S
2
¥

2. Basic definitions

This section contains definitions of concepts and notations used in the remainder of the
chapter.

2.1. Labeled transition systems

Semantically, systems are modeled as labeled transition systems, which may be defined as
follows.

DEFINITION 2.1. A labeled transition system (LTS) is a triple (S, A, —), where S is o

set of states, A is a set of actions, and - € S x A x S is the transition relation.

Intuitively, an LTS (S, A, —) defines a computational framework, with S representing
the set of states that systems may enter, A the actions systems may engage in, and — the
execuuon steps system undergo as they perform actions. In what follows we oenerally write
s = 5" inlieu of (s, a, s’) € —, and we say that s’ is an a-derivative of 5. We use ——>* to
denote the transitive closure of —. We define a process to be a quadruple (S, A, —, s7)
where (S, A4, —) is an LTS and s; € S is the start state.

Let (S, A,—) be an LTS, and let s € S be a state and a € A an action. We use the
following terminology and notations in what follows.

(S, A, —) is finite-state if S and A are both finite sets.

s —°—> holds if s %> s’ for some s’ € S.

{o —> s} C S, the preset of s with respect to a, is the set {r € S | r 5 5.

{s %> ¢} C S, the postset of s with respect to a, is the set {t € S | s %> t}.

{s ==} C A, the initial actions of s,istheset {a e A|s -5}

{s —*e} C S, the reachable set of states from s, is the smallest set satisfying the fol-
lowing:

— 5 € (s —%e}.

- Ifre{s—>*e}andt %> forsome a € Athent’ € {s —*e}.

These notions may be lifted to sets of states by taking unions in the obvious manner. Thus
if § € S then we have the following:

{o 2> S} = U{.—%s},

seS

(S—5e = Jis 2},

SES

Equivalence and preorder checking for finite-state systems 395

(s} =Jis >l
ses
[S—*e} = U{S — "o},

ses

The traditional approach to defining the semantics of process algebras involves con-
structing an LTS in the following manner. Firstly, the syntax of the algebra includes a set
A of actions and a set P of process terms. Then a transition relation — € P x A x P is de-
fined inductively in the SOS style using proof rules [25] (but also see [1] in this Handbook).
The structure (P, A, —) constitutes an LTS that in essence encodes all possible behavior
of all processes. Of course, this LTS is not usually finite-state, so one may wonder how
algorithms for finite-state systems could be used for determining if two process terms in a
given algebra are semantically related. The answer lies in the fact that in general, one does
not need to consider the entire LTS of the algebra; it typically suffices to consider only the
terms reachable from the ones in question. If this reachable set is finite (and typically one
may give syntactic characterizations of terms satisfying this property) then one may apply
the algo_rifhms presented in this chapter to the LTS induced by the finite set of reachable
states. We return to this point later.

2.2. Bisimulation equivalence

Bisimulation equivalence is interesting in its own right as a basis for relating pro-
cesses; it also may be seen as a basis for defining other relations as well. Bisimula-

tion and other behavioral equivatences are treated in more detail in [16] in this Hand-'
book.

DEFINITION 2.2 (Bisimulation equivalence). Let (S, A, —) be an LTS.

e Arelation R €S x S is a bisimulation if whenever (s, s2) € R then the following hold
foralla € A:
1. If sy = 5| then there is an s} such that s, —*> 5} and (s, 53) € R.
2. Ifs; %> s} then there is an 5| such that s 45 sy and (s}, s3) € R.

e Two states s, 52 € S are bisimulation equivalent, written s| ~ s>, if there exists a bisim-
ulation R such that (s, s2) € R.

Intuitively, two states in an LTS are bisimulation equivalent if they can “simulate”
each other’s transitions. Under this interpretation a bisimulation indicates how transitions
from related states may be matched in order to ensure that the “bi-simulation” property
holds.

Bisimulation equivalence enjoys a number of mathematical properties. Firstly, it is in-
deed an equivalence relation in that it is reflexive, symmetric and transitive. Secondly, it is
1tself a bisimulation, and in fact is the largest blSlmulatlon w1th respect to set containment.

3.1. A basic partition-refinement algorithm for bisimulation equivalence

The first partition refinement algorithm for bisimulation equivalence is due to Kanellakis
and Smolka [21]. Let P = (B, ..., B} be a partition consisting of a set of blocks. The

e A e AT R N I N S S e SR Ol e o e e i e e e

Equivalence and preorder checking for finite-state systems 399

B B, B,
{O/OQQOQ O/OE [QOQ]
ala a a\a a a a __»_ ala a a a a
1S00] [00] [0 [SOO] [00] [0

B B’

a

Fig. 1. Splitting a block in the partition.

split(B,a, P) — ({B;} a set of blocks)
choose s € B
{* By contains states equivalent to s *}
B =0
{* B> contains states inequivalent to s *}
By=0
for eachs’ € Bdo
begin
LE[{s 5 o)lp =[(s %> o}lp
then B| = B| U (s}
else B, =B, U(s'}
end
"if By =0
then return {B;}
else return (B, By}

Fig. 2. The pseudo-code for procedure split.

algorithm is based around the notion of splitting. A splitter for a block B € P is the block
B’ € P such that some states in B have a-transitions, for some a € A, into B’ and others
do not. In this case, B can be split by B’ with respect to a into blocks B; ={s € B|3s" €
B'.s =% 5}, By = B — By. Splitting is illustrated in Figure 1.

The algorithm uses splitting in the form of procedure split(B, a, P), which detects
whether the partition P contains a splitter for a given block B € P with respect to action
a € A. If such splitter exists, split returns the blocks B; and Bj that result from the split.
Otherwise, B itself is returned. Efficient implementation of split is critical to the overall
complexity of the algorithm. Therefore, we will discuss in more detail the implementation
of split and the data structures necessary to make it efficient.

In presenting the procedure split we use the following notation: for a set of states S,
[Slp ={B € P |35 € S.s € B} is the minimal set of blocks in P that contain all states in S.
Then, [{s %> o}]p is the set of blocks that can be reached from s by an a-transition. We
will abuse terminology and call this set the postset of s in P with respect to a. Figure 2 gives
the pseudo-code for procedure split. The procedure chooses a state from B and compares
its postset in P to the postsets in P of other states in B. Clearly, if the postsets of two states
are different, then there exists a splitter that will put these states in different blocks.

400 R. Cleaveland, O. Sokolsky

P:=(S}
changed := true
while changed do
begin
changed := false
for eachBe P do
begin
for eachae Ado
begin
SortTransitions(a, B)
if split(B,a, P) # {B}
then begin
P:=P —(B}Usplit(B,a, P)
changed := true
break
end
end
end
end

Fig. 3. Algorithm KS_PARTITIONING.

In order to compare the postsets of the states of B efficiently, we need to order the
transitions of s. For this purpose, we impose an ordering on the blocks of P. The transitions
of s are lexicographically ordered by their labels. Further, for each label a, the transitions
are ordered by the containing block of the target state of the transition. When a block
is split, the ordeting of transitions in states that have transitions into that block can be
violated. Therefore, one needs to sort the a-transitions of all states of a block immediately
before attempting to split the block. Procedure SortTransitions(a, B) uses lexicographic
sorting to reorder the a-transitions of block B.

Finally, we present the main loop of KS_PARTITIONING in Figure 3. The algorithm
iteratively attempts splitting of every block in P with respect to every a € A until no more
blocks can be split.

Correctness of KS_PARTITIONING relies on the fact that when changed is false, there
is no splitter for any of the blocks in P. Therefore, P = Fr(P) and, by Theorem 2.4,
R C ~. Moreover, if we denote by P; the partition after ith iteration of the main loop
of KS_PARTITIONING, we have ~ C ~i € P;. Thus we have that at termination of the
algorithm, P = ~.

The complexity of KS_PARTITIONING is given by the following theorem.

THEOREM 3.1. Given a finite-state LTS (S, A, —) with |S| = n and |—| = m, algorithm
KS_PARTITIONING takes O(n - m) time.

PROOF. The main loop of the algorithm is repeated at most n times. Within one iteration
of the main loop, procedure split is called for each block at most once for each action a.

In turn, split considers each transition of every state in the block at mos't once. There-
fore, the calls to split within one iteration of the main loop take O(m) time. The cal%s
to SortTransitions collectively take O(|A| 4+ m) time, or O(m) when the set of labels is
bounded by a constant. g

