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Abstract

We examine phase transitions in prob-
lems derived from real computational
problems using a wide variety of al-
gorithms. These phase transitions re-
semble those observed with randomly
generated problems. Real problems
do, however, contain new features
(e.g. large scale structures rare in
random problems) which can make
them significantly harder than ran-
dom problems. Our results suggest
a new methodology for benchmarking
algorithms. In addition, they help to
identify the location of the really hard
real problems.

1 Introduction

A conventional method for comparing the per-
formance of algorithms is to use benchmark
problems. Since the supply of benchmark prob-
lems is usually limited, we may be unable to
perform a statistically significant comparison,
or to determine accurately how performance
depends on problem size and problem diffi-
culty. An alternative approach is to use ran-
dom problems which are cheap to generate at
different problem sizes. Unfortunately random
problems are typically easy to solve. For ex-
ample, random k-colourable graphs are almost
all easy to colour [22]. However, hard ran-
dom problems can be found at a phase trans-
ition [2]. Such problems are frequently used to
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benchmark algorithms and to determine how
performance scales with problem size [6; 4;
19]. One disadvantage of random problems is
that they may not be representative of the kind
of problems we are likely to meet in practice.
For example, random problems may lack fea-
tures that can make real problems very hard. In
this paper, we show that it is possible to merge
the two approaches. By means of four case
studies, we identify phase transitions that occur
in problems derived from real computational
problems, and examine the change in problem
difficulty as we traverse the phase boundary.

2 Traveling Salesman Problem

Given n cities, a tour length [ and a matrix
that defines the distance between each pair of
cities, the traveling salesman decision problem
(the TSP decision problem) is to determine if
a tour of length [ or less exists which visits all n
cities. The T'SP decision problem is one of the
most famous NP-complete problems. To solve
it, we use an implementation of the branch and
bound algorithm written by Robert Craig at
AT&T Bell Labs which uses the Hungarian al-
gorithm for branching, minimally adapted by
us to solve the decision rather than minimiz-
ation problem. Branch and bound is one of
the best complete algorithms for the TSP de-
cision problem. We use standard benchmark
data from TSPLIB [20], the capitals of the 48
contiguous states of the U.S.A.

In [2], Cheeseman et al. show that many NP-
complete problems have a natural “order” para-
meter, that there is a phase transition as this
parameter is varied!, and that hard instances
are often associated with this transition. For
random TSP problems with n cities uniformly
distributed over a rectangular area A, the ex-
pected optimal tour length [1] approaches the

Tt has become the custom to discuss phase
transitions in computational problems in terms of
“order parameters”. Such parameters can usually
be more correctly called “control parameters” since
they are externally varied by the user.
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where £ =~ 0.75. This suggests that a nat-
ural parameter for the TSP decision problem

is [/v/n.A. Tn [11], we confirm this suggestion
by showing that for randomly generated TSP
problems a phase transition occurs at a fixed
value of [/v/n.A.

In Figures 1 and 2, we plot two views of the
phase transition as we vary this parameter us-
ing real data from TSPLIB. In Figure 1, we de-
termine how computational expense changes as
we search for tours of different lengths. We fix
the number of capitals n at 24 and vary the tour
length [ from 500km to 15,000km in steps of
500km. We used the same 1000 sets of 24 cap-
itals at each point. We plot results by contours
of percentiles. For example, the 90% contour
gives the cost that was exceeded by only 10% of
other tests: in this case this would be the 100th
most difficult problem. Figure 1 gives contours
for best case, 50% (median), 90%, 99%, and
100% (observed worst case) for the number of
nodes searched by the branch and bound al-
gorithm. Note that we have plotted the log of
the number of nodes searched so search cost
varies over many orders of magnitude. All logs
in this paper are to base 10. The dotted line
represents the probability that a tour of the
appropriate length or less exists. The phase
transition, defined as the point at which 50% of
problems have a tour, occurs at [/v/n.A = 0.56.
The worst case needed 2,933,071,577 nodes for
a tour of length 8500km or less, in a region
where 99.6% of the problems have a tour.
This is over five orders of magnitude worse
than the worst median of 5,096 nodes at tour
length 7500km, where 31.1% of tours were pos-
sible and worst case behaviour was 232,077,515
nodes. It might be expected that these ex-
traordinarily hard problems are insoluble, the
result of exhaustive failed search. This is not
so: the hardest insoluble problem in the whole
run required only 35,401,612 nodes, an amount
of search exceeded by no less than 16 soluble
problems in the run. The occurrence of excep-
tionally hard problems has been reported in [13;
7] and is discussed later in this section.

In Figure 2, we determine how computational
expense changes as we try to visit more capit-
als. We fix the tour length [ at 7971km, which
is % the optimal tour length for all 48 capitals,
and vary the number of capitals visited from 10
to 48 in steps of 2. At each point, we used 200
sets of capitals. The phase transition occurs at
[/vV/n.A = 0.56. This is almost identical to the
position of the phase transition in the previ-
ous experiment. The worst case is 163,150,184
nodes for a 26 capital tour, in a region where

52% of the problems have a tour. This is four
orders of magnitude worse than the worst me-
dian problem.

As in the well-known phase transition for
random satisfiability problems [17], there is
a rapid phase transition in both experiments.
In the soluble region, problems are under-
constrained and thus typically easy. In the in-
soluble region, problems are over-constrained
and again typically easy. In the phase trans-
ition inbetween, problems are critically con-
strained and typically hard. Although me-
dian problem difficulty peaks in the middle of
phase transition, the hardest problems can oc-
cur in under-constrained regions where nearly
100% of problems are soluble. Extremely
hard and under-constrained problems in soluble
regions have also been observed for random
g]raph—colouring and satisfiability problems [13;
7l.
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Fig 2: Varying number of capitals
As a comparison, we ran a set of experi-

ments with randomly generated TSP decision
problems in which cities were placed on a unit




square of side 1000 at random. In Figure 3, we
fix the number of randomly generated cities at
24 and vary the tour length from 250 to 7500
in steps of 250. We used the same 1000 sets
of 24 random cities at each point. The phase
transition occurs at [/v/n.A ~ 0.85. The worst
case in Figure 3 is 8,699,820 nodes in a region
where 28.7% of problems have a tour. This is
four orders of magnitude worse than the worst
median problem, but still 300 times easier than
the worst problem in the real data. Hard ran-
dom problems also occur in the mostly soluble
region. The worst such problem took 4,412,760
nodes in a region where 97.7% of problems (in-
cluding this one) have a tour.

The phase transition for random data is very
similar to that seen with real data. There are
two significant differences. First, the real phase
transitions occur at a smaller value of [/v/n.A.
Second, real problems are significantly harder
than random problems. This may be a result of
the different distribution of cities in randomly
generated problems compared to the real data.
If we normalize mean inter-city distance to 1 in
each problem, the mean standard deviation in
the distance matrix for the sets of 24 U.S. cap-
itals was 0.586, while the mean standard devi-
ation for the sets of 24 random cities was 0.469,
considerably less. Cheeseman et al. [2] propose
that the standard deviation in the cost matrix is
a parameter for the TSP minimization problem
(i.e. the problem of finding an optimal tour).
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Fig 3: Random TSP problems

The phase transitions observed above result
from a mixture of behaviours on soluble and
insoluble problems. To isolate the different be-
haviour, we found the optimal tour for the first
100 sets of 24 U.S. capitals from our first ex-
periment. We could then set the tour length
to the decision problem to be a known dis-
tance, d from the optimal tour for each prob-
lem. At d = Okm only optimal tours will be
found whilst at d = —1km no tours will be
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Fig 4: l,p; + d for the U.S. capitals

found at all. By design, the phase transition
thus occurs abruptly between d = —1km and
Okm. This gives a clear picture of how prob-
lem difficulty is related to the distance from
the individual transition in solubility. In Fig-
ure 4, we vary d, the distance from the optimal
tour from —1000km (insoluble) to 1000km (sol-
uble) in steps of 100km, and for finer detail
from —100km to +100km in steps of 10km. In
addition, we plot the cost at —1km. For each
distance d, we tested 100 sets of capitals, with
l = l,py+d. This graph demonstrates two differ-
ent types of behaviour. In the insoluble region,
there is exponential growth as the phase bound-
ary is approached. The log plot suggests search

grows approximately as 21374/ VA in all con-
tours: that is, an increase of 100km in the tour
length roughly doubles search cost. This is sur-
prisingly consistent behaviour considering the
small problem size and the fact that this is real
and not random data. In the soluble region,
problems typically become harder as we ap-
proach the phase boundary since we can accept
increasingly fewer sub-optimal tours. However,
some of the hardest soluble problems have re-
gions where search increases exponentially as
we move away from the phase boundary. With
these problems, poor branching decisions early
on result in an exhaustive (and unsuccessful
search) for a tour of given length.

As an example, the most difficult problem
to optimize takes 14,875,150 nodes if a tour of
its optimal length 7,995km is demanded. At
the very start of search, the second leg attemp-
ted (and the sixth branching decision made) is
from Raleigh NC to Columbus OH. Only much
later in the search is it discovered that it would
be much better to visit Hartford CT, Montpe-
lier VT, and then Albany NY between Raleigh
and Columbus. Because of such poor initial de-
cisions, increasing the initial bound can make
search deeper and thus more costly. In this ex-




ample, demanding a tour 80km longer than the
optimal increases search to 21,932,461 nodes
since more search is needed to prove incorrect
the Raleigh-Columbus leg. This increase is des-
pite the fact that a tour 24km longer than the
optimal is actually found in which Albany and
Montpelier are visited in the reverse order, and
Lansing MI is inserted between Montpelier and
Columbus. Sudden drops in difficulty in the
worst case contour follow the appearance of new
and significantly longer sub-optimal tours.

To conclude, there is a clear phase transition
in the TSP decision problem using real data.
Whilst median difficulty displays a simple easy-
hard-easy pattern, the hardest problems can
occur in soluble regions following poor branch-
ing decisions early in search. The phase trans-
ition for random data looks very similar ex-
cept that real problems are significantly harder
than random problems. Our results clearly re-
fute the claim of Kirkpatrick and Selman [15]
that “there are other NP-complete problems
(for example, the traveling salesman problem
or max-clique) that lack a clear phase bound-
ary at which ‘hard problems’ cluster”. It would
be interesting to see if optimization heuristics
display similar phase transition behaviour.

3 Time-tabling

Our second problem class is exam time-tabling.
Given n exams, k slots and s students, the exam
time-tabling problem is to determine if there
is an assignment of exams to slots such that
no student takes two exams simultaneously.
This is equivalent to deciding if there is a k-
colouring of a graph with each node represent-
ing an exam, and each edge representing the
constraint that a student is taking a particular
pair of exams. The exam time-tabling prob-
lem is thus NP-complete. We consider two ex-
tensions of the basic problem. First, lecturers
can exclude certain exams from certain slots.
Second, there are four slots per day and stu-
dents are not allowed to take exams in consec-
utive slots; these additional “friendliness” con-
straints typically make time-tabling harder.
We use the exam time-tabling problem for
the Al Department at Edinburgh University,
for the years 1992 to 1994. Exam time-tabling
is naturally a binary constraint satisfaction
problem (binary CSP) with variables repres-
enting exams, each of which needs to be as-
signed a slot. We therefore tried a recent CSP
algorithm, Patrick Prosser’s forward checking,
conflict-directed back-jumping algorithm with
directed k-consistency and a fail first heur-
istic for picking the next variable assignment
[18]. Unfortunately, it has difficulty with our
real exam time-tabling problems. On the com-
plete 1994 problem with 59 exams, 36 slots

and 200 students, Prosser’s algorithm explored
4,213,045 nodes and performed 411,770,462
consistency checks.

Given recent success encoding other NP-
hard problems into propositional satisfiabil-
ity (SAT), we encoded the exam time-tabling
problem into SAT and tried Mark Stickel’s effi-
cient implementation of the Davis Putnam pro-
cedure which uses a form of intelligent back-
tracking based on dependency checking to close
open branches. This procedure was more suc-
cessful and we were able to perform a com-
plete phase transition experiment using the
1994 data. Although we could solve the full
1992 and 1993 problems without difficulty, we
were unable to perform complete phase trans-
ition experiments for these years, despite the
fact that there were fewer exams and students
than in 1994. In the hard parts of these phase
transitions, some problems take over a billion
branches.

For a fixed number of exams, two natural
parameters are the number of students and of
slots. In Figure 5, we determine how computa-
tional expense changes as we add students using
the 1994 data®. We fix the number of slots at 36
and vary the number of students from 10 to 200
in steps of 10. At each point except the last, we
used 100 sets of students. Unlike all other fig-
ures in this paper, we plot the mean number of
branches searched, and not on a log basis. The
worst case is 4,227,072 branches for two unsat-
isfiable problems of time-tabling 170 and 150
students respectively. We will explain later the
exact duplication in the number of branches.
Corne et al. used a genetic algorithm|[3] to con-
struct the actual time-table for the 1994 ex-
ams. As they were unable to find a perfect
time-table, one student had to sit two consec-
utive exams. Our results show for the first time
that this was inevitable — there is no time-table
for the full 200 students which meets all the
constraints.

The phase transition when we vary the num-
ber of students is somewhat different to previ-
ous phase transitions. In particular, the hard-
est problems appear not in the middle of the
phase transition but in the unsatisfiable region.
These problems have very large proofs. To ex-
plore this further, we adapt the technique de-
veloped for random satisfiability problems in
[10] of finding minimal unsatisfiable subsets. In
this case, we look for minimal insoluble sub-
sets. A minimal insoluble subset is an insol-
uble subset of the exam pairs taken by students
in which no strict subset is insoluble. We ex-

2Tn practice, as we add students, other aspects
of the problem might change like the number of
slots and exams. For simplicity, we ignore such
complications here.
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tracted minimal insoluble subsets from the full
1994 problem. Each minimal insoluble subset
we found was a 10-clique of exams which were
prohibited from occurring in the afternoon. As
there are only 9 mornings each with 2 slots, it
is impossible to time-table the 10-clique given
the friendliness constraints. The behaviour of
the Davis Putnam procedure through the phase
transition can be explained almost solely by
the probability of including a 10-clique; this
probability increases to 1 as the number of stu-
dents increases to 200. There is surprisingly
little variation in difficulty of proving insolubil-
ity once such a clique is included. This ex-
plains why we observed the same worst case
at different numbers of students. In both our
encoding into SAT and in the original CSP
formulation of the time-tabling problem, show-
ing that a 10-clique cannot be time-tabled into
9 mornings is time-consuming. To show the
unsatisfiability of a typical minimal insoluble
subset takes 337,920 branches with Stickel’s
Davis Putnam procedure, and 388,214 nodes
and 3,064,718 consistency checks with Prosser’s
CSP algorithm. The additional constraints in

the full problem appear not to help the branch-
ing heuristics used by both algorithms. More
sophisticated procedures which take advantage
of the natural symmetries and which give short
pigeonhole proofs may perform much better.

We also determined how how computational
expense changes as we try to time-table with
fewer slots. We used the 1992 data which has
44 exams, 92 students and 28 slots. We varied
the number of slots from which all exams are ex-
cluded from 0 to 28 in steps of 1. As this experi-
ment proved very time-consuming, we dropped
the friendliness constraints and only tested a
single problem at each point. The phase trans-
ition in solubility appears to occur around 12-
13 slots. Whilst problems with 13 or more slots
were solved searching only one branch, the 11
and 12 slot problems were too difficult to solve.
Smaller problems were insoluble; their search
cost growing exponentially as the transition is
approached.

As a comparison, we also ran a set of exper-
iments with randomly generated time-tabling
problems. In Figure 6, we generate problems
with 18 exams and 30 slots and vary the num-
ber of students from 5 to 105 in steps of 5. Each
student takes 4 exams chosen at random. Each
exam is excluded from any given slot with prob-
ability 0.5. For comparison, in 1994, on average
students took 5.9 exams and each exam was
excluded from 13 of the 36 slots. The worst
case is 8,639,312 branches in a region where
99.7% of the problems are satisfiable. This is
two orders of magnitude worse than the worst
median problem, which took 49,570 branches.
The phase transition for random time-tables
in Figure 6 is very similar to that seen with
random problems from satisfiability and other
NP-complete classes. However, it is quite dif-
ferent from the phase transition observed using
the 1994 exam data. Note again that median
problem difficulty peaks in the phase transition
but the hardest problems occur in an under-
constrained region where nearly 100% of prob-
lems are soluble.

To conclude, we observed new effects in the
time-tabling phase transitions. These effects
can be attributed to the presence of large scale
structures like 10-cliques which are rare in ran-
domly generated problems. Such large scale
structures can make problems hard even if they
are well away from the phase transition.

4 Boolean circuit synthesis

Our third NP-complete problem class is
Boolean circuit synthesis. We are given a spe-
cification of the input/output behaviour of a
Boolean function, and wish to construct a pro-
grammable logic array (PLA) which meets the
specification, and which uses a given number




of AND gates. A PLA is a two layer AND/OR
circuit widely used in digital i/c design. This
problem can be encoded into satisfiability [14]
with variables representing the possible wiring
decisions. Selman and Kautz use this encod-
ing to benchmark various hill-climbing proced-
ures for satisfiability [21]. They build circuits
for adders, comparators and randomly gener-
ated Boolean functions. They report signi-
ficantly better performance with hill-climbing
procedures than with either the Davis Putnam
procedure or integer programming. In turn,
Kamath et al. found that integer programming
is much better than the classic Quine McClus-
key method for circuit synthesis based on prime
implicants [14].

As in [21], we found that the Davis Put-
nam procedure was unable to synthesize com-
plex circuits, whilst hill-climbing procedures
like GSAT with random walk could. GSAT
with random walk is a greedy hill-climbing pro-
cedure which with probability p flips the vari-
able assignment which most increases the num-
ber of satisfied clauses, and with probability
1 —p flips a variable in an unsatisfied clause at
random. Search.is restarted from a new random
truth assignment every Maz-flips flips. GSAT
is a semi-decision procedure — it finds models
but cannot show that a problem is unsatisfiable.
We are therefore unable to perform a complete
phase transition experiment. However, a “half-
phase transition” experiment can be performed
with semi-decision procedures. Such an ex-
periment tests the procedure on satisfiable in-
stances which become increasingly constrained
as we approach the phase boundary.
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If k is the number of AND gates, and m the
number of 1’s in the output specification, a nat-
ural parameter for Boolean circuit synthesis is
the ratio k/m. If k > m then circuit synthesis
is rather trivial — we need merely read off from
the truth table those inputs which compute 1,
and connect each to a different AND gate. The
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challenge is to build a circuit with fewer AND
gates. In Figure 7, we plot one view of the half-
phase transition as we vary k/m for a 2-bit full
adder. This needs at least 23 AND gates to
implement and has 48 1’s in its output specific-
ation. We therefore varied the number of AND
gates from 23 to 48 in steps of 1. At each point,
we report the total number of flips performed
by GSAT with random walk averaged over 100
runs. We always set Maz-flips = 1000N where
N is the number of variables in the encoding
into SAT and p = 0.5; these are usually good
values for Maz-flips and p [21; 12]. The worst
case took 7,975,369 flips for the critically con-
strained problem of synthesizing the 2-bit adder
from 23 AND gates. For randomly generated
satisfiability problems, a phase transition oc-
curs at a fixed ratio of clauses to variables [17;
9]. As a consequence of regularities in the en-
coding, this ratio is a poor predictor of the pos-
ition of the phase transition for Boolean circuit
synthesis. The ratio of clauses to variables at
the phase transition is 17.0 for the 2-bit adder.
The majority of these clauses contain 3 liter-
als. For random satisfiability problems with 3
literals per clause, the phase transition occurs
at just 4.3 clauses per variable [17].

As a comparison, in Figure 8 we plot a half-
phase transition experiment for a randomly
constructed Boolean function. This function
has the same number of inputs and outputs as
the 2-bit full adder, and a randomly generated
truth table which has, like the adder, 48 out
of the 96 output bits set to 1. The half phase
transition for a random function is very sim-
ilar to that seen with the adder. The main
difference appears to be that, as random prob-
lems typically have more overlap in their truth
tables, they require fewer AND gates to imple-
ment — the random circuit needed just 18 AND
gates to implement. The ratio of clause to vari-
ables at the phase transition is now 15.0.

Previous studies of hill-climbing procedures



like GSAT have used either hard random in-
stances from the middle of the phase trans-
ition or benchmark problems. These graphs
are thus the first illustration of the change
in performance of GSAT as we approach the
phase boundary for both real and random prob-
lems. The easiness of problems just a short dis-
tance from the phase boundary demonstrates
the great care that needs to be taken when
benchmarking algorithms. For example, the
results of [14] must be treated with some cau-
tion as some of the problems used are far from
the phase boundary. We speculate that much
of the difficulty for GSAT of problems near the
phase boundary can be attributed to the very
small number of models compared to truth as-
signments. In studies with benchmark prob-
lems, we have observed that GSAT performs
comparatively poorly whenever the number of
models is low [12].

5 Boolean induction

Our fourth and final problem class is Boolean
induction. We are now given only a partial spe-
cification of the input/output behaviour of a
Boolean function, and must construct a pro-
grammable logic array which meets this partial
specification, and which uses at most £ AND
gates. This corresponds to the “black box”
problem of learning a Boolean circuit given
some example inputs and outputs. We again
encode the problem into satisfiability and use
GSAT with random walk to find models. In all
experiments, k£ is equal to the minimum num-
ber of AND gates needed to build the desired
function. There is not therefore a phase trans-
ition in the probability of satisfiability since all
problems are satisfiable. There is, however, a
phase transition in the probability that the cir-
cuit constructed computes the correct function
for all possible inputs. A simple parameter is o,
the ratio of input values in the partial specific-
ation to the total number of possible inputs. If
o = 1, then the probability that the circuit con-
structed computes the desired function is also
1. If o = 0, then any circuit is a model, and the
probability the the circuit computes the desired
function will be small.

In Figure 9 we show the full phase transition
as we vary o for a 2-bit full adder using 23 AND
gates. At each point, we report the total num-
ber of flips performed by GSAT with random
walk averaged over 100 sets of randomly chosen
inputs again using the standard parameter set-
tings. The phase transition takes place very
close to the limit of ¢ = 1. Median problem
difficulty peaks as usual in the middle of the
phase transition, but the hardest problems oc-
cur in a region where the probability of gener-
ating a correct circuit is small. Such problems

are under-constrained. The worst case took
18,709,325 flips to synthesize the adder from
28 of 32 possible inputs. Interestingly, this was
the only problem tested that generated a fully
correct circuit from 28 or less inputs. We ex-
amined this problem in detail by testing GSAT
on it for 100 restarts. It solved it only 30 times
with Maz-flips = 1000N = 2,231,000 flips. Of
those 30 successes, 6 produced correct circuits.
As a control, we repeated the experiment on the
first random set of 28 inputs. This problem was
much easier, the worst case being better than
the best case of the previous problem. A cir-
cuit was generated successfully on each of the
100 restarts but none was the intended 2-bit
adder.
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Similar behaviour is seen in Figure 10, giving
results for the less complex 3-bit greater than
comparator using 7 AND gates. The worst case
was 321,661 flips on an under-constrained prob-
lem where 60 of the 64 inputs were specified:
this was one of only 36% of problems at this
point to generate a circuit with 100% accur-
acy. We also examined the phase transition for



the induction of the random Boolean circuit of
Figure 8, with results similar to Figure 9.

This example illustrates that phase trans-
itlons occur in macroscopic properties other
than solubility. The phase transition here is
in the quality of the solution, the probabil-
ity that we construct the correct circuit. In-
deed, there cannot be a phase transition in the
probability of solubility since there is always
a sufficient number of AND gates to ensure
that problems are soluble. These graphs il-
lustrate how incomplete procedures like GSAT
can be used to perform full phase transition
experiments. In our previous examples, over-
constrained problems are insoluble. Here, over-
constrained problems are soluble; the surplus
of constraints merely guarantee that we gener-
ate the correct circuit. For the first time, we
see GSAT performing more poorly on under-
constrained problems than problems from the
middle of the phase transition.

6 Related Work

Much recent interest in phase transition phe-
nomena can be traced back to a seminal paper
by Cheeseman et al. [2]. This paper identifies
“order” parameters for graph colouring, satis-
fiability, Hamilton circuits, and the TSP min-
imization problem, and shows that for random
problems there is a phase transition at a crit-
ical value of these parameters and that hard
instances occur around the phase transition.

Tadd Hogg and Colin Williams [13], and in-
dependently the authors [7; 8; 9] explore in
detail the distribution of problem difficulties
through the phase transition for a variety of
random problems including graph colouring,
satisfiability, and the independent set problem.
The results here support the conjecture made
in [13] that “in practice, it is entirely pos-
sible that the kinds of troublesome problems
we have identified [in the soluble region] might
be encountered more frequently than the ran-
dom graph ensemble would suggest”. Whilst it
is sometimes very difficult to find hard prob-
lems in the satisfiable region with random data
[7], such problems appear to turn up frequently
in real data. As another example, Claude Le
Pape and Philippe Baptiste report benchmark
job-shop scheduling problems in which sub-
optimal solutions are more expensive to find
than optimal solutions [personal communica-
tion, 1994], precisely the behaviour we analyze
in detail in the TSP problem in §2.

James Crawford and Andrew Baker [5], ex-
press concern over the value of results on
random satisfiability problems for real applic-
ations. They report results from encoding
Sadeh’s benchmark scheduling problems into
satisfiability. They suggest that “scheduling

problems .. .are much larger and much less con-
strained than the randomly generated theor-
ies generally studied.” We note, however, that
Sadeh’s benchmark problems are randomly gen-
erated. Real scheduling problems, like the 1994
exam time-tabling problem, can be so tightly
constrained that they have no complete solu-
tion.

Gary Lewandowski and Anne Condon [16]
find a real time-tabling problem more useful
than random data when comparing graph col-
ouring algorithms. Frustrated by the difficulty
of collecting real data, they build a random
generator which attempts to model the fea-
tures found in real data. The problem with
this methodology is identifying the important
features whilst maintaining the realism of the
generated problems.

Finally, Corne et al. use a genetic algorithm
to time-table exams for the Dept of Al at Edin-
burgh University [3]. It is difficult to access the
performance of this algorithm since the com-
plete examples they solve are quickly solved by
encoding into satisfiability. By comparison, our
phase transition experiments produced more
challenging problem instances.

7 Conclusions

We have identified phase transitions in prob-
lems derived from real computational prob-
lems. These phase transitions are similar to
those observed with randomly generated prob-
lems. For example, although median prob-
lem difficulty usually obeys a simple easy-hard-
easy pattern with the most difficult median
problem in the middle of the phase trans-
ition, the hardest problems can occur away from
the phase transition in under-constrained re-
gions. Both these phenomena have previously
been observed with random problems [2; 7;
13]. These similarities demonstrate the value
of previous empirical and theoretical research
into random problem classes. Real problems
do, however, introduce new phenomena. For
instance, real problems can contain large scale
structures rare in random problems. Real prob-
lems can therefore be significantly harder than
similarly sized random problems.

Our experiments have considered a wide vari-
ety of computational problems. In the TSP
experiments, we used real geographical data;
this lacks much regular structure. In the time-
tabling experiments, we used real exam time-
tables; these have some regular structure due
to the presence of modules and course pre-
requisites. In the Boolean synthesis and induc-
tion experiments, we used real combinatorial
circuits; these have a lot of regular structure
reflecting the recursive nature of the functions
being computed. We also used a wide variety




of complete and incomplete algorithms. This
suggests that our results are likely to be widely
applicable.

Several of our experiments demonstrate phe-
nomena that, as far as we aware, have not been
previously reported even with random data.
For example, we observe a phase transition in
the quality of the solution, a macroscopic prop-
erty different to the usual probability of solu-
bility. In addition, we identify a problem class
where GSAT performs more poorly on under-
constrained problems than problems from the
middle of the phase transition.

Many questions are prompted by this re-
search. What other macroscopic properties dis-
play computational phase transitions? What
other “hard” features occur in real problems,
but rarely in our random problems? We en-
courage other researchers to address these ques-
tions, and to investigate computational phase
transitions for further classes of real problems.
Earlier research has answered the question,
where are the really hard random problems?
We can now start to answer the question, where
are the really hard real problems?
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