5.1 nor Lemma 5.2 suffice to provide strong restric-
tions on minimal responsive dominance. Thus, many problems with respect to this
relation remain unsolved. For instance, it is not clear if there is a preference profile
such that every alternative is element of a minimally responsively dominated set.
One of the main problems for rejecting this conjecture is that many simple ideas
focusing on single voters fail. For instance, it is possible that all most preferred
alternative of a single voter are element of minimally responsively dominated sets.
An example of such a profile is shown in Figure 5.4. In this profile, {a, c} minimally
responsively dominates {b, d} and {b, e} minimally responsively dominates {a, f}.
Thus, both most preferred alternatives of voter 1 are element of a minimally respon-
sively dominated set. Such observations are not intuitive and explain the difficulties
in proving that not all alternatives can be element of a minimally responsively dom-
inated set. Nevertheless, we strongly believe that this conjecture is true. However,
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R :
1 1 1 1 1
a, b c e a, e, d b, c, f

c, d, e, f a, b, d, e, f a, b, c, d, f b, c, f a, e, d

Figure 5.4: Preference profile used to show the unexpected behavior of minimal
responsive dominance

we do not investigate it any further because Theorem 5.5 shows that the social
choice function that removes all alternatives contained in a minimally responsively
dominated set from the choice set is P̃ -manipulable.
Instead, we focus on other approaches for designing responsively efficient social
choice functions. Therefore, we note that responsive efficiency is related to the
ranks of alternatives. Recall for this that if a set X responsively dominates the
set Y , then there is a bijection πi : X 7→ Y for every voter i ∈ N such that
x �i π(x). This implies that the rank of x is at most as large as the rank of πi(x).
Consequently, the sum

∑
x∈X

r+(Ri, x) is not larger than the sum
∑
y∈Y

r+(Ri, y). Even

more, this inequality is strict for at least one voter as there must be a voter j and
an alternatives x ∈ X such that x �j πj(x). Hence, the sum of the ranks of all
alternatives in X over all voters is strictly less than the same sum for Y . This
means that a set which minimizes this sum cannot be responsively dominated.
For formalizing this approach, we first introduce the rank sum of a set of alternatives.
This term is discussed in the next definition where we use the rank extension r+
introduced in Definition 3.19. However, the results hold also for all other rank
extensions and we use r+ only because of its simplicity.

Definition 5.4 (Rank sum of a set of alternatives). The rank sum of a set
X ⊆ A in the preference profile R is defined as rank(R,X) =

∑
x∈X

∑
i∈N

r+(Ri, x).

Thus, the previous mentioned intuition is that if X responsively dominates Y in R,
then rank(R,X) < rank(R, Y ). We formalize this intuition to derive a criterion for
designing responsively efficient social choice functions.

Theorem 5.1. Consider a preference profile R ∈ Wn and a set of alternatives
X ⊆ A. If X is not responsively efficient in R, then there are sets Y ⊆ X and
Z ⊆ A such that |Y | = |Z| and rank((X \ Y ) ∪ Z) < rank(X).

Proof: Consider an arbitrary preference profile R and a set of alternatives X that
is not responsively efficient in R. Thus, there is a subset Y ⊆ X such that Y is
responsively dominated by another set Z ⊆ A. This means that there is a bijection
πi : Z 7→ Y for every voter i ∈ N such that z �i πi(z) for all z ∈ Z and for at
least one voter and one alternative this is strict. Consequently, we can deduce that
rank(Z) < rank(Y ) and therefore, the following inequality is true.

rank(X) = rank(X \Y ) + rank(Y ) > rank(X \Y ) + rank(Z) ≥ rank((X \Y )∪Z)
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The strict inequality in this equation follows from the fact that rank(Z) < rank(Y )
and the second inequality follows as X\Y and Z may have a non-empty intersection.
Thus, the theorem is proven. �

Note that Theorem 5.1 is very helpful for designing responsively efficient social choice
functions. For instance, it follows from this result that Borda’s rule is responsively
efficient as it always chooses a set that contains only alternatives a that maximize
rank({a}). Similarly, we can develop many other ideas for designing responsively
efficient social choice functions with the help of Theorem 5.1. Two of these ideas
are presented in the sequel.

The first approach directly uses the intuition of Theorem 5.1: If a set is not respon-
sively efficient, then we can simply replace a responsively dominated subset with
its dominator. Hence, we need to choose an initial set and apply this replacing
procedure until we arrive at a responsively efficient choice set. As the rank sum of
the set strictly decreases after replacing a responsively dominated set and the rank
sum of a set is bounded, it follows that this process terminates eventually. Thus,
this approach is indeed well-defined. A drawback of this approach is that it cannot
be neutral as we always have to decide on a set to replace. For instance, assume
that {e, f} responsively dominates {a, b} and {d, e} responsively dominates {a, c}.
Then, we have to choose whether to remove {a, b} or {a, c} from the choice set. This
is one of the key problems of this approach which leads to the fact that the social
choice functions based on this idea are P̃ -manipulable.

Next, we discuss a social choice function implementing this replacement routine.
This SCF starts with a set of alternatives that contains for every voter one his most
preferred alternatives and that has minimal size. For instance, consider the profile
R shown in Figure 5.5 and assume that we start at the lexicographic smallest set
that contains one of the most preferred alternatives of every voter and that we apply
the replacement routine in lexicographic order. Thus, we start for R with the set
{a, b, c}. Subsequently, the SCF notes that this set is not responsively efficient and
therefore, {a, b} is replaced with {e, f}. This leads to the responsively efficient set
{c, e, f} which is also the choice set. The beauty of this social choice function is
that it leads to a rather small choice set that still contains one of the most preferred
alternatives of every voter. The reason for this is that if an alternative x is element
of a responsively dominated set X even though it is among the most preferred
alternatives of voter i, then the dominating set Y contains another one of voter i’s
most preferred alternatives. Otherwise, there is no alternative in Y that is weakly
preferred to x by voter i. This shows that a responsively efficient social choice
function can contain one of the most preferred alternatives of every voter. Even
though this property is often an indicator for P̃ -strategyproofness, it is easy to show
that this social choice function is P̃ -manipulable by exploiting its non-neutrality.

The second approach for defining social choice functions with the help of Theorem 5.1
is to choose sets that minimize the rank sum. Without any further restrictions, this
leads directly to a variant of Borda’s rule based on r+. However, note that we can
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R :

1 1 1 1 1 1
a, d, e, i a, d, f, j b, f, g b, e, h c, g, i c, h, j
b, f, g b, e, h c, h, j c, g, i a, d, f, j a, d, e, i
h, j g, i d, e, i a, f, j e, h f, g
c c a d b b

Figure 5.5: Preference profiles used for explaining responsive efficiency

also try to find larger social choice functions by adding constraints to the choice
set. One idea for this is to require that the choice set contains for every voter at
least one alternative that is among his most preferred ones. This condition gives
a lower bound on the size of the choice set and therefore, it leads to larger choice
sets. Furthermore, the choice set of this SCF contains for every voter at least one
of his most preferred alternatives. For an application of this social choice function,
consider again the profile R shown in Figure 5.5. We have to calculate the rank sum
of every set that contains for every voter one of his most preferred alternatives. For
instance, we compute that rank({c, e, f}) = 84 and rank({a, g, h}) = 82. As 82 is
minimal, the choice set for this profile is {a, g, h}. Finally, note that this approach
is not neutral as there can be multiple choice sets with the same score in the end,
which means that we have to select a set non-neutrally. Furthermore, it is also
not P̃ -strategyproof as a voter can manipulate the tie-breaking between sets with
minimal rank sum in his favor by worsening alternatives.

5.3 P̃ -strategyproofness and Responsive Efficiency

We have seen several responsively efficient social choice functions in the last section.
However, all of them failed P̃ -strategyproofness, which leads to the conjecture that
there are no or only very few social choice functions that are both responsively effi-
cient and P̃ -strategyproof. For answering this conjecture, we consider the combina-
tion of these two axioms in detail. First, we prove in Section 5.3.1 that there are some
P̃ -strategyproof and responsively efficient social choice functions in rather restricted
settings. After that, we consider impossibility results based on P̃ -strategyproofness
and responsive efficiency in Section 5.3.2. We can show in this section that there
is no simple social choice function that satisfies P̃ -strategyproofness, responsive ef-
ficiency and anonymity. However, we cannot completely rule out the existence of
these social choice functions.
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5.3.1 P̃ -Strategyproof and Responsively Efficient Social Choice
Functions

In this section, we discuss P̃ -strategyproof and responsively efficient social choice
functions in the weak domain. Unfortunately, it is very hard to find such functions
and therefore, we either have to restrict the number of voters and alternatives or to
violate other important axioms such as anonymity. Nevertheless, the results in this
section show that there are P̃ -strategyproof and responsively efficient social choice
functions and they give lower bounds for the number of voters and alternatives
required for impossibility results.
First, we focus on the setting with a restricted number of alternatives and vot-
ers. The easiest way to design a responsively efficient social choice function under
these assumptions is to show that responsive dominance is equivalent to Pareto-
dominance. Thus, we prove in the next lemma that the Pareto-rule, i.e., the SCF
that picks all Pareto-optimal alternatives, is responsively efficient if n ≤ 2 or m ≤ 3.
This implies that there is a P̃ -strategyproof and responsively efficient social choice
function if there are very few alternatives or voters as the Pareto-rule satisfies these
axioms.

Lemma 5.3. The Pareto-rule is responsively efficient in the weak domain if m ≤ 3
or n ≤ 2.

Proof: We first consider the case that there are m ≤ 3 alternatives and an arbitrary
number of voters. In this case, Lemma 5.1 implies that every minimal responsive
dominance relation is defined on sets of size at most m/2. This means that minimal
responsive dominance is equivalent to Pareto-dominance and therefore, the Pareto-
rule is responsively efficient if m ≤ 3.
Next, consider the case that there are n ≤ 2 voters and an arbitrary number of
alternatives. As in the first case, we are only interested in minimal responsive
dominance as this relation suffices to discuss responsive efficiency. We prove again
that every minimal responsive dominance relation is defined on sets of size 1, which
means that it is equivalent to Pareto-dominance. First, we focus consider the case
that n = 1. This assumption means that only the most preferred alternatives of
the single voter are Pareto-optimal. Furthermore, it is impossible that a subset of
his most preferred alternatives is responsively dominated as there cannot be a strict
preference. Hence, Pareto-dominance and minimal responsive dominance are in this
case equivalent, which means that the Pareto-rule is P̃ -strategyproof.
Finally, we analyze the situation with n = 2 voters. Thus, assume for contradiction
that there are sets X, Y ⊆ A and a profile R ∈ W2 such that |X| = |Y | > 1 and
X minimally responsively dominates Y . Furthermore, let a denote one of the most
preferred alternatives of voter 1 in X, i.e., a �1 b for all b ∈ X. As X responsively
dominates Y , it follows that for every alternative x ∈ X there is an alternative y ∈ Y
such that x �1 y. Because of the transitivity of individual preferences, it follows that
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voter 1 prefers a weakly to all alternatives in Y . Moreover, there is an alternative
b ∈ Y such that voter 2 prefers a weakly to b as otherwise X cannot responsively
dominate Y . Thus, there is an alternative b ∈ Y such that a �i b for all voters i ∈ N .
If one of the voters prefers a strictly to b, then a Pareto-dominates b contradicting
that X minimally responsively dominates Y . Otherwise, both voters are indifferent
between a and b, which means that these alternatives are indistinguishable. This
implies that X responsively dominates (Y \ {b})∪{a} and by Lemma 5.1, it follows
thatX\{a} responsively dominates Y \{a}. This contradicts again thatX minimally
responsively dominates Y and therefore, the initial assumption is wrong. Thus,
Pareto-dominance and minimal responsive dominance are equivalent if n ≤ 2, which
implies that the Pareto-rule is responsively efficient in this case. �

As consequence of Lemma 5.3, it follows that every impossibility result relying on
responsive efficiency, P̃ -strategyproofness, neutrality and anonymity requires at least
4 alternatives and 3 voters. Otherwise, the Pareto-rule satisfies all these axioms.
Moreover, we can push the boundaries even further if we restrict both the number of
voters and alternatives. Therefore, we show that the Pareto-rule is still responsively
efficient if m ≤ 5 and n ≤ 3.

Lemma 5.4. The Pareto-rule is responsively efficient in the weak domain if m ≤ 5
and n ≤ 3.

Proof: First note that the cases that n ≤ 2 and thatm ≤ 3 are covered by Lemma 5.3.
Thus, we assume that there are n = 3 voters and 4 ≤ m ≤ 5 alternatives. As in
the proof of Lemma 5.3, we derive from these assumptions that Pareto-dominance
is equal to minimal responsive dominance. Thus, assume for contradiction that the
previous claim is wrong, i.e., there is a profile R and sets X, Y ⊆ A such that
|X| = |Y | > 1 and X minimally responsively dominates Y . As consequence of
Lemma 5.1, this means that |X| = |Y | = 2, i.e., X = {a, b} and Y = {c, d} for some
alternatives a, b, c, d ∈ A. We prove in the sequel that there are always alternatives
x ∈ X, y ∈ Y such that every voter prefers x weakly to y. This contradicts the
minimality of the responsive dominance relation as either x Pareto-dominates y if
the preference of at least one voter is strict, or x and y are indistinguishable in R.
The latter case means that X responsively dominates (Y \{y})∪{x} and therefore,
X \ {x} responsively dominates Y \ {x} because of Lemma 5.1. This contradicts
again that X minimally responsively dominates Y .
Thus, it only remains to find alternatives x ∈ X, y ∈ Y such that x �i y for all
i ∈ N . Therefore, we consider the preference between the alternatives a, b ∈ X. The
reason for this is that if a voter prefers a weakly to b, he prefers a weakly to every
alternative in Y . Otherwise, there is an alternative y ∈ Y that is strictly preferred
to a and therefore, it is strictly preferred to every alternative in X. However, this
contradicts that X responsively dominates Y . Clearly, a symmetric argument also
holds for voters who prefer b weakly to a. Hence, let Xa = {i ∈ N | a �: ib}
denote the set of voters who prefer a weakly to b and Xb = {i ∈ N | b �i a}
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R1 :

1 1 1 1
a a b b
c d c d
b b a a
d c d c

R2 :

1 1 1
a b c
d e f
b c a
f d e
c a b
e f d

Figure 5.6: Preference profiles used to show that the bounds in Lemma 5.4 are tight

denote the set of voters who prefer b weakly to a. As n = 3, it is clear that at
least one of the sets contains at least two voters. We assume in the sequel that
|Xa| ≥ 2 as the case |Xb| ≥ 2 is symmetric. This assumption means that there are
two voters who prefer a at least weakly to every alternative in Y . The remaining
voter also prefers a weakly to at least one alternative in Y as otherwise X does
not responsively dominate Y . Thus, a is weakly preferred to an alternative in Y by
every voter. As previously explained, this contradicts that X minimally responsively
dominates Y and therefore, our initial assumption is wrong. Hence, there cannot
be a preference profile R and sets X, Y ⊆ A such that X responsively dominates Y
and |X| = |Y | > 1. This implies that minimal responsive dominance is equivalent
to Pareto-dominance if m ≤ 5 and n ≤ 3. Therefore, it follows that the Pareto-rule
is responsively efficient. �

It should be mentioned that the bound on both the number of alternatives and voters
presented in the last lemma is tight. To see this, consider the preference profiles
shown in Figure 5.6. In the profile R1, {a, b} minimally responsively dominates
{c, d}, which means that Lemma 5.4 is not true if there are n = 4 voters and m = 4
alternatives. Furthermore, {a, b, c} minimally responsively dominates {d, e, f} in
R2. Thus, the Pareto-rule is not responsively efficient either if m = 6 and n = 3.

Even though the Pareto-rule is not responsively efficient anymore if m = n = 4, this
does not mean that there cannot be a P̃ -strategyproof and responsively efficient
social choice function. It can indeed be shown by SAT-solving that there is a social
choice function that satisfies these axioms and is even neutral and anonymous if there
are m = 4 alternatives and n = 4 voters. However, this SCF is rather complicated
and it is not clear how to represent it in a formal and succinct way. Therefore, we
do not discuss it in detail. Next, it should be mentioned that, while it is appealing
to use SAT-solving to find responsively efficient and P̃ -strategyproof social choice
functions, we cannot use this method to derive social choice functions that satisfy
these axioms and are defined on more than four voters and alternatives due to
the exponential growth of the SAT-formula. Thus, we have to leave it as an open
problem whether there is a social choice function that satisfies P̃ -strategyproofness,
responsive efficiency, neutrality and anonymity for larger numbers of alternatives and
voters than discussed in the previous results. However, if there is an impossibility



140 Responsively Efficient Social Choice Functions

R :
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a, b, c d a e, c
d a, b c d, b
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Figure 5.7: Preference profile used for explaining sequential dictator

result based on these axioms, it seems likely that it requires at least 6 alternatives.
The reason for this is that responsive efficiency becomes more powerful if there are
more alternatives and it is not that restrictive if there are m < 6 alternatives. Even
more, we know that there is a social choice function that satisfies P̃ -strategyproofness
and responsive efficiency if n = m = 4. Thus, it seems rather likely that there is
such a function for m = 4 and n > 4 as Lemma 5.2 implies that responsive efficiency
does not become more restrictive if there are more voters and m = 4.
As consequence of the previous results, the question arises whether we can find a
social choice function that satisfies P̃ -strategyproofness and responsive efficiency
for an unbounded number of alternatives. It turns out that there is such a function
which we call sequential dictator and abbreviate with SD. This social choice function
fixes an order over the voters, i.e., it considers them in increasing order one by one.
For each voter, it removes all alternatives from the choice set but those that he
prefers the most. For instance, consider the preference profile R shown in Figure 5.7
and assume that sequential dictator considers the voters from left to right. Thus,
before we consider the first voter, the choice set contains all alternatives. In the
next step, only {a, b, c} remains as these are the most preferred alternatives of the
first voter. Subsequently, voter 2 removes c from this set as he is indifferent between
a and b but prefers both alternatives strictly to c. Note that the alternatives that
have already been removed from the choice set are ignored. Furthermore, the choice
set reduces to {a} after considering the third voter. Thus, the last voter does not
have a choice anymore, which means that SD(R) = {a}.
Note that sequential dictator is clearly not anonymous as it depends on the order
in which we iterate over the voters. However, as we prove in the sequel, it is both
P̃ -strategyproof and responsively efficient in the weak domain for arbitrary numbers
of voters and alternatives.

Theorem 5.2. Sequential dictator is P̃ -strategyproof and responsively in the weak
domain.

Proof: First, we prove that sequential dictator is responsively efficient. Thus, assume
for contradiction that there is a profile R ∈ Wn such that SD(R) is not responsively
efficient. This means that there is a set of alternatives X ⊆ SD(R) that is minimally
responsively dominated by another set B in R. Note that every voter is indifferent
between all alternatives in SD(R). Otherwise, there is a voter i ∈ N who restricts
the choice set even further. Therefore, every voter prefers every alternative in B
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weakly to every alternative in SD(R). As this preference is strict for at least one
voter and one alternative b ∈ B, it follows that b Pareto-dominates every alternative
in SD(R). Hence, we can deduce that there is a voter i ∈ N during the computation
of SD such that he prefers b strictly to all alternatives in SD(R) and all voters
considered before voter i are indifferent between b and the alternatives in SD(R).
However, this means that the choice set contains both b and SD(R) until sequential
dictator considers voter i. Furthermore, as this voter prefers b strictly to SD(R),
it follows that SD(R) is not the correct choice set of sequential dictator. This is a
contradiction, which means that the initial assumption is wrong. Hence, sequential
dictator is indeed responsively efficient.

Next, we focus on the P̃ -strategyproofness of sequential dictator. Thus, consider
an arbitrary voter i ∈ N and let X denote the choice set before sequential dictator
considers voter i. It follows from the definition of sequential dictator that no alter-
native in A \ X is chosen regardless of the preference of voter i. Furthermore, SD
returns a subset of voter i’s most preferred alternatives in R|X . Thus, it is straight-
forward that voter i cannot P̃ -manipulate, which means that sequential dictator is
P̃ -strategyproof. �

As consequence of Theorem 5.2, there is a P̃ -strategyproof, responsively efficient
and even neutral social choice function. Furthermore, SD satisfies many other de-
sirable axioms such as monotonicity. Hence, every impossibility result based on
P̃ -strategyproofness and responsive efficiency requires additionally anonymity as se-
quential dictator violates this axiom.

5.3.2 Impossibility Results based on P̃ -strategyproofness and
Responsive Efficiency

As we have seen in the last section, it is very hard to find meaningful social choice
functions that satisfy responsive efficiency and P̃ -strategyproofness in the weak do-
main. Furthermore, we have already discussed many impossibility results involving
Pareto-optimality such as Theorem 3.12 or theorem 2 in [BSS]. Thus, it seems rea-
sonable to conjecture that there are also impossibility results based on responsive
efficiency. We prove two such results: Firstly, we show in Theorem 5.3 that there
is no P̃ -strategyproof and responsively efficient C2-function in the weak domain.
This result can be easily derived from Theorem 4.6. Furthermore, this result can
be viewed as a first step of answering the initial question of this chapter asking
about the existence of anonymous, P̃ -strategyproof and responsively efficient so-
cial choice functions. Since it follows from Theorem 3.12 and Theorem 5.3 that
there is neither a rank-based social choice function nor a C2-function that satisfies
P̃ -strategyproofness and responsive efficiency, we can deduce that no commonly con-
sidered approach leads to an anonymous social choice function that satisfies these
two axioms. However, the existence of more complicated social choice functions
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that satisfy anonymity, responsive efficiency and P̃ -strategyproofness is still pos-
sible. Thus, we use a strong technical assumption and neutrality to prove that
there is no such social choice function. Note that the technical assumption is easily
seen to be true if we use another axiom. However, we cannot prove it in general
and therefore, we can neither prove nor disprove the existence of P̃ -strategyproof,
responsively efficient and anonymous social choice functions.
First, we focus on a variation of theorem 2 in [BSS] stating that there is no P̃ -
strategyproof, Pareto-optimal and pairwise social choice function if m ≥ 3 and
n ≥ 3. The question that arises naturally is whether we can weaken pairwiseness
if we require responsive efficiency instead of Pareto-optimality. As we prove in the
sequel with the help of Theorem 4.6, we can weaken pairwiseness to C2 and show
that there is no P̃ -strategyproof and responsively efficient social choice function in
C2.
As in previously discussed impossibility results, we want to focus on a small number
of alternatives and voters. This means that we need a lemma that allows us to
generalize an impossibility result for a fixed number of voters and alternatives to
arbitrary larger values. This issue is addressed with the next lemma.

Lemma 5.5. Assume there is a social choice function f :Wn 7→ 2A \∅ that satisfies
P̃ -strategyproofness, responsive efficiency and C2. Then, there is a social choice
function g : Wn′ 7→ 2A

′ \ ∅ that satisfies P̃ -strategyproofness, responsive efficiency
and C2 for all n′ ≤ n and A′ ⊆ A.

Proof: Consider a social choice function f : Wn 7→ 2A \ ∅ that satisfies all axioms
in the lemma, a subset of alternatives A′ ⊆ A and a number of voters n′ ≤ n. We
prove in the following that there is a social choice function g : Wn′ 7→ 2A

′ \ ∅ that
is also P̃ -strategyproof, responsively efficient and in C2 by an induction on n′ and
m′ = |A′|. By repeatedly applying the induction steps, we can deduce the existence
of g.
First, we focus on the number of voters n′. Therefore, we assume that there is
a SCF f that satisfies all requirements of the lemma and show that there is a
P̃ -strategyproof and responsively efficient C2-function g1 : Wn−1 7→ 2A \ ∅. We
construct g1 as follows: Given an input profile R defined on n − 1 voters, we add
a new voter that is indifferent between all alternatives. This leads to a new profile
R′ defined on n voters. Finally, we set g1(R) = f(R′). Clearly, g1 inherits the
P̃ -strategyproofness from f and is also in C2. Furthermore, adding a voter that
is indifferent between all voters does not affect any responsive dominance relation.
Thus, g1 is also responsively efficient because f satisfies this axiom, which means
that g1 satisfies all required properties.
Next, we discuss the induction step with respect to the number of alternatives m.
Thus, assume that there is a social choice function f defined on m = |A| alternatives
and n voters that satisfies P̃ -strategyproofness, responsive efficiency and C2. We
construct in the sequel a social choice function g2 : Wn 7→ 2A

′ \ ∅ with A′ ( A
and m′ = |A′| = m − 1 that satisfies the same axioms as f . This SCF is defined



P̃ -strategyproofness and Responsive Efficiency 143

as follows: Given an input profile R defined on m − 1 alternatives, it adds a new
alternative x ∈ A \A′ as the least preferred alternative of every voter. This leads to
a new preference profile R′ defined on m alternatives. Finally, we set g2(R) = f(R′).
It is easy to see that g2 satisfies P̃ -strategyproofness, responsive efficiency and C2 as
f also satisfies these axioms. Furthermore, this social choice function is well-defined
because the new alternative x cannot be chosen as it is Pareto-dominated by every
other alternative. Thus, we have shown the induction steps on n and m and by
repeatedly applying them, we can deduce that the lemma holds for all n′ ≤ n and
A′ ⊆ A. �

Note that this lemma uses a standard construction that we have already seen in
Lemma 3.8. We even use this result in the same way: We show that there is no social
choice function f defined for a small fixed number of voters and alternatives that
satisfies P̃ -strategyproofness, responsive efficiency and C2. From the contraposition
of Lemma 5.5, it follows that there is no such social choice function defined on more
voters or alternatives either. Thus, we focus on proving the impossibility for m = 4
alternatives and n = 4 voters.

Theorem 5.3. There is no social choice function f : Wn 7→ 2A \ ∅ in C2 that
satisfies P̃ -strategyproofness and responsive efficiency if m ≥ 4 and n ≥ 4.

Proof: We focus in this proof on the case that n = 4 and m = 4 and show that
there is no social choice function that satisfies all axioms required by the theorem.
It follows from Lemma 5.5 that there cannot be such a social choice function for a
larger number of voters and alternatives. Thus, assume for contradiction that there
is a social choice function f : Wn 7→ 2A \ ∅ that is defined on n = 4 voters and
m = 4 alternatives and that satisfies P̃ -strategyproofness, responsive efficiency and
C2. Note that responsive efficiency implies Pareto-optimality and therefore, we can
use Theorem 4.6. Therefore, we deduce a contradiction by showing that there is a
profile R such that f(R) does not contain any of the most preferred alternatives of
a voter.

Hence, consider the profile R1 shown in Figure 5.8. It is easy to see that no alterna-
tive is Pareto-dominated and that the set {a, b} responsively dominates the set {c, d}
in R1. This means that c or d or both alternatives are not in f(R1). Furthermore, we
use C2 to derive the profile R2: Voter 1 and 3 exchange their preferences over b and
c, and voter 2 and 4 exchange the preferences over b and d. As consequence, voter 3
prefers c uniquely the most and voter 4 prefers d uniquely the most. Even more, it
follows from C2 that f(R2) = f(R1) as R1 and R2 have the same majorities. This
means that the most preferred alternative of the third or the fourth voter is not in
f(R2), which contradicts Theorem 4.6. Thus, it follows that the initial assumption
is wrong, which means that there is no social choice function f defined on n ≥ 4
voters and m ≥ 4 alternatives that satisfies P̃ -strategyproofness, Pareto-optimality
and C2. �
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1 1 1 1
R1 a � c � b � d a � d � b � c b � c � a � d b � d � a � c
R2 a � b � c � d a � b � d � c c � b � a � d d � b � a � c

Figure 5.8: Preference profiles used in the proof of Theorem 5.3

First, we discuss the independence of the axioms used in the Theorem 5.3. Thus,
note that the social choice function sequential dictator discussed in Theorem 5.2 is
responsively efficient and P̃ -strategyproof but not in C2. Furthermore, the Pareto-
rule is P̃ -strategyproof and in C2 but not responsively efficient. This observation
combined with Lemma 5.3 and Lemma 5.4 implies that m ≥ 4 is required and that
n ≥ 4 is required unless we use more alternatives. Hence, even the conditions on
the number of voters and alternatives are necessary. Finally, there are responsively
efficient C2-functions that are not P̃ -strategyproof. For instance, consider the SCF
that always chooses non-neutrally a single Pareto-optimal alternative. This shows
that all axioms used in the theorem are independent from each other.
It should be mentioned that Theorem 5.3 shows another interesting application of
Theorem 4.6. However, it is easy to see that the general idea of this impossibility
cannot be used to prove stronger results. The reason for this is that the proof is
based on the fact that C2 and responsive efficiency imply that the uniquely most
preferred alternative of a voter is not chosen. However, we have already discussed
responsively efficient social choice functions that choose for every voter at least one
of his most preferred alternatives in Section 5.2. Thus, we additionally require neu-
trality in the sequel and show that every neutral, anonymous, responsively efficient
and P̃ -strategyproof social choice function has a profile in which none of the most
preferred alternatives of a voter are chosen. Consequently, it only remains to prove
a variation of Theorem 4.6 using responsive efficiency instead of Pareto-optimality,
and anonymity and neutrality instead of C2. Unfortunately, we cannot prove this
claim. Therefore, we assume it as given for the next theorem and leave it as open
problem whether this assumption is true.

Theorem 5.4. Assume that every responsively efficient, neutral and anonymous
social choice function f is P̃ -manipulable if there is a preference profile where f
does not choose any of the most preferred alternatives of a voter. Then, there is
no social choice function f : Wn 7→ 2A \ ∅ that satisfies anonymity, neutrality,
P̃ -strategyproofness and responsive efficiency if m ≥ 4 and n ≥ 4.

Proof: First note that we focus on the case that there are m = 4 alternatives and n =
4 voters. The reason for this is that the constructions discussed in Lemma 5.5 also
maintain neutrality and anonymity. Thus, it suffices to discuss the theorem for fixed
values of n and m as we can generalize it to arbitrary larger values. Furthermore,
we assume for contradiction that there is a neutral, anonymous, P̃ -strategyproof
and responsively efficient social choice function f defined on n = 4 voters and
m = 4 alternatives. We show in the sequel with the profiles in Figure 5.9 that
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1 1 1 1
R1 a ∼ b � c ∼ d a ∼ d � b ∼ c c ∼ d � a � b b ∼ c � a � d
R2 a ∼ c � b ∼ d a ∼ d � b ∼ c b ∼ d � a � c b ∼ c � a � d
R3 a ∼ b � c ∼ d a ∼ d � b ∼ c a ∼ c � b ∼ d b ∼ c � a � d

Figure 5.9: Preference profiles used in the proof of Theorem 5.4

f(R3) = {a}, which means that none of the most preferred alternatives of the
fourth voter are chosen. Thus, we can derive from the assumptions of the theorem
that f is P̃ -manipulable, which is a contradiction.

It only remains to prove the claim on f(R3). Therefore, consider the profile R1

and note that {a, c} responsively dominates {b, d} in this profile. This means that
{b, d} 6⊆ f(R1) by responsive efficiency. Moreover, if we rename b to d and vice
versa and reorder the voters in R1, we are still in the same profile. Thus, it follows
from neutrality, anonymity and responsive efficiency that b, d 6∈ f(R1). Even more,
observe that R2 only differs from R1 by renaming b to c and vice versa and therefore,
we can derive from neutrality that c, d 6∈ f(R2).

Finally, note that we can derive R3 from both R1 and R2 by letting the third voter
manipulate and applying anonymity to reorder the voters. For going from R1 to
R3, we replace the original preference of voter 3 with a ∼ c � b ∼ d. Since f is
P̃ -strategyproof and f(R1) ⊆ {a, c}, we can deduce that f(R3) ⊆ {a, c}; otherwise,
voter 3 can P̃ -manipulate by switching from R3 to R1. Similarly, for going from
R2 to R3, we let voter 3 replace his current preference R2

3 with a ∼ b � c ∼ d and
exchange the preferences of voter 1 and 3. It follows from P̃ -strategyproofness and
anonymity that f(R3) ⊆ {a, b} as otherwise voter 3 can P̃ -manipulate. These two
observations imply that f(R3) = {a}, which means that none of the most preferred
alternatives of voter 4 are chosen. Thus, it follows from the assumptions of the
theorem that f is P̃ -manipulable, which is a contradiction. �

It should be mentioned that this theorem assumes a variant of Theorem 4.6. Thus,
it only remains to prove this variant using responsive efficiency, neutrality and
anonymity. However, we are not sure whether this is possible at all as we have
already discussed a neutral, anonymous, P̃ -strategyproof and Pareto-optimal social
choice function that does not choose any of the most preferred alternatives of a voter
in Lemma 4.10.

As we cannot prove the assumptions of Theorem 5.4, we discuss one of the impli-
cations of this result instead. Hence, we use an additional axiom which we call
dependence on responsive dominance. The intuition of this axiom is that a social
choice function satisfying it returns the same choice set for all profiles with the
same responsive dominance relations. While this axiom has not much meaning in
general, it is often satisfied by simple approaches for defining responsively efficient
social choice functions. For instance, dependence on responsive dominance is satis-
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fied by the SCF that removes all alternatives contained in a minimally responsively
dominated set from the choice set. Formally, this axiom is defined as follows.

Definition 5.5 (Dependence on responsive dominance). A social choice func-
tion f depends on responsive dominance if f(R) = f(R′) for all preference profiles
R, R′ such that X responsively dominates Y in R if and only if X responsively
dominates Y in R′ for all set of alternatives X, Y ⊆ A.

Note that dependence on responsive dominance implies anonymity as reordering the
voters does not affect the responsive dominance relation. Furthermore, dependence
on responsive dominance is a rather strong axiom, i.e., a social choice function
satisfying it returns for many profiles the same choice set. Finally, it should be
mentioned that dependence on responsive dominance is independent from C2. For
seeing this, consider the profiles shown in the proof of Theorem 5.3. First, observe
that a C2-function returns the same choice set for the profiles R1 and R2 shown in
this proof. In contrast, this is not implied by dependence on responsive dominance
as no set is responsively dominated in R2 but {a, b} responsively dominated {c, d} in
R1. Furthermore, we can deduce that a social choice function satisfying dependence
on responsive dominance is not allowed to change the choice set if we replace the
preference of voter 1 in R1 with a ∼ c � b ∼ d. However, this modification changes
the majorities and therefore, C2 allows for different choice sets.
Our main intention in introducing this new axiom is to show that there is no neutral,
responsively efficient and P̃ -strategyproof social choice function that additionally
satisfies dependence on responsive dominance. We use Theorem 5.4 to prove this
claim as shown in the next theorem.

Theorem 5.5. There is no responsively efficient social choice function f : Wn 7→
2A \ ∅ that satisfies neutrality, P̃ -strategyproofness and dependence on responsive
dominance if m ≥ 4 and n ≥ 4.

Proof: Assume for contradiction that there is a social choice function f :Wn 7→ 2A\∅
that satisfies neutrality, P̃ -strategyproofness, responsive efficiency and dominance
on responsive dominance and that is defined on n ≥ 4 voters and m ≥ 4 alternatives.
As we want to use Theorem 5.4 to derive a contradiction, we have to show that a
voter can P̃ -manipulate the social choice function f if f(R) does not contain any of
the most preferred alternatives of a voter. Thus, assume that there is a profile R1 ∈
Wn such that f(R1) does not contain any of voter i’s most preferred alternatives.
As f satisfies P̃ -strategyproofness and responsive efficiency which implies Pareto-
optimality, we can use Lemma 4.4 and Lemma 4.5. Thus, we can derive a profile
R2 in which all voters in N \ {i} prefer an alternative a ∈ f(R1) uniquely the most,
voter i prefers a uniquely the least and f(R2) = {a}. Next, we let every voter
j ∈ N \ {i} manipulate one after another such that all voters in N \ {i} have the
same strict preference R3

j ∈ S and prefer a uniquely the most. It follows from the

P̃ -strategyproofness of f that a is still the unique winner in the resulting profile R3
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R1 :

1 1 1 1
a, b a, c a, d b, c
c, d b, d b, c a

d

R2 :

1 1 1 1
a a a b, c
b c d d
c, d b, d b, c a

R3 :

1 1 1 1
a a a b, c
b b b d
c c c a
d d d

R4 :

1 1 1 1
a a a d
b b b c
c c c b
d d d a

R5 :
1 1 1 1

a, b, c, d a, b, c, d a, b, c, d a, b, c, d

Figure 5.10: Preference profiles illustrating the proof of Theorem 5.5

as otherwise a voter can P̃ -manipulate by reverting this modification. Finally, we
let voter i change his preference such that he orders all alternatives inversely, i.e., if
a �j b for a voter j ∈ N \ {i} and alternatives a, b ∈ A, then b �i a. This leads to
the profile R4 and because of P̃ -strategyproofness, it holds that f(R4) = {a}.
Furthermore, observe that every set is responsively efficient in R4 because all alterna-
tives are strict and the worst alternative of a set B ⊆ A in R4

j , j ∈ N \{i}, is the best
one in R4

i . Finally, consider the profile R5 where every voter is indifferent between
all alternatives. It follows from neutrality that f(R5) = A as we can rename alterna-
tives arbitrarily without changing the preference profile. Furthermore, every set is
responsively efficient in R5 and therefore, it must hold that f(R4) = f(R5) because
f depends on responsive dominance. However, this contradicts that f(R4) = {a},
which implies that the initial assumption is wrong. Hence, we can use Theorem 5.4
to deduce that there cannot be a neutral, P̃ -strategyproof and responsively efficient
social choice function that depends on responsive dominance if m ≥ 4 and n ≥ 4.
�

As a first remark, we provide an example illustrating the constructions in the proof
of Theorem 5.5. Thus, consider the profiles shown in Figure 5.10 and assume that f
denotes a P̃ -strategyproof, responsively efficient and neutral social choice function
that depends on responsive dominance. Note that f(R1) = {a} holds because of
Theorem 5.4. Next, we use Lemma 4.4 and Lemma 4.5 to deduce that f(R2) = {a}.
After that, we ensure that the preferences of the voters preferring a the most are
strict to derive the profile R3. As consequence of the P̃ -strategyproofness of f ,
it follows that f(R3) = {a}. Even more, we use again this axiom to reorder the
preference of the fourth voter in the inverse order of the remaining voters. This
leads to the profile R4 which satisfies that f(R4) = {a}. Finally, dependence on
responsive dominance implies that f(R4) = f(R5), which contradicts neutrality.

Next, we discuss the independence of the axioms used in Theorem 5.5. First note
that the Pareto-rule satisfies all axioms if m ≤ 3, or m ≤ 5 and n ≤ 3. Thus, we need
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at least 4 alternatives for this result and we need at least 4 voters unless we use more
alternatives. Furthermore, if we assume that the social choice function that removes
all alternatives that are element of a minimally responsively dominated set from the
choice set is well-defined, then this SCF satisfies all axioms but P̃ -strategyproofness.
Next, the social choice function sequential dictator discussed in Theorem 5.2 satisfies
all axioms of Theorem 5.5 but dependence of responsive dominance. Furthermore,
the trivial social choice function that always returns all choice sets satisfies all axioms
but responsive efficiency. Finally, it should be mentioned that we do not know
whether neutrality is required for Theorem 5.5.
As consequence of Theorem 5.5, many straightforward ideas for designing P̃ -stra-
tegyproof, neutral, anonymous and responsively efficient social choice functions are
doomed to fail as these approaches often depend on responsive dominance. Even
more, note that many of the coarsest responsively efficient social choice functions
depend on responsive dominance. Thus, it follows from Theorem 4.1 and The-
orem 5.5 that also many responsively efficient social choice functions cannot be
simultaneously neutral, anonymous and P̃ -strategyproof as they refine a SCF that
additionally depends on responsive dominance.
Hence, the results in this chapter indicate that there is no anonymous, neutral,
P̃ -strategyproof and responsively efficient social choice function if there are suffi-
ciently many voters and alternatives. The reason for this is that most social choice
functions considered in the literature are either in C2 or rank-based, which cannot
lead to a P̃ -strategyproof and responsively efficient social choice function as shown
in Theorem 5.3 and Theorem 3.12. Thus, the results in this section provide strong
evidence for the impossibility of such a social choice function even though we cannot
prove it.
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Conclusion

In this thesis, we discuss election schemes with respect to manipulability. As it
has already been shown in [Gib73, Sat75] that all reasonable single-valued social
choice functions are manipulable, we focus on social choice functions that are al-
lowed to return multiple winners. This leads to the problem of comparing sets of
alternatives with each other because the preferences of the voters are only defined
on individual alternatives. Thus, we use the set extension P̃ introduced in [Kel77]
to compare sets of alternatives and discuss social choice functions with respect to
P̃ -strategyproofness.

First, we discuss sufficient conditions that imply P̃ -strategyproofness. In particular,
we analyze which variants of monotonicity imply variants of P̃ -strategyproofness in
the weak domain. These results generalize the results in [Bra15] and prove some of
the remarks of this paper. For instance, we can show that set-monotonicity implies
a weakened variant of P̃ -group-strategyproofness even if preferences are allowed to
be intransitive.

Thereafter, we take a closer look at a large class of social choice functions called rank-
based social choice functions. We examine an important subclass of these functions
which we call independent rank-based social choice functions. Furthermore, we prove
that P̃ -strategyproof and independent rank-based social choice functions pick rather
large choice sets, which leads to a characterization of the OMNI-rule. Similarly,
we also discuss other subclasses of rank-based social choice functions with respect
to P̃ -strategyproofness. For instance, we show that no non-trivial scoring rule is
P̃ -strategyproof. Furthermore, we generalize the concept of rank-basedness to the
weak domain by introducing various rank extensions. Even though there are multiple
reasonable rank extensions, we can provide an impossibility result stating that there
is no P̃ -strategyproof, rank-based and Pareto-optimal social choice function in the
weak domain.

Moreover, we discuss in a similar manner another large class of social choice functions
called C2-functions. This class contains many interesting social choice functions and
even some that are known to be P̃ -strategyproof in the strict domain. However, C2-
functions are only rarely considered in the weak domain. Therefore, we analyze these
social choice functions with respect to P̃ -strategyproofness in the weak domain where
only the Pareto-rule is known to be P̃ -strategyproof and Pareto-optimal. We first
discuss some ideas for defining P̃ -strategyproof social choice functions in C2 which
even lead to refinements of the Pareto-rule. Furthermore, we also see that these
social choice functions must satisfy restrictive criteria. Thus, we discuss necessary
conditions for P̃ -strategyproof C2-functions. The strongest one states that every P̃ -
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strategyproof and Pareto-optimal C2-function must choose at least one of the most
preferred alternatives of every voter if preferences may contain ties. This result
has many important implications. For instance, we derive a characterization of the
Pareto-rule from this condition.
Finally, we consider social choice functions that satisfy an axiom called respon-
sive efficiency. This axiom is a generalization of Pareto-optimality that allows to
compare sets of alternatives with each other. First, we analyze this axiom in de-
tail in order to improve its interpretability. This leads to ideas for defining re-
sponsively efficient social choice functions. Unfortunately, all these approaches are
P̃ -manipulable. Consequently, we provide evidence suggesting that there are no
reasonable social choice functions that satisfy P̃ -strategyproofness and responsive
efficiency. In particular, we show that there is no social choice function in C2 that
satisfies P̃ -strategyproofness and responsive efficiency in the weak domain. Com-
bined with a previously mentioned result stating that there is no rank-based SCF
that satisfies P̃ -strategyproofness and Pareto-optimality, it follows that no com-
monly considered social choice function satisfies P̃ -strategyproofness, responsive ef-
ficiency and anonymity. As consequence of these results, it seems likely that there
is no P̃ -strategyproof, anonymous and responsively efficient social choice function.
Unfortunately, some questions about P̃ -strategyproofness remain unsolved. It is
unclear to us whether there is a simple axiom that implies P̃ -strategyproofness in
the weak domain similar to set-monotonicity in the strict domain. Such a criterion
would enhance the understanding of P̃ -strategyproofness significantly as it allows
to find social choice functions satisfying this axiom more easily. Furthermore, some
conjectures about impossibility results are left open. For instance, it remains unclear
whether there are anonymous, neutral, P̃ -strategyproof and responsively efficient
social choice functions. Even though we provide strong evidence suggesting that
this conjecture is false, a definite answer has not been found yet.
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RAIRO Operations Research, 26(4):361–365, 1992.

[Lev75] Arthur Levenglick. Fair and reasonable election systems. Behavioral
Science, 20(1):34–46, 1975.

[LLLB93] Gilbert Laffond, Jean-Francois Laslier, and Michel Le Breton. The bi-
partisan set of a tournament game. Games and Economic Behavior,
5(1):182–201, 1993.

[Mer03] Vincent Merlin. The axiomatic characterizations of majority voting and
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