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Abstract

In this notes we consider the model of Generative Probabilistic Transition Systems,
and Baier and Hermanns’ notion of weak bisimulation defined over them. We prove
that, if we consider any process algebra giving rise to a Probabilistic Transition
System satisfying the condition of regularity and offering prefixing, interleaving,
and guarded recursion, then the coarsest congruence that is contained in weak
bisimulation is strong bisimulation.
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1 Introduction

Probabilistic process algebras have been introduced in the literature (see,
among the others, [1,2,7,3,10,11,12,16,18,21,31]) to develop techniques deal-
ing with both functional and non-functional aspects of system behavior, such
as performance and reliability. Models of probabilistic processes are classi-
fied in [18] into generative, reactive, and stratified. In the generative model,
a single probability distribution is ascribed to all moves of a given process,
independently of their action label. In the reactive model, the kind of action
performed by a given process in chosen in a nondeterministic way, and a prob-
ability distribution is ascribed to all moves of that process labeled with that
action. In the stratified model a given process has either probability moves,
to which a single probability distribution is ascribed and that are associated
with no action label, or a single action move, having an action label, thus im-
plying a clear separation of action and probability. The model of Probabilistic
Automata [29] was introduced to capture both probability and the classical
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process algebraic notion of nondeterminism. Here, a state of an automaton can
have several transitions that are chosen in a nondeterministic way, and each
transition leads to a probabilistic distribution over action labeled moves. Usu-
ally, the model of [29] is known as the non-alternating model, in contraposition
with the alternating model of [19], where there is a clear distinction between
nondeterministic states, enabling transitions leading to a unique state and
that are chosen in a nondeterministic way, and probabilistic states, enabling a
unique transition leading to a probabilistic distribution over states.

Probabilistic transition systems (PTSs, for short), which extend classic
labeled transition systems by some mechanism to represent probability, have
been employed as a basic semantic model of probabilistic processes. Of course,
several definitions of PTS have been introduced, taking into account of the
probabilistic model considered. In order to abstract away from irrelevant
information on the way that probabilistic processes compute, several notions of
probabilistic equivalence and preorder have been defined over the PTS models
[2,8,9,11,12,19,20,22,23,25,30,32]. In order to fit a given equivalence into an
axiomatic framework, it is required that it is a congruence with respect to
all process algebra operations. Probabilistic bisimulation, which relates two
processes iff their PTSs have the same probabilistic branching structure, and
that was originally defined in [25] for the reactive model, enjoys the congruence
property in the process algebras proposed in the papers mentioned above, and
is one of the equivalence definitions most frequently employed.

In the nonprobabilistic case, weak bisimulation has been successfully pro-
posed by Milner [26] as an equivalence relation that abstracts away from inter-
nal computation steps. A notion of weak bisimulation for the non-alternating
model has been considered in [2,11,12,30]. Baier and Hermanns [5] formu-
lated a notion of weak bisimulation inspired by [26] for the generative model.
We refer to [5] for interesting motivations and results on probabilistic weak
bisimulation.

In the nonprobabilistic setting, it is well known that weak bisimulation
is not a congruence with respect to the operation of nondeterministic choice,
which is offered by most of known process algebras. Due to the importance
of having the congruence property, the coarsest congruence with respect to
nondeterministic choice that is finer than weak bisimulation has been charac-
terized, and called observational congruence by Milner [26]. Such a congru-
ence is known also with the names of rooted τ -bisimulation [4] and rooted weak
bisimulation [6]. Also in the non-alternating model, the coarsest congruence
with respect to nondeterministic choice that is finer than weak bisimulation
has been characterized [2,11,12].

Process algebras respecting the generative model do not offer any opera-
tion of nondeterministic choice. More precisely, these process algebras do not
offer any operation introducing nondeterminism. However, in general, also in
the generative model weak bisimulation is not a congruence. In fact, many
process algebras offer a parametric version of interleaving operation, where the
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parameter determines the probability to move of each of the two composed
processes, and we show by means of a very simple counterexample that weak
bisimulation is not a congruence with respect to this interleaving operation.
Also the CCS-like parallel composition operation of [10,7] and the CSP-like
parallel composition operation of [10] do not preserve weak bisimulation.

Our aim is then to study in the generative model the problem to give a
characterization of the coarsest equivalence notion being finer than probabilis-
tic weak bisimulation and being a congruence with respect to any reasonable
kernel of operations. To this purpose, we assume prefixing, interleaving, and
guarded recursion as such a kernel of operations, since they are widely em-
ployed. We prove that, if we only consider process algebras giving rise to
PTSs satisfying the regularity condition, then the congruence we aim to char-
acterize is probabilistic bisimulation. In some sense, this result has negative
consequences. In fact, in the nonprobabilistic case a lot of work has been done
on congruences weaker than bisimulation and stronger than weak bisimulation,
and in the generative case such a work cannot be repeated, since our result
implies that there is no congruence strictly lying between bisimulation and
weak bisimulation. Note that our result emphasizes also a difference between
the generative and the non-alternating model, where the coarsest congruence
contained in weak bisimulation [6,13,14,15,17] is strictly coarsest than strong
bisimulation. This difference depends on the fact that the parallel compo-
sition operation of the non-alternating model has no parameter, introduces
nondeterminism, and can be treated as the classical interleaving operation of
[26].

2 Probabilistic Bisimulations

Given any set S, let M(S) denote the set of all multisets over S. Let us
employ “{|” and “|}” as brackets for multisets.

The following definition originates from [7,3,5].

Definition 2.1 A generative probabilistic transition system (GPTS, for short)
is a triple (S, Act, T ), where S is a set of states, Act is a countable set of
actions, and T ∈ M(S × Act × (0, 1] × S) is a multiset of transitions such
that, for all states s ∈ S:

∑
{| p | ∃α ∈ Act, s′ ∈ S : (s, α, p, s′) ∈ T |} ∈ {0, 1} 3

Def. 2.1 requires that each state s ∈ S is semistochastic, namely, the sum
of the probabilities of its outgoing transitions, if there are any, sums up to
1. Let us recall that GPTSs considered in [18,31] have a weaker requirement,
since they admit that, for each state s, the sum of the probabilities of its

3 Note that multisets are needed to handle the case where from a state s several transitions
with the same label α and probability p lead to a state s′.

3



Tini

outgoing transitions, if there are any, is a value 0 ≤ q ≤ 1, the interpretation
being that s deadlocks with probability 1 − q. Results proved in the present
paper hold also for the model of GPTS of [18,31], since they do not depend
on any constraint on the probability of the transitions leaving from s.

Let s
α,p−−→ s′ denote that (s, α, p, s′) ∈ T , s −→ denote that s

α,p−−→ s′ holds

for some α, p and s′, and s 6−→ denote that s
α,p−−→ s′ holds for no α, p and s′.

Let s =⇒ s′ denote that s′ is reachable from s, namely there exists a

sequence of transitions s0
α0,p0−−−→ s1 . . . sn−1

αn−1,pn−1−−−−−−→ sn such that s0 = s and
sn = s′.

In the following we assume the “regularity” condition, namely, for each
state s ∈ S there are only finitely many outgoing transitions s

α,p−−→ s′, and
from s only finitely many other states can be reached through any (possibly
infinite) sequence of transitions.

Let us recall the cumulative probability distribution function µG [18], which
computes the total probability by which from a state s a state s′ can be reached
through transitions labeled with an action α. Adopting the convention that
the empty sum of probability is 0, µG is defined as follows.

Definition 2.2 µG : S × Act × S → [0, 1] is the function given by: ∀s ∈ S,
∀α ∈ Act, ∀s′ ∈ S:

µG(s, α, s′) =
∑

{|p | s α,p−−→ s′ ∈ T |}

Function µG can be extended to sets of target states. ∀s ∈ S, ∀α ∈ Act,
∀S ⊆ S:

µG(s, α, S) =
∑

s′∈S

µG(s, α, s′)

Following [5], function µG can be extended to sequences of actions in Act∗.
Let ε denote the empty sequence of actions. For each α ∈ Act and λ ∈ Act∗,
let αλ denote the sequence in Act∗ obtained by prefixing λ with α.

Then, ∀s ∈ S, ∀α ∈ Act, ∀λ ∈ Act∗, ∀S ⊆ S:

µG(s, ε, S)= 1 if s ∈ S

µG(s, ε, S)= 0 if s 6∈ S

µG(s, αλ, S)=
∑

s′∈S

µG(s, α, s′) · µG(s′, λ, S)

Finally, following [5] function µG can be extended to sets of sequences of
actions in Act∗. Let Λ denote any subset of Act∗, and Λ/α denote the set
{λ ∈ Act∗ |αλ ∈ Λ}.

Then, ∀s ∈ S, ∀Λ ⊆ Act∗, ∀S ⊆ S:

µG(s, Λ, S)= 1 if ε ∈ Λ and s ∈ S

µG(s, Λ, S)=
∑

(α,s′)∈Act×S

µG(s, α, s′) · µG(s′, Λ/α, S) otherwise

We can recall now the notion of bisimulation [18] for GPTSs. For any
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equivalence relation R over the set of states S, let S/R denote the set of
equivalence classes induced by R.

Definition 2.3 An equivalence relation R ⊆ S ×S is a (strong) bisimulation
if (s1, s2) ∈ R implies: ∀C ∈ S/R, ∀α ∈ Act:

µG(s1, α, C) = µG(s2, α, C)

The union of all bisimulations is, in turn, a bisimulation, denoted by ∼.
Relation ∼ equates states having the same probabilistic branching structure.

Let us assume that Act contains the special silent action τ . We can recall
now Baier and Hermanns’ notion of weak bisimulation [5] for GPTSs. Let us
denote sets of sequences of actions in Act∗ with regular expressions.

Definition 2.4 An equivalence relation R ⊆ S × S is a weak bisimulation if
(s1, s2) ∈ R implies: ∀C ∈ S/R, ∀a ∈ Act \ {τ}:

µG(s1, τ
∗aτ ∗, C) = µG(s2, τ

∗aτ ∗, C)

µG(s1, τ
∗, C) = µG(s2, τ

∗, C)

The union of all weak bisimulations is, in turn, a weak bisimulation, de-
noted by ≈. Relation ≈ is coarser than ∼, since it abstracts from silent
computation steps.

3 Weak Bisimulation is not a Congruence

As usual, let us assume a process description language whose abstract syntax
is given by a signature Σ, consisting of a set of operation symbols together
with an arity mapping that assigns a natural ar(f) to every f ∈ Σ.

In this setting, a process is a closed term over Σ, where, for a set of variables
Var ranged over by x, y, . . . , the set of (open) terms over Σ and Var is the
least set such that:

• each variable x ∈ Var is a term;

• f(t1, . . . , tar(f)) is a term whenever f ∈ Σ and t1, . . . , tar(f) are terms,

and the terms that do not contain variables in Var are called closed terms.

The semantics of the language is given by a GPTS, whose states are pro-
cesses, and whose transitions are inferred by a set of SOS rules [27,28]. As
usual, let us assume that Σ contains the operation symbol 0 (sometimes de-
noted nil) with ar(0) = 0, where 0 represents the idling process having no
move.

Let us recall the notion of congruence.

Definition 3.1 An equivalence relation R over processes is called a congru-
ence iff, for each f ∈ Σ, if relation (ti, t

′
i) ∈ R holds for all 1 ≤ i ≤ ar(f), then

(f(t1, . . . , tar(f)), f(t′1, . . . , t
′
ar(f))) ∈ R.
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α · x α,1−−→ x

x[recX. x/X]
α,p−−→ y

recX. x
α,p−−→ y

x1
α1,p1−−−→ y1 x2 6−→

x1 ‖p x2
α1,p1−−−→ y1 ‖p x2

x1 6−→ x2
α2,p2−−−→ y2

x1 ‖p x2
α2,p2−−−→ x1 ‖p y2

x1
α1,p1−−−→ y1 x2 −→

x1 ‖p x2
α1,p1·p−−−−→ y1 ‖p x2

x1 −→ x2
α2,p2−−−→ y2

x1 ‖p x2
α2,p2·(1−p)−−−−−−→ x1 ‖p y2

Table 1
Some probabilistic operations; x, x1, x2, y1, y2 are process variables, α, α1, α2 range

over Act, p, p1, p2 are variables over the interval [0, 1], and X is a recursion

variable.

Now, bisimulation ∼ is a congruence with respect to operations of well
known process algebras used in the literature [1,7,3,10,16,18,21,24,31].

Let us consider the operation of probabilistic interleaving ‖p of [3], whose
semantics in SOS style is presented in Table 1. Intuitively, if both processes
t1 and t2 can move, then the process t1 ‖p t2 moves as t1 with probability p
and as t2 with probability 1 − p. If only t1 (resp. t2) can move, then t1 ‖p t2
moves as t1 (resp. t2) with probability 1.

By an example, we can show that weak bisimulation is not a congruence
with respect to operation ‖p.

Example 3.2 Let a ∈ Act \ {τ}, and t1 and t2 be the processes t1 ≡ τ · a · 0
and t2 ≡ τ · τ · a · 0, where · is the prefixing operation described in Table 1.
It is immediate that t1 ≈ t2, but, for each 0 < p < 1 and b ∈ Act \ {a, τ},
t1 ‖p b · 0 6≈ t2 ‖p b · 0. In fact, µG(t1 ‖p b · 0, τ ∗aτ ∗, 0 ‖p b · 0) = p2, whereas
µG(t2 ‖p b · 0, τ ∗aτ ∗, 0 ‖p b · 0) = p3, and no other state weak bisimilar to
0 ‖p b · 0 is reachable from t1 ‖p b · 0 and t2 ‖p b · 0. Intuitively, to perform the
a move before the b move by b · 0, t1 has to win two competitions versus b · 0,
whereas t2 has to win three competitions.

Note that Example 3.2 holds also if we replace the interleaving operation
‖p with the CCS-like parallel composition operation ‖p

q of [10,7], provided that
b 6= a, or with the CSP-like parallel composition operation ‖p

A of [10], provided
that the set of actions A contains neither a nor b.

4 Bisimulation is the Coarsest Congruence Contained

in Weak Bisimulation

Let rec be the recursion operation defined in Table 1. We assume that the
recursion variables always appear as guarded, according to the usual definition.
In this section we prove that, if we consider any process algebra offering the
operations of prefixing, recursion, and interleaving as in Table 1, then the
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coarsest congruence contained in weak bisimulation is bisimulation.

Let us introduce the notion of p-bisimulation. It can be viewed as a rela-
tion weaker than a bisimulation, in the sense that the probabilistic branching
structure of processes is considered modulo the probability value p.

Definition 4.1 Given any 0 ≤ p ≤ 1, an equivalence relation Rp ⊆ S × S is
a p-bisimulation if (s1, s2) ∈ Rp implies: ∀C ∈ S/Rp, ∀α ∈ Act:

|µG(s1, α, C) − µG(s2, α, C)| ≤ p

In general, it is not guaranteed that the union of two p-bisimulations is
a p-bisimulation. Hence, p-bisimulations are less elegant than bisimulations
and weak bisimulations. However, we are not interested here in studying their
theory, we simply use p-bisimulations in our proofs.

The following result is immediate.

Proposition 4.2 A p-bisimulation is also a q-bisimulation, for each q > p.
A 0-bisimulation is a bisimulation.

Given a process t, let actions(t) denote the set of the actions appearing
in the transition labels in the portion of GPTS rooted in t. The regularity
condition over the GPTS ensures that actions(t) is a finite set.

Let us assume two arbitrary processes t and t′. Since actions(t) and
actions(t′) are finite sets, and since Act is a countable set, we can assume also
two actions b, c ∈ Act\(actions(t)∪actions(t′)∪{τ}). We can prove that, given
arbitrary values 0 < p, q < 1, then, if relation (t ‖q recX . c ·X) ‖p recX . b ·X
≈ (t′ ‖q recX . c · X) ‖p recX . b · X holds, then there exists some (p · q)-
bisimulation relating t and t′.

Lemma 4.3 Given arbitrary processes t, t′, arbitrary values 0 < p, q < 1, and
any pair of actions b, c ∈ Act \ ({τ} ∪ actions(t) ∪ actions(t′)), it holds that:

(t ‖q recX. c · X) ‖p recX. b · X ≈ (t′ ‖q recX. c · X) ‖p recX. b · X

implies

t ∼p·q t′ for some (p · q)-bisimulation ∼p·q

Proof.

First of all let us prove the following lemma.

Lemma 4.4 For each pair of processes s ≈ s′ such that s is reachable from
(t ‖q recX. c ·X) ‖p recX. b ·X and s′ is reachable from (t′ ‖q recX. c ·X) ‖p

recX. b ·X, for each action α ∈ Act, and for each equivalence class C ∈ S/≈,
it holds that |µG(s, α, C) − µG(s′, α, C)| ≤ p2 · q2.

Proof. Let us note that s has the form (t1 ‖q recX. c ·X) ‖p recX. b ·X and
s′ has the form (t2 ‖q recX. c ·X) ‖p recX. b ·X, for some t1 and t2. We can
distinguish four cases:
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(i) α = a, with a ∈ Act \ {b, c, τ}.
Let p1 and p2 be the values such that p1 = µG(s, a, C) and p2 =

µG(s′, a, C). We have to prove that |p1 − p2| ≤ p2 · q2. The thesis is
immediate if p1 = p2. If p1 6= p2, then w.l.o.g. we can assume that
p1 > p2. Now, p1 = µG(s, a, C) implies µG(s, τ ∗aτ ∗, C) ≥ p1. Since
s ≈ s′ we infer that µG(s′, τ ∗aτ ∗, C) ≥ p1. Since p1 > p2 = µG(s′, a, C),
we infer that µG(s′, τ+aτ ∗, C) + µG(s′, aτ+, C) ≥ (p1 − p2), where τ+

denotes the set of all the sequences of n ≥ 1 τ -actions. Since a 6= b
and a 6= c, processes in C can be reached from s′ by sequences τ+aτ ∗

and aτ+ only through at least two moves by t2. This implies that
µG(s′, τ+aτ ∗, C)+µG(s′, aτ+, C) ≤ p2 ·q2. Summarizing, p2 ·q2 ≥ p1−p2,
and the thesis is proved.

(ii) α = b.
Since b 6∈ actions(t) ∪ actions(t′), the only b move by s is due to

recX. b ·X and leads to s itself, and, analogously, the only b move by s′

is due to recX. b·X and leads to s′ itself. Hence, either C contains neither
s nor s′, and the thesis is immediate since µG(s, b, C) = 0 = µG(s′, b, C),
or C contains both s and s′. Let us concentrate on the second case. Since
t1 ‖q recX. c · X moves, it cannot happen that the probability of the b-
move by recX. b ·X is 1, and we are sure that this b move has probability
1 − p, and, therefore, µG(s, b, C) = 1 − p. For the same reason we infer
that µG(s′, b, C) = 1 − p. Summarizing, µG(s, b, C) = µG(s′, b, C), and
the thesis is proved.

(iii) α = c.
Let p1 and p2 be the values such that p1 = µG(s, c, C) and p2 =

µG(s′, c, C). Since c 6∈ actions(t)∪actions(t′), the only c move by s is due
to recX. c·X and leads to s itself, and, analogously, the only c move by s′

is due to recX. c·X and leads to s′ itself. Hence, either C contains neither
s nor s′, and the thesis is immediate since µG(s, c, C) = 0 = µG(s′, c, C),
or C contains both s and s′. Let us concentrate on the second case. It
holds that either p1 = p · (1− q), if t1 has some move, or p1 = p, if t1 has
no move. Moreover, either p2 = p · (1− q), if t2 has some move, or p2 = p,
if t2 has no move. Therefore, it suffices to prove that it cannot happen
that t1 moves and t2 does not to infer that either p1 = p · (1− q) = p2 or
p1 = p = p2, which implies the thesis.

By contradiction, let us assume that t1 moves and t2 does not. Since t2
does not move, s′ has only one b move with probability 1−p and only one
c move with probability p. Since s ≈ s′, we infer that s has only moves in
{b, c, τ}, thus implying that t1 has τ moves. This implies that the overall
probability of sequences τ ∗bτ ∗ by s is strictly greater than 1 − p, which
contradicts that s ≈ s′.

(iv) α = τ .
First of all let us note that, since s ≈ s′, either C contains both s and

8



Tini

s′, or C contains neither s nor s′. If C contains neither s nor s′, we can
reason as in case (i).

Let us assume that C contains both s and s′. In this case, let p1 and p2

be the values such that p1 = µG(s, τ, C) and p2 = µG(s′, τ, C). We have
to prove that |p1 − p2| ≤ p2 · q2. The thesis is immediate if p1 = p2. If
p1 6= p2, then w.l.o.g. we can assume that p1 > p2. First of all let us note
that, since each state ŝ reachable from s or s′ can perform the c move, it

cannot happen that ŝ
b,1−→ ŝ, and, therefore, we are sure that ŝ

b,1−p−−−→ ŝ.
Since both s and the processes in C reachable through one τ move from
s (with total probability p1) can perform b with probability 1 − p while
remaining in C, it holds that µG(s, τ ∗bτ ∗, C) ≥ (1 − p) + p1 · (1 − p).
Since s ≈ s′, it holds that µG(s′, τ ∗bτ ∗, C) ≥ (1 − p) + p1 · (1 − p).
Since states in C cannot perform b with probability 1, we know that
µG(s′, b, C) = (1− p) and

∑
m+n=1 µG(s′, τmbτn, C) = p2 · (1− p). Hence,∑

m+n≥2 µG(s′, τmbτn, C) ≥ (p1 − p2)(1 − p). Moreover, we know that∑
m+n≥2 µG(s′, τmbτn, C) ≤ p2 · q2 · (1 − p), since τmbτn with m + n ≥

2 requires at least two moves by t2 and one move from recX. b · X.
Summarizing, p2 · q2 · (1− p) ≥ (p1 − p2) · (1− p), which implies p2 · q2 ≥
p1 − p2, and the thesis is proved.

2

Lemma 4.4 implies that there is a (p2 · q2)-bisimulation relating processes
reachable from (t ‖q recX. c · X) ‖p recX. b · X and (t′ ‖q recX. c · X) ‖p

recX. b·X and that contains the pair formed by (t ‖q recX. c·X) ‖p recX. b·
X and (t′ ‖q recX. c · X) ‖p recX. b · X. Let ∼p2·q2 denote such a (p2 · q2)-
bisimulation.

Let us take any equivalence class C ∈ S/∼p2·q2. We prove below that the

set of processes Ĉ = {s such that (s ‖q recX. c · X) ‖p recX. b · X ∈ C} are
an equivalence class of a (p ·q)-bisimulation relating processes reachable from t
and t′. Let ∼p·q denote such a (p·q)-bisimulation. Relations ∼p·q equates t and
t′, since (t ‖q recX. c ·X) ‖p recX. b ·X and (t′ ‖q recX. c ·X) ‖p recX. b ·X
are equated by ∼p2·q2. The thesis follows from t ∼p·q t′.

Hence, it remains to prove that Ĉ ∈ S/∼p·q for some (p · q)-bisimulation

∼p·q. Given arbitrary processes t1, t2 ∈ Ĉ, any equivalence class D̂, and any
action α ∈ actions(t1) ∪ actions(t2), the semantics of ‖p and ‖q implies that:
µG(t1, α, D̂) = 1

p·q
· µG((t1 ‖q recX. c · X) ‖p recX. b · X, α, D),

µG(t2, α, D̂) = 1
p·q

· µG((t2 ‖q recX. c · X) ‖q recX. b · X, α, D).

Since (t1 ‖q recX. c·X) ‖p recX. b·X ∼p2·q2 (t2 ‖q recX. c·X) ‖p recX. b·X,
we are sure that |µG((t1 ‖q recX. c · X) ‖p recX. b · X, α, D) − µG((t2 ‖q

recX. c · X) ‖p recX. b · X), α, D)| ≤ p2 · q2. Therefore, |µG(t1, α, D̂) −
µG(t2, α, D̂)| ≤ p · q, as required. 2

At first glance, our choice of using a context with two occurrences of the
interleaving operator in Lemma 4.3 could be surprising. One could expect that
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a context with only one of these occurrence suffices. The point is that the proof
of Lemma 4.4 does not work if we consider the context ‖p recX . b·X instead
of ( ‖q recX. c · X) ‖p recX. b · X. In fact, both in the proof of case α = b,
and in the proof of the case α = τ , we exploit the fact that the probability
of the b move by recX. b · X cannot be 1. This is implied by the fact that
recX. c ·X can perform the c move. Without process recX. c ·X, the process
on the left side of ‖p could be a process without any move, and the b move by
recX. b · X could have probability 1.

Notice that Lemma 4.3 above holds also if we replace the interleaving
operations ‖p and ‖q with the CCS-like parallel composition operations ‖p

p′

and ‖q
q′ of [10,7], provided that t and t′, besides performing neither b nor c,

performs neither b nor c. Moreover, Lemma 4.3 holds also if we replace ‖p

and ‖q with the CSP-like parallel composition operations ‖p
A and ‖q

A of [10],
with A = ∅.

Let us prove now that processes related by p-bisimulations for all 0 < p < 1
are strong bisimilar.

Lemma 4.5 Given processes t and t′, if for each 0 < p < 1 there exists a
p-bisimulation ∼p such that t ∼p t′, then it holds that t ∼ t′.

Proof. Since the regularity condition ensures that the number of states reach-
able from t and t′ is finite, there exists an equivalence relation R over the states
reachable from t and t′ such that (t, t′) ∈ R and such that, given any δ > 0,
R is an ε-bisimulation for infinite many δ > ε > 0. We can prove that R is
a strong bisimulation. By contradiction, let us assume that R is not a strong
bisimulation. Then, there exists a pair of states (s, s′) ∈ R, an action α ∈ Act,
and an equivalence class C over R such that µG(s, α, C) 6= µG(s′, α, C). Let
d be the value |µG(s, α, C) − µG(s′, α, C)|. It follows that R is not an ε-
bisimulation for any ε < d, which contradicts that R is an ε-bisimulation for
infinite many d > ε > 0. Now, since R is a bisimulation and (t, t′) ∈ R, the
thesis holds. 2

We can give now our main result.

Theorem 4.6 Given arbitrary processes t and t′, if for all 0 < p, q < 1
and actions b, c ∈ Act \ ({τ} ∪ actions(t) ∪ actions(t′)) it holds that (t ‖q

recX. c ·X) ‖p recX. b ·X ≈ (t′ ‖q recX. c ·X) ‖p recX. b ·X then it follows
that t ∼ t′.

Proof. By Lemma 4.3, for each 0 < p, q < 1, it holds that t ∼p·q t′ for some

(p · q)-bisimulation ∼p·q. Given any 0 < d < 1, we can choose p = q =
√

d, to
infer that t ∼d t′. Since t ∼d t′ for all 0 < d < 1, we can apply Lemma 4.5 to
infer t ∼ t′, and the proof is complete. 2

Let us assume that R is an equivalence relation over processes being a
congruence w.r.t interleaving, prefixing and recursion, and being finer than
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weak bisimulation (i.e. R ⊂≈). Given processes t and t′ such that (t, t′) ∈ R,
since R is a congruence, we infer that, for all 0 < p, q < 1, ((t ‖q recX. c·X) ‖p

recX. b · X, (t′ ‖q recX. c · X) ‖p recX. b · X) ∈ R. Since R ⊂≈, we infer
t ≈ t′ and (t ‖q recX. c ·X) ‖p recX. b ·X ≈ (t′ ‖q recX. c ·X) ‖p recX. b ·X.
Thm. 4.6 implies that t ∼ t′. Hence, R ⊆∼. Since ∼ is a congruence w.r.t.
interleaving, prefixing and recursion, we infer that ∼ is the coarsest congruence
contained in ≈ that is a congruence w.r.t. these operations.

5 Conclusions

We have proved that, if one considers process algebras giving rise to GPTSs
satisfying the regularity condition and offering recursion, interleaving and
prefixing, then strong bisimulation is the coarsest congruence contained in
weak bisimulation. This differentiates the generative probabilistic model
not only with respect to the nonprobabilistic case, where interesting congru-
ences strictly lying between strong and weak bisimulation have been studied
[6,13,14,15,17], but also with respect to the non-alternating model, where the
coarsest congruence being finer than weak bisimulation has been characterized
and proved to be coarser than strong bisimulation [2,11,12].

Analogies between the nonprobabilistic and the non-alternating model
arise since in the non-alternating model process algebras offer parallel com-
position operations and a nondeterministic choice operation having the same
nature of those of nonprobabilistic process algebras. To support this obser-
vation the fact that the axiomatization of the coarsest congruence being finer
than weak bisimulation requires rules similar to Milner’s “expansion law” to
manage parallel composition [12] and rules similar to Milner’s “τ -law” to man-
age τ prefixing [2,11,12].

In the generative model, no operation introducing nondeterminism is al-
lowed. Therefore one cannot hope to treat parallel composition operations as
in the nonprobabilistic case. Asynchronous parallel composition operations
require parameters specifying the probability to move of each of the processes
running in parallel. These parametric operations do not preserve weak bisim-
ulation, since they distinguish τm ·t1 and τn ·t1, when m 6= n. In fact, when we
compose in parallel τm ·t1 with another process t2, the τ actions of τm ·t1 imply
that actions of t1 can be performed only after τm · t1 has won m competitions
versus t2 to perform the m occurrences of τ , and each of these competitions
is not for free, meaning that the probability of winning it is not 1 but depend
on the parameter of the operation. The ability of discriminating τm · t1 and
τn · t1 has as a consequence that there is no congruence strictly lying between
strong and weak bisimulation.

Checking whether our result holds also for GPTSs that do not satisfy the
regularity condition, and for transition systems respecting the reactive and
stratified models of probabilistic processes could be interesting developments
of the present notes.
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