
COMP 6752 Homework 9, Question 3

This homework question centres around Peterson’s famous mutual exclusion algorithm as run-
ning example. It is an improvement of the brilliant original algorithm of Dekker.

The algorithm deals with two concurrent processes A and B that want to alternate critical
and noncritical sections. Each of these processes will stay only a finite amount of time in its
critical section, although it is allowed to stay forever in its noncritical section. The purpose
of the algorithm is to ensure that they are never simultaneously in the critical section, and to
guarantee that both processes keep making progress.

The processes use three variables. The Boolean variable readyA can be written by process
A and read by process B, whereas readyB can be written by B and read by A. By setting
readyA to true, process A signals to process B that it wants to enter the critical section. The
variable turn is a shared variable: it can be written and read by both processes. Its use is the
brilliant part of the algorithm. Initially readyA and readyB are both false and turn = A.

Process A

repeat forever






































ℓ1 leave noncritical section

ℓ2 readyA := true

ℓ3 turn := B

ℓ4 await (readyB = false ∨ turn = A)
ℓ5 enter critical section

ℓ6 readyA := false

Process B

repeat forever






































m1 leave noncritical section

m2 readyB := true

m3 turn := A

m4 await (readyA = false ∨ turn = B)
m5 enter critical section

m6 readyB := false

A more complete description of the protocol could put actions leave critical section between
ℓ5 and ℓ6, and enter noncritical section between ℓ6 and ℓ1 (and similarly for Process B). If
we want the process to start in its noncritical section, that last action should be put at the end.
However, here I economise on the amount of actions by assuming that ℓ6 and m6 implicitly
count as leave critical section as well as enter noncritical section.

a. What would be wrong with this protocol if we omitted the variable turn?

b. Express Process A as a CCS, CSP or ACP expression, featuring six atomic actions ℓ1, . . . , ℓ6
and a recursive equation with variable X . Feel free to use the simpler treatment of recursion,
by seeing recursion variables as constants, and simply writing X instead of 〈X|S〉.

c. Represent Process A as a process graph, by using ℓ1, . . . , ℓ6 as transition labels. Also attach
names to the states by calling each state after the transition that is enabled there. Thus
transition ℓ3 goes from state ℓ3 to state ℓ4.

d. Correct the answers to questions 1b and 1c by replacing the action ℓ4 by the two actions
“B not ready” and “turn = A”. “B not ready” denotes the action of reading the value of
readyB and finding that it is false. Likewise, “turn = A” denotes the action of reading the
value of turn and finding that it is A. [You may skip the original answers to b and c.]

It would be possible to model instruction ℓ4 assuming busy waiting, by drawing self-loops
in state ℓ4 labelled “B ready” and “turn = B”. However, I want to abstract from these
unsuccessful read actions from the onset by not including them in our formal specification.

1



Thus, the intuition of the await statement is that the process A patiently sits in state ℓ4
until one of the transitions “B not ready” or “turn = A” is enabled.

e. Represent the behaviour of variable readyA as a process graph. Its transition labels are the
(synchronisation partners ℓ2 and ℓ6 of the) write actions ℓ2 and ℓ6 that can be performed by
processes A, and the (synchronisation partner A not ready of the) read action “A not ready”
that can be performed by process B.

f. Give a process algebraic expression of this behaviour.

g. Represent the behaviour of variable turn as a process graph. Its transition labels are the
(synchronisation partners of the) write actions ℓ3 andm3 that can be performed by processes
A and B, and the read actions turn = A and turn = B. Also give a process algebraic
expression of this behaviour.

h. Now give a process algebraic expression of the entire protocol, involving the parallel compo-
sition of 5 processes. All actions except the entering the critical and leaving the noncritical
sections (ℓ1, ℓ5, m1 and m5) are internal (only needed to make the protocol work) and should
be abstracted away. You may choose whether to use CCS, CSP or ACP, and feel free to
rename for instance ℓ2 into ℓ2 if this suits you.

i. On the next page you see the potential states of a process graph representation of the entire
algorithm. A state of the algorithm is completely determined by a state of process A, a
state of process B and a state of turn. For the states of readyA and readyB are completely
determined by the states of A and B. This observation yields 6×6×2 = 72 potential states.

Complete the given drawing into a process graph by supplying the transitions. Don’t bother
labelling them. Also don’t draw loops backwards to the left or top rows; instead use the
grey shadows, which represent copies of the transitions at the opposite end of the diagram.
How many states are reachable from the initial state?

In the future there will be follow-up homework questions on this running example.

2



Process Graph of

Peterson’s Mutual Exclusion Algorithm

ℓ1m1B ℓ1m2B ℓ1m3B ℓ1m4B ℓ1m5B ℓ1m6B

ℓ2m1B ℓ2m2B ℓ2m3B ℓ2m4B ℓ2m5B ℓ2m6B

ℓ3m1B ℓ3m2B ℓ3m3B ℓ3m4B ℓ3m5B ℓ3m6B

ℓ4m1B ℓ4m2B ℓ4m3B ℓ4m4B ℓ4m5B ℓ4m6B

ℓ5m1B ℓ5m2B ℓ5m3B ℓ5m4B ℓ5m5B ℓ5m6B

ℓ6m1B ℓ6m2B ℓ6m3B ℓ6m4B ℓ6m5B ℓ6m6B

ℓ1m1A ℓ1m2A ℓ1m3A ℓ1m4A ℓ1m5A ℓ1m6A

ℓ2m1A ℓ2m2A ℓ2m3A ℓ2m4A ℓ2m5A ℓ2m6A

ℓ3m1A ℓ3m2A ℓ3m3A ℓ3m4A ℓ3m5A ℓ3m6A

ℓ4m1A ℓ4m2A ℓ4m3A ℓ4m4A ℓ4m5A ℓ4m6A

ℓ5m1A ℓ5m2A ℓ5m3A ℓ5m4A ℓ5m5A ℓ5m6A

ℓ6m1A ℓ6m2A ℓ6m3A ℓ6m4A ℓ6m5A ℓ6m6A

3


