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Abstract 

Giunchiglia, F. and T. Walsh, A theory of abstraction, Artificial Intelligence 57 (1992) 
323-389. 

Informally, abstraction can be described as the process of mapping a representation of a 
problem onto a new representation. The aim of this paper is to propose the ~ n i n g s  
of a theory of reasoning with abstraction which captures and generalizes most previous 
work in the area. The theory allows us to study the properties of abstraction mappings 
and provides the foundations for the mechanization of abstraction inside an abstract 
proof checker. 
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substitution of a for x, 
languages (set of wffs), 
axioms (set of  wffs), "(-21 ~ AI, 
deductive machineries (inference rules), 
formal systems, XI = (A l, $21, AI), 
proof trees, 
the theorems of X, 
the nontheorems of X, 
an abstraction from X~ to 222, 
the mapping function used to abstract wffs, 
inverse of  the abstraction, f ,  
abstraction composition, 
preorders on abstractions, 
equivalence of  abstractions, 
containment (of a language within another, of a formal 
system within another, . . .) .  

1. Motivations and goals 

Roughly speaking one can think of  abstraction as the process which allows 
people to consider what is re levant  and to forget a lot of i rre levant  details 
which would get in the way of  what they are trying to do. 

The main motivation underlying the development of  the work described 
in this paper is our belief that 

the process of  abstraction is used pervasively in common sense 
reasoning. 

Thus, for instance, while so lv ing  the p r o b l e m  of how to stack all your clothes 
in a suitcase, you will stack the shirts all together as if they were a single 
object, and not one by one. While p l a n n i n g  to go from Trento to Edinburgh 
you will plan the flight Milan-London-Edinburgh and not consider, at least 
in the first instance, how to go to Milan airport. If someone is trying to give 
you an e x p l a n a t i o n  of how to get to Milan airport, he will give you only the 
main directions and not tell you of  all the little streets you will cross on the 
way. While driving your car on the way to the Milan airport you will try to 
survive the Italian traffic by behaving ana logous ly  to how Italians do. For 
instance, even if you are English, you will stay on the right-hand side of the 
road. Also you will drive slighly faster than you would do in Edinburgh. If, 
after arriving at the Milan airport, you are trying to remember, i.e. to learn,  

how you got there, you will remember a very rough outline of  the things to 
do. 
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The pervasiveness of abstraction-based processes in human reasoning has 
been proposed, more or less explicitly, by many researchers in cognitive 
science. See for instance the introduction of "The nature of explanation" 
of [34, Section 1 ], and also [33,36,56]. 

The second motivation at the basis of this work is the fact that 

reasoning by abstraction has been used in many subfields of 
artificial intelligence, 

often radically different both in the goals and in the methodology. His- 
torically, the earliest and most common use of abstraction was in problem 
solving (see for instance Example 8.3 below and also [ 41,43,67,75 ] ) and the- 
orem proving (see for instance Examples 8.5, 8.8, 8.10, 8.14, 8.27 and 8.29 
and also [81]). On the other hand, processes which can be formalized as 
abstraction (independently of whether the authors called them so) have 
been effectively used in many other areas of artificial intelligence and logic; 
for example in the definition of decision procedures (see for instance Exam- 
ple 8.12 and also [14,18,47] ), in planning (see for instance Examples 8.1, 
8.14, and 8.16), learning (see for instance [15,17,38,40,42,52,55]), expla- 
nation (see for instance [13] ), common sense reasoning (see for instance 
Example 8.20), qualitative and model-based reasoning (see for instance 
[35,53,78,80]), approximate reasoning (see for instance Examples 8.23 
and 8.24), analogy (see for instance [3,5,77] ), software and hardware ver- 
ification and synthesis (see for instance [1,12,49,50] ). 

The first main goal of the work described here is to provide the foun- 
dations of a theory of abstraction which can be used for modeling and 
representing reasoning with abstraction as performed in common sense rea- 
soning and by AI computer programs. One of our main interests is therefore 
in representation theory. We claim that the theory of abstraction presented 
here is not only metaphysically adequate but, also and more important, 
epistemologically adequate [48]. In other words, this theory can be used 
practically to represent and perform reasoning by abstraction. Among other 
things, this allows us to use the proposed framework to explain, analyze, and 
compare previous work on abstraction from various subfields of artificial 
intelligence. 

Our second main goal is to use the theory as the basis for the development 
of  a general environment for the use of  abstraction in automated deduction 
(both for proving theorems in various branches of mathematics and logic 
and for formalizing common sense reasoning). The most common use of 
abstraction in theorem proving (but also in problem solving and planning, 
see later) has been to abstract the goal, to prove its abstracted version, and 
then to use the structure of the resulting proof to help construct the proof of 
the original goal. This relies upon the assumption that the structure of the 
abstract proof is "similar" to the structure of the proof of the goal. From now 
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on, we will write " a b s t r a c t i o n "  to mean this intuitive idea of abstraction, 
and to distinguish this notion from the various formal and informal notions 
of abstraction used elsewhere in this paper. The abstractions described in 
Examples 8.5, 8.8, 8.10, 8.14, 8.27 and 8.29 below, are examples of uses 
of  a b s t r a c t i o n  in theorem proving. However, Wos et al. [81] describe 
a mapping which can be formalized as an abstraction which is not an 
abs t rac t ion .  The work done at the University of Texas at Austin by Woody 
Bledsoe and his group [3,5,77] on reasoning by analogy deserves special 
mention. In this work, the proof of an example is used as a proof plan to 
guide the proof of  "analogous" theorems; the information extracted from 
the example is very similar to that extracted, in abs t r ac t ions ,  from the 
proof of  the abstraction of  the goal. 

Most of  our work on the use of abstraction in theorem proving (but not 
all) concentrates on a b s t r a c t i o n  and on providing foundations to its use. 
Three important observations are in order. 

The first is that the most comprehensive and theoretical work on abstrac- 
tion done in the past focused on a b s t r a c t i o n  and on its use in resolution- 
based systems [60,61] (but see also [39,44]). 

The second is about the effectiveness of a b s t r a c t i o n  in theorem proving. 
Abs t rac t ion  was originally proposed as a very powerful and general purpose 
heuristic for constraining search in automated reasoning and, thus, for 
building more efficient theorem provers. We feel that gaining efficiency is 
only part of  the story. There are other advantages, for instance the ability 
to provide high-level explanations, to learn abstract plans and to reason by 
analogy. Nevertheless, the issue of  the efficiency of a b s t r a c t i o n s  is very 
important and deserves a deeper analysis. Various papers in the area of 
problem solving and planning give experimental and theoretical results that 
show that the use of a b s t r a c t i o n s  gives savings in efficiency [41,43,54,76]. 
None of  them, on the other hand, shows convincingly or exhaustively enough 
that this is always the case. Which it is not. We have done some theoretical 
and experimental work in this area. This work is partially described in [25] 
and will be the topic of a forthcoming paper. Our experiments have shown 
savings in many but not all cases; the theoretical model shows that there are 
situations where a b s t r a c t i o n  saves time but also situations where it results 
in less efficiency. Describing his work on abstraction, Plaisted also notes 

that 

.. .  Although some reductions in search time [using abs t r ac t i on ]  
were obtained, usually the performance was disappointing .... 
[63, p. 309] 

That abstraction is not always going to save us time is a consequence of 
many factors. For instance, in order to use any kind of abstraction, one 
has to invest time in the construction of the abstract space(s) (that is, in 
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forgetting the details). Moreover, a correct choice of the abstract spaces is 
vital [ 7,8 ]. 

All the work done so far is based on the idea of using abstraction (and 
in particular abstract ion)  automatically; on the other hand we believe that 
abstraction provides a much more useful tool if used in guided search. In this 
radically new use, abstract ion guides a proof checking system. The idea is 
that, since the abstract space ignores irrelevant details, we can interactively 
build an abstract proof which is an outline of the original proof. The details 
are then integrated back into the outline, again interactively with the help of 
the proof checker, in a provably correct way. We call a proof checker which 
supports this kind of reasoning, an abstract proof checker. The description 
of the details of the implementation of the abstract proof checker is beyond 
the goals of this paper; in [26] a preliminary and high-level description of 
it are given. Here it is worthwhile noticing that in this way we partially 
avoid the problem of inefficiency (the user is in charge of control) and that 
this kind of reasoning is used all the time by human mathematicians: they 
first build an outline of the proof and then refine this outline by adding 
details which have been abstracted away. For instance, Polya [65 ] proposes 
a four-part strategy for solving mathematical problems: understanding the 
problem, devising a plan, carrying out this plan, and finally examining the 
solution. 

As third and last observation, even if we use logic and formal deduction 
and our main interests lie in the automation of deduction in logical systems, 
the results and the ideas described here are entirely general and can be used 
in the study of reasoning with abstraction independently of the particular 
formalism used. 

2. Structure of the paper 

According to the motivations and goals defined in the previous section, 

(1) we define a theory of abstraction; 

and use it to: 

(2) understand the meaning of abstraction; 
(3) classify the different types of abstraction; 
(4) analyze and classify past work; 
(5) investigate the formal properties and the operations which can be 

defined on abstractions; 
(6) define ways of building abstractions; and 
(7) study at a preliminary level how the proof in the abstract space can 

be used to help find a proof of the goal. 
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The paper can be divided into three parts. In the first part, the basic ideas 
are given and the various forms of abstraction are introduced. Section 3 
gives an informal characterization of  abstraction. Section 4 gives the basic 
definitions of the different types of abstractions, Section 5 then explores 
how these abstractions can be used in automated reasoning. In Section 6, we 
consider the complications that arise from using abstraction with refutation 
systems. Finally, further classifications of abstractions are introduced in 
Section 7. This covers points (1), (2), (3) and (7) in the above list. 

In the second part, consisting of just Section 8, some previous work in 
abstraction is presented and discussed. We view this section as one of the 
most important contributions of  the paper. First, it should convince the 
reader that our proposed framework is very powerful and can capture most 
previous work in abstraction. Second, it allows us to give a unified view 
of work from many different areas carried out with many different aims. 
Finally, concentrating on the work in theorem proving, the topic of the final 
part of  the paper, it allows us to point out the strengths and the weaknesses 
of  various proposed abstractions. This covers point (4) of  the above list. 

To finish, the last part of the paper describes the main body of the theory 
of  abstraction under development. In Section 9, we explore how abstractions 
affect consistency and discuss the problem of inconsistent abstract spaces 
when a consistent space maps onto an inconsistent abstract space. This 
problem cannot be avoided; once we commit ourselves to certain very 
common and useful types of abstraction, it is always possible to find a set of 
axioms such that the abstract space is inconsistent even though the original 
space is consistent. Section 10 defines the basic operations which can be 
performed on abstractions. In Section 11 we show how to order abstractions; 
in Section 12 we consider the use of hierarchies of abstractions and suggest 
a way that an ordered hierarchy of  abstractions can be used to tackle the 
problem of inconsistent abstract spaces. Finally, in Section 13 we suggest 
a general methodology for building abstractions, and end with a section 
devoted to some concluding remarks and hints about possible extensions of 
the theory. This covers points (5) and (6) in the list above. 

3. What  is an abstraction? 

Some of the synonyms of the word "abstract" are "brief", "synopsis" and 
"sketch", some of the synonyms of the verb "to abstract" are "to detach" and, 
also, "to separate". The intuition which comes out of this list of synonyms 
is that the process of abstraction is related to the process of separating, 
extracting from a representation an "abstract" representation which consists 
of  a brief sketch of the original representation. 
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The work described in this paper concentrates on the use of abstraction 
in reasoning. Reasoning is about solving problems. We therefore informally 
define abstraction as: 

(1) The process o f  mapping a representation o f  a problem, called (follow- 
ing historical convention [69]) the "ground" representation, onto a 
new representation, called the "abstract" representation, which: 

(2) helps deal with the problem in the original search space by preserving 
certain desirable properties and 

(3) is simpler to handle as it is constructed from the ground representa- 
tion by "throwing away details". 

The following sections of the first part of this paper will be devoted to 
the formalization of the informal definition given above. Notice that we 
do not formally study the requirement for simplicity (property (3)) or any 
more global requirement for increased efficiency (see the description of the 
structure of the paper in the previous section). This would require some 
complexity arguments which will be discussed in subsequent papers. Some 
work in this direction can be found in [25,45 ]. 

4. Abstractions... 

. . .  as mappings . . .  

Informally, we have described abstraction as a mapping between repre- 
sentations of a problem. Thus, in giving a theory of abstraction, we begin 
with a very general method for describing representations of a problem; as 
is common in AI, we shall use formal systems for this purpose. Following 
Kleene [37], a formal system is a formal description of a theory. A formal 
system 27 can be (minimally) described as a set of formulas O (which rep- 
resent the statements of the theory) written in a language A (which provides 
the basic tools for writing formulas); in other words 27 = (A, O). Usually 
the language A is defined by the alphabet, the set of well-formed terms, and 
the set of weU-formed formulas (wffs from now on). To simplify matters we 
will forget about the alphabet and well-formed terms and just say that the 
language is the set of wffs. The alphabet and well-formed terms are given 
implicitly by providing the set of wffs. Thus O c A. An abstraction is then 
simply a mapping between formal systems. 

Definition 4.1 (Abstraction). An abstraction, written f : 271 =~ 272, is a pair 
of formal systems (2"1,272) with languages AI and A 2 respectively and an 
effective total function fa : AI --* A2. 
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We call ~v 1 the ground space and X2 the abstract space. Analogously 
we use the words "ground" and "abstract" to label objects of the ground 
and abstract spaces (we talk of e.g. ground and abstract formulas, ground 
and abstract terms, ground and abstract goals), fA is called the mapping 
function; where there is no ambiguity, we write f for .f.~. Occasionally we 
will also extend the mapping function in the obvious way to a mapping 
on sets of  wffs. We write f : Xl ~ Z2 to mean that (XI, 222) plus ./i~ is an 
abstraction. " ~ "  is not to be read as a "function"; an abstraction is simply 
a pair of  formal systems, each being a representation of a problem (and 
not the problem itself), and a mapping f l  between them. This captures 
property ( 1 ) of the intuitive definition of  abstraction. 

We require that the mapping function be total since we want to be able 
computationally to "translate" any wff in X~ into 222- We require it to be 
computable since, from an implementational point of view this is the only 
interesting case and, from a epistemological point of  view, we are interested 
only in those aspects of  reasoning which can be actually mechanized. 

. . .  preserving certain properties . . .  

The next step is to try to capture property (2) of our informal definition, 
that of preserving certain desirable properties. For this task, since our main 
interests are in automated reasoning, a more restrictive but useful notion of 
formal system is that of  axiomatic formal system. 

Definition 4.2 (Axiomatic formal system). A formal system X is a triple 
(A,A,£2), where A is the language, £2 is the set of  axioms and A is the 
deductive machinery of N. 

Note that £2 c_ A. £2 can sometime be the empty set (e.g. in natural 
deduction). We say that £2 = ~r~Logi c (J £2Theor, where £2Logic is the set of logical 
axioms and ~"~Theor is the set of  theoretic axioms. The deductive machinery is 
a set of  inference rules; this can also be an empty set (e.g., in nondeductive 
databases). As with the axioms, we say that A = ALogic U ATheor, where Z~Logic 
is the set of  logical inference rules and ATheo r is the set of theoretic inference 
rules. If XI = (A1, ~'~1, ZJl) and X2 = (A2,  ~'-~2, Z~2) are two formal systems, we 
write XI c_ X2 to indicate that Al C A2, £21 c_ £22, and AI c_ A2. Throughout 
this paper we will use standard natural deduction (ND) conventions and 
terminology [66]. Whenever the deductive machinery can be arbitrarily 
chosen, proofs will be given assuming that A is (a subset of) the ND rules 
described in [66] (not in the sequent form). From now on, when we speak 
of  formal systems we will mean axiomatic formal systems. In some places 
(e.g. [51]) the deductive machinery is defined as the pair of axioms and 
inference rules. Our definition of formal system as a triple better fits our 
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interests in mechanizing logic. For the sake of simplicity, unless we explicitly 
state to the contrary, 

we restrict ourselves to logical languages and to first-order formal 
systems. 

That is, we will restrict ourselves to systems where ~I.ogic and ALogic are 
complete for first-order logic, and among them to those where ~.x~gic = 

(which implies /2  = /2Theor) and Z~Th¢o r = ~ (which implies A = JLo~c). We 
sometimes lift the condition of completeness of the deductive machinery, for 
instance to consider propositional logic or incomplete deductive machineries. 
The restrictions on the axioms and on the deductive machinery is not very 
important  and it is easy to lift; it would cause complications only in few 
places. 

Briefly, some conventions and terminology. The set of theorems of 27, 
written TH(27), is the minimal set of wits that contains the axioms and is 
closed under the inference rules. 27 is syntactically incomplete if there is a 
formula a such that a ~ TH(27) and -~a ~ TH(27). We call it syntactically 
complete otherwise. 

With axiomatic systems, especially in theorem proving, a central notion 
is that of provability. We are therefore interested in how an abstraction 
affects provability; that is, when O, the set of statements of the theory, 
is TH(27). This notion will play an central role in the rest of the paper. 
Preserving provability is actually only a very weak property to demand of an 
abstraction. There are other desirable properties which must be captured; for 
instance a b s t r a c t i o n s  are used on the basis that the structure of the abstract 
proof  is "similar" to the structure of the ground proof. The important  
point  is that some very interesting results can be proved, even with such 
weak assumptions as the preservation of provability. Our next step towards 
capturing property (2), that of mappings preserving desirable properties, is 
therefore a classification of abstractions by their effect on provability: 

Definition 4.3 (T* abstractions). An abstraction f : "~1 ~ ~V'2 is said to be a 
( 1 ) TC abstraction iff, for any wff a, a E TH(271 ) iff fa (a) E TH(Z2 ); 
(2) TD abstraction iff, for any wff a, if J~(a)  E TH(272) then a E 

TH(271); 
(3) Tlabstraction iff, for any wffa ,  i r a  E TH(271 ) then fa (a) E TH(272). 

(Here "T" stands for "theorem", "C" for "constant", "D" for "decreasing", 
and "I" for "increasing".) Note that, because of the totality of fa, fa (a) is 
defined for any a. Note also that a TC abstraction is both a TD abstraction 
and a TI abstraction. We write that an abstraction is a T* abstraction iff it 
is a TC abstraction or a TD abstraction or a TI abstraction. 



332 F. Giunchiglia, 7: Walsh 

' AI 

-i ....... TH(ZI ) ~ - -  i TH (X 2 ) 

Fig. 1. TC abstractions. This is a graphical representation of a TC abstraction. In this (and the 
following figures) the two boxes represent the sets of wffs belonging to the two languages. The 
dashed lines show the behaviour of the abstraction mapping. If no dashed lines are shown there 
is no restriction on how a subset in the ground language, A 1, is mapped into the respective 
subset in the abstract language, A 2. In this figure, for example, all those wffs which are theorems 

of Xl map onto wffs which are theorems of X2. 

We have characterized the statements of  the theory, O, in terms of 
theoremhood. A more general concept is that of deducibility. By deducibility 
relation we mean here a set of ordered pairs; the first element of a pair is 
a subset of the language while the second element is a wff which can be 
deduced by assuming the members of  the first element. Theoremhood is a 
particular case of deducibility; a wff is a theorem iff it is deducible from 
the empty set. Even if the paper deals with provability, most of the analysis 
could have been given for deducibility. We shall write F ~-z a to mean that 

is deducible (derivable) in X from the set of wffs F.  Thus ~-z (~ is an 
alternative notation for ~ E TH(X) .  The following theorem makes precise 
the conditions under which provability preserving abstractions also preserve 
deducibility. 

Theorem 4.4. I f  f • X1 ~ X2 is a T* abstraction, such that ,f (a ~ fl) = 
f(c~) ~ f ( f l ) ,  and the deduction theorem holds in both X1 and X2, then f 
also preserves deducibility. 

Proof. We only consider TI abstractions. The other proofs are entirely 
analogous. If c~ l , . , . , a ,  F-z, fl, then, from the deduction theorem in Xt, 
t - X  I 0~1 ~ " ' "  --+ (-~n ~ f t .  Since f is TI, F-x2 . f (~l  . . . . .  ~ ~,~ -~ fl). But f is 
implication preserving. Thus F-z2 f (c~1) . . . . .  f ((~n) ~ f (fl). By modus 

ponens, f ( ( ~ l )  . . . . .  f (c~, )  F-z2 f ( f l ) .  [] 

In the remainder of the paper we shall restrict ourselves to abstrac- 
tions which preserve provability; this emphasis has historical motivations, 
grounded in our interest in theorem proving. However, subject to the hy- 
potheses of the above theorem, everything would also hold for deducibility. 

We conclude this section with some more observations about provability 
preserving abstractions. 
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Fig. 2. TD abstractions. 

TC abstractions map all the members of TH(I1)  onto members of 
TH( I2 )  and these are the only mcmbcrs of TH(I2) .  This is represented 
graphically in Fig. 1. For instance Herbrand's theorem suggests a TC ab- 
straction which maps a first-order theory onto a propositional theory [30] 
(see Example 8.27). As another example, any mapping which maps into a 
new theory where logically equivalent formulas arc collapsed onto a single 
formula can bc described as a TC abstraction. TC abstractions are used in 
decision theory under the name of reduction methods. The aim is to prove 
the dccidability/undecidability of the validity problem for certain subclasses 
of the first-order calculus. Having found a subclass of formula whose decid- 
ability is known, we show that there is a proof in the original formal system 
if and only if there is a proof in the new class. Many of these techniques 
are based on Herbrand's theorem (e.g. [19] ). 

In TD abstractions, only a subset of the members of TH ( I l )  arc mapped 
onto TH(I2) ;  this subset generates all the members of TH(I2) .  This is 
represented graphically in Fig. 2. A trivial example of a TD abstraction is 
the deletion of axioms and/or inference rules. TD abstractions have been 
used to implement derived inference rules; this is discussed in Example 8.12. 
An analogous approach was also taken by Wos et al. [81] (as described in 
[6]). 

In TI abstractions all the members of TH(I1 ) are mapped onto a subset 
of TH(I2) .  This is represented graphically in Fig. 3. In many ways, TI 
abstractions are dual to TD abstractions. Trivial examples of TI abstraction 
are adding some axioms or inference rules (such as induction), producing 
a nonconservativc extension of a theory and so on. 

... concerning abstractions 

Most abstractions used in the past turn out to be TI (that is, TI ab- 
stractions). Indeed, because of the requirement that the abstract proof be 
"similar" to the ground proof, abs t rac t ions  often satisfy much stronger 
requirements than just the preservation of provability. However, some map- 
pings previously used in abstract theorem proving are not TI abstractions. 
In the attempt to capture the class of abstractions, why should we use 
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Ai 
[ i ]~'1 _! i 

Fig. 3. TI abstractions. 

TI abstractions and not TD or TC abstractions? Tenenberg, for instance, 
proposes TD abstractions (and others with similar properties) as a way to 
avoid the problem of inconsistent abstract spaces [73,74]. This is discussed 
in more detail in Example 8.16. 

We don't often use TC abstractions as they are, in general, too strong; 
they do not give "simpler" proofs except in very special and limited cases. 
Of course this does not mean that they are useless. They are very useful, for 
instance, in changing the representation of a problem. However, they can 
only reduce the complexity in a limited way. For instance, if f : X1 ~ 2;2 is 
a TC abstraction with a recursive mapping function and 221 is undecidable 
then, since the mapping function is computable, .~2 cannot be decidable. 
(If we had allowed nonrecursive abstraction mappings, an example of a 
nonrecursive TC abstraction with undecidable ground space and decidable 
abstract space would be one where any theorem of X1 is mapped onto T 
and anything else onto ±.) 

We don't use TD abstractions which are not TC as completeness is lost-- 
there is at least one theorem of the ground space whose abstraction is not 
a theorem of the abstract space. In applications where the abstract space is 
used to help find a proof in the ground space, we consider completeness to 
be a property you do not want to lose. We do not wish to take a great stand 
on the issue of completeness versus efficiency. We simply mean that there is 
no a priori reason for losing completeness, and even fewer reasons for losing 
it in an uncontrolled fashion. Of course TD abstractions can be used in other 
ways; for instance they can be used to implement derived inference rules but 
in these cases, to retain completeness, the overall strategy of the theorem 
prover should be different and not inside the abs t r ac t ion  tradition. Thus 
we claim that certain subclasses of 

TI abstractions are the appropriate formalization for abs t r ac t i on  

and that these subclasses are captured and formalized inside this framework. 
There are a few abs t r ac t ions  which do not preserve provability in any 

direction. Two interesting examples are the abstraction used in "gazing" 
[64], a heuristic which generalizes the peeking heuristic used in the UT 
theorem prover [4], and the abstraction used in its further refinement, 
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called "grazing" [70]. Gazing has proved to be reasonably successful in 
driving the unfolding of definitions in set theory. The idea underlying both 
gazing and grazing is that definitions should be unfolded in the ground spacc 
exactly in the same order as they are unfolded in the abstract space(s). 

One criticism that can be made is that having to preserve provability 
may prevent us from capturing certain interesting applications. This may 
be true, but not of abstractions.  For instance in [23] we have hinted how 
gazing could be modified to become complete, that is TI, without losing 
the original intuition. Outside the abstractions tradition, an interesting 
example of mapping in general not preserving provability in any direction is 
"analogy". When reasoning by analogy, people require very loose connections 
between the two theories, definitely nothing as strong as T* abstractions. It 
is the authors' opinion that this kind of reasoning can still be captured and 
formalized in our framework although no in-depth research has yet been 
carried out. A natural development of the current theory is to generalize all 
the concepts introduced in this section to range over parts of the formal 
systems using syntactic conditions (on the language, on the axioms, on the 
proof tree, etc.). For example, we might define an abstraction as being TI 
with respect to some subset of the language. 

5. Using abstractions 

Most previous work on abstract ion has concentrated on just one way of 
using the abstract space to help find a proof in the ground space; that is, 
we build an abstract proof and then map it back onto a proof in the ground 
space. However, there are many more ways we could use abstractions. In 
this section, we shall not consider TC abstractions since, as we argued above, 
they are too strong and do not give simpler theories. 

The different uses of abstractions can be divided along two main dimen- 
sions: 

• In the first dimension we distinguish between deductive uses and ab- 
ductive uses. With deductive uses the fact that a property of f ( a )  
holds in the abstract space (e.g. f ( a )  E TH(/72), f(c~) ~ TH(Z2)) is 
a guarantee that the corresponding property of a holds in the ground 
space (e.g. ~ E T H ( / I ) ,  a ~ T H ( / I ) ) .  With abductive uses the fact 
that a property o f f  (a) holds in the abstract space is only a suggestion, 
not a guarantee, that the dual property of c~ holds in the ground space. 

• In the second dimension, we have positive uses and negative uses. 
With positive uses we have a suggestion or a guarantee (depending 
on whether we are using abstraction deductively or abductively) that 
a wff c~ is a theorem of the ground space, that is a E TH ( / t ) .  With 
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negative uses we have a suggestion or a guarantee that a wff is not a 
theorem and, under the hypotheses of syntactic completeness, that its 
negation is a theorem, that is ~c~ E TH(X~ ). 

The deductive use of  abstractions gives rise to "sound" theorem proving 
strategies since all the suggestions such strategies make are guaranteed to 
be true, while the abductive use of abstractions yields "complete" theorem 
proving strategies since such strategies will eventually allow us to find all 
theorems. It is only TC abstractions that will give us both sound and 
complete theorem proving strategies. 

The following table summarizes the different uses of the classes of ab- 
stractions introduced so far. 

deductive abductive 

positive TD T1 
negative TI TD 

Let us start with the deductive use of TI abstractions to give negative 
information. For TI abstractions, if f (~t )  ~ TH(X2) then it follows that 
ct ~ TH(271 ). That is, if we cannot prove the abstraction of a wff then it 
definitely isn't a theorem in the ground space. This kind of information can 
be used to prune unprovable (sub)goals from the search space. Gelernter 
in his geometry theorem prover [16], and Reiter in an incomplete ND 
theorem prover [68] used (semantic) abstractions in this way. When 275 is 
syntactically complete (where ~ ~ TH(X5 ) implies ~c~ E TH(XI )), we can 
also deduce positive information as f (~) ~ TH (272) implies -~t E TH (S~). 
Additionally, if 271 contains the rule of double negation elimination we can 
even deduce un-negated wffs since if f(-~ct) ~ TH(X2) then (t E TH(2;I ). 
Thus, to prove a wff ~, one interesting strategy is to attempt to prove that 
~ f  (-,c~)is a theorem in 272; theorem proving in X2 should be easier than in 
25 so we can save effort. Unfortunately this strategy, though it will tell us if 

is a theorem of Xs, will not directly give us a proof. Another disadvantage 
is that such a strategy is not complete; it will not allow us to prove all 
theorems of the ground space. 

For TD abstractions, if f ((t) E TH(X2) then it follows that (~ ~ TH(X~ ). 
That is, if we can prove the abstraction of a wff is a theorem in the 
abstract space then it is definitely a theorem in the ground space. This is the 
deductive use of TD abstractions to provide positive information. Often, 
the proof that f : S1 =* 272 is a TD abstraction shows, given a proof in X2 
of an arbitrary wff f ( ~ ) ,  how you can actually construct a proof of c~ in 
~5. This strategy was used with success by Wos et al. [81] in an automatic 
theorem prover for group theory. Their TD abstraction replaced functions 
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by predicates; however, theorems that required the existence or uniqueness 
properties of functions could not be proved by their theorem prover; this is 
an example of the incompleteness of a theorem proving strategy based upon 
a deductive use of abstraction. 

Let us now consider the abductive use of TI abstractions to suggest positive 
information. With TI abstractions which are not TC there will be some wffs 
a for which f (a) 6 TH (272) but for which a ~ TH(271 ). However, provided 
the abstraction does not throw away too much information the implication 
that a 6 TH(271 ) implies f (a) E TH (272) will reverse in many cases. Thus, 
if we can prove that f ( a )  e TH(272) then it is likely that a ~ TH(271 ). TI 
abstractions can not only be used to suggest positive facts about 271; they can 
also suggest proof steps. There is often a great similarity in shape between 
a proof of a wff in 271 and a proof of the abstraction of the wff in 272. This 
is especially true of abstractions which have the same deductive machinery 
(or a subset of it) in the ground and abstract spaces. The steps of a proof 
in 272 can thus be used to guide theorem proving in 271. The proof steps 
provide "islands" to get to; we move between these islands by filling in the 
details or applying the inference rules thrown away by the abstraction. This 
strategy saves us effort as it "divides and conquers" the problem solving. It 
is perhaps the most common use of abstraction and it is how abs t rac t ions  
have been used in the past. 

Lastly, we conclude with the abductive use of TD abstractions to suggest 
negative information. With TD abstractions, if f ( a )  ~ TH(272) then it is 
likely that a ~ TH(271 ). This information could be used, for example, to 
suggest (sub)goals to prune from the search space. More weakly, it might 
just suggest which subgoals to delay attempting to prove. For abstractions 
in which 271 is syntactically complete, TD abstractions can also provide 
positive information as f(-- ,a) ~ TH(272) suggests that ~ E TH(Z1 ). It is 
not clear how useful this way of using TD abstractions can be. We have 
found no references to applications which use TD abstractions in this way. 

6. Refutation systems 

In Definition 4.3, we classified abstractions by the relationship between 
provability in the ground space and provability in the abstract space. This 
is appropriate when the deductive machinery of both spaces is used to 
generate theorems. However, there are formal systems whose deductive 
machinery determines inconsistency, for instance resolution-based systems. 
We call the systems of the first type, provability systems, those of the second 
type, refutation systems. (We say that a formal system, 27, is absolutely 
inconsistent iff, for any wff a, a 6 TH(27), and inconsistent iff there 
exists a wff a such that a e TH(27) and -,a e TH(27). For an absolutely 
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inconsistent system, we do not require that negation be part of the language. 
However, when negation is part of the language and we are in a classical first- 
order logic, an absolutely inconsistent system is also inconsistent and vice 
versa.) In the cases when the deductive machinery determines inconsistency, 
abstractions can be better classified on how an (absolutely) inconsistent 
formal system is mapped onto an (absolutely) inconsistent formal system. 

As pointed out at the very beginning, a formal system may be thought of as 
consisting of  a language, A, and a subset of  the language, O, which represents 
the statements of  the theory. Thus, another very important example of ~9 
is when O = N T H ( S ) ,  where N T H ( S )  is the set of the wffs ~ which, 
if added as an assumption to S,  make the resulting system absolutely 
inconsistent. Notice that assumptions are not axioms, the difference being in 
the case of formulas which are open (if they are closed formulas, assumptions 
behave like axioms). For instance, assumptions, differently from axioms, 
in ND may prevent the application of "forall" introduction and "exists" 
elimination [66] while in Hilbert calculi they are such that the deduction 
theorem does not hold [51]. In resolution the distinction between axioms 
and assumptions is irrelevant. As N T H ( X )  is used only when S is a 
refutation system, we will simply say that a wff is added to the axioms 
leaving implicit the distinction between axioms and assumptions. Given a 
formal system 27, we call the elements of  NTH(27) the nontheorems of 
27. TH(27) and N T H ( X )  are obviously related. For instance in classical 
first-order logics, c~ c N T H ( X )  iff ~ E TH(X) ;  X is inconsistent iff 
TH(27) = NTH(27) = As, or iff T H ( S )  N N T H ( S )  ~ ~; outside T H ( S )  
and N T H ( S )  but inside the language are all those formulas ~ such that 
neither c~ nor -~c~ belongs to TH (S) ,  if a theory is syntactically complete no 
formulas are outside the union of TH(27) and NTH(27). 

We will now classify abstractions on the relationship between NTH(S1)  
in the ground space and NTH(X2) in the abstract space. Entirely dual to 
Definition 4.3, we give a definition of the following inconsistency preserving 

abstractions: 

Definition 6.1 (NT* abstractions). An abstraction f : Xl ~ S2 is said to be 

an 
(1) NTC abstraction iff, for any wff c~, c~ 6 NTH(XI)  iff f~(c~) 

NTH(Z2) ;  
(2) NTD abstraction iff, for any wff c~, if fA(~) E NTH(X2) then ~ 

NTH (S~); 
(3) NTI abstraction iff, for any wff c~, if c~ ~ NTH(XI)  then fA(~) 

NTH (•2). 

(Here "N" stands for "non".) Dually to T* abstractions, any NTC abstrac- 
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tion is both an NTD abstraction and an NTI abstraction. 
Some more notational and naming conventions. An abstraction is said to 

be an NT* abstraction iff it is an NTC abstraction or an NTD abstraction or 
an NTI abstraction. It is said to be a TC* abstraction iff it is a TC abstraction 
or an NTC abstraction, TD* abstraction iff it is a TD abstraction or an NTD 
abstraction, TI* abstraction iff it is a TI abstraction or an NTI abstraction. 
When an abstraction is known to fall in more than one of  the above classes 
we write all of  them in the prefix. Thus for instance a TC/NTC abstraction 
is an abstraction which is both a TC and an N T C .  We also write TH* (Z)  
to mean NTH (Z)  or TH (Z).  Statements made involving names containing 
"*" (i.e. T* abstraction, TC* abstraction, etc.) can be read by substituting 
in all the valid ways the same letter (i.e. "C", "D", or "I" in first case; "N" 
or nothing in the second) uniformly inside the sentence. 

We have introduced NT* abstractions with the goal of  using them when 
the deductive machinery works by refutation. In such cases, we claim that 
they play the same role that T* abstractions play in provability systems. This 
claim deserves greater attention. After all, even when we use a refutation 
system we are still interested in provability; we should therefore expect to 
be still interested in T* abstractions. 

This apparent contradiction can be explained as follows. Everything de- 
pends on how the user interacts with the theorem prover. The basic idea 
underlying refutation systems is that a wff is a theorem if adding its negation 
to the axioms gives an inconsistent formal system. In some (most?) cases, 
the goal is input and the system itself automatically negates it before adding 
it to the set of  axioms. If  this also happens in the abstract space, negation 
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is not abstracted, the "inference engine" (resolution plus the negation of 
the goal) works on provability, and T* abstractions are the appropriate 
abstractions to use. 

Before we can formalize this argument further, we need to define a very 
useful notion, that of  a formal system with negation. We will use this notion 
to show under what assumptions a T* abstraction can be used in a refutation 
system. 

D e f i n i t i o n  6.2 (System with negation). X is a formal system with negation 
iff there is the unary connective "-,", called negation, such that, for any 
expression a, 

(1) a is a wff iff -,a is a wff; 
(2) a E T H ( X )  iff -~a E N T H ( X ) ;  
(3) -~a E T H ( X )  i f f a  E N T H ( X ) .  

Three observations are worthwhile. First, condition (2) means (in Prawitz' 
ND terms) that the system must contain the "reasoning by contradiction" 
inference rule and 

O~ -nOl 

A_ 

A system with negation is thus inconsistent iff it is absolutely inconsistent. 
As almost all the systems of  interest are with negation and what is relevant in 
this context is "absolute consistency/inconsistency", in the following we will 
write "inconsistency/consistency" to mean "absolute inconsistency/absolute 
consistency". Second, any system which has an introduction rule correspond- 
ing to every elimination rule, as is usually the case, satisfies conditions (1) 
and (2) and has classical negation. In this case condition (2) yields con- 
dition (3) which holds intuitionistically. For many proofs in the paper 
intuitionistic negation is sufficient. Third, all the most common first-order 
systems, that is Hilbert systems, all the ND calculi, and resolution, are sys- 
tems with negation. Notice that if we had defined N T H ( X )  as the set of 
those wffs which, if added as axioms (instead of  as assumptions), make X 
inconsistent, we would have failed to capture at least Hilbert systems and 
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ND (the trivial counterexample being a system 27 where p (a) is an axiom; 
we would have in fact that -~p(x) ~ NTH(27) with p ( x )  ¢. TH(L')).  

The notion of system of negation allows us to define a set of cases where 
the different forms of abstractions coincide. The following theorem holds. 

Theorem 6.3. I f  f is an abstraction f : 271 ~ 272 and 271 and 272 are two 
syntactically complete systems with negation, then f is a NTI  abstraction 
( TI abstraction) i f f  it is a TD abstraction (NTD abstraction). 

Proof. Let's consider NTI abstractions and TD abstractions and only one 
direction. The other proofs are entirely dual. 

(=~) In an NTI abstraction (see Lemma 6.5 below), i f -~f (p)  f[ TH(272) 
then -~p ~ TH(271 ). But, from the completeness of 271, we have-,p ~ TH(271 ) 
iff p e TH (271). Similarly, from the completeness of 272, we have - , f  (p) 
TH(272) iff f ( p )  6 TH(272). Thus, f ( p )  E TH(272) implies p E TH(271). 
But this is exactly the definition of TD abstraction. [] 

The intuition is that, as the abstract space is complete, for instance with 
TD abstractions, decreasing the theorems corresponds to increasing the 
nontheorems. An obvious corollary is that, if f : 271 =~ 272 is an abstraction 
and 27t and 272 are syntactically complete then f is a TC abstraction iff it is a 
NTC abstraction. Theorem 6.3 is not very relevant as almost all the theories 
we consider are incomplete, that is they are such that a ¢ TH(27) does not 
imply -,a 6 TH (27). Generalizing to incomplete theories causes Theorem 6.3 
to fail. Various situations may happen in this case. For example, an NTI 
abstraction with the abstract space, 272, complete and the ground space, 
271, incomplete will map both the members of TH(271 ) and the formulas 
which neither belong to TH(271 ) nor to NTH(271) onto TH(272) while a TD 
abstraction will map into NTH(272) both the members of NTH(271 ) and 
the formulas which neither belong to TH(271 ) nor to NTH(271 ). 

The question then remains under which conditions T* abstractions can 
be used in refutation systems. Let us consider the following lemma. 

Lemma 6.4. I f  Z1 and S2 are two formal systems with negation and i f  
f:271 m272 i sa  

• TC abstraction then, for any a, -~a 6 NTH (271) i f f -~f  (a) ~ NTH (272); 
• TD abstraction then, for any a, i f - ~ f ( a )  E NTH(272) then -~a E 

NTH (271); 
• TI abstraction then, for any a, i f  ~a 6 NTH(271), then -~f(a)  6 

NTH (272). 

Thus, provided both the ground and abstract spaces are systems with 
negation, we can use T* abstractions with refutation systems. For instance, 
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with a TI abstraction if a is a theorem in the ground space then the negation 
of its abstraction, -~f (a) ,  will make a refutation theorem prover stop with 
success (that is, by generating ±).  

T* abstractions can be used in refutation theorem proving as 
long as the wff added to the axioms of the abstract space is the 
negation of the abstraction of the wff whose negation is added to 
the axioms of the ground space. 

In formulas, instead of adding f (~a)  to the axioms of the abstract space, 
we must add -~f (a).  However, when the system does not negate the goal, 
the "inference engine" uses refutation, and f (~c~) is added to the axioms 
of the abstract space, only NT* abstractions can be used. 

So far we have discussed the use of T* abstractions in refutation-based 
theorem proving. The dual question also arises, namely can NT* abstractions 
be used with a provability system? Lemma 6.4 holds dually, that is: 

1.emma 6.5. I f  X1 and X2 are two formal systems with negation, then i f  

f : Sl ~ X2 is a 
• NTC abstraction then, Jot any a, ~a c TH(SI )  i f f ~ f ( a )  E TH(S2);  
• NTD abstraction then, jor any ~, i f - ~ f ( , )  E TH(S2) then -~c~ E 

TH (Sl);  
• NTI  abstraction then, for any ~, i f  ~ E TH(Xt) ,  then ~ f ( a )  6 

T H (272 ). 

The interpretation of this lemma is entirely dual to that of Lemma 6.4. 
NT* abstractions can be used in provability systems to prove -~a provided 
we try to prove -~f (~) in the abstract space. 

Finally, are there abstractions which can be used both with refutation 
systems and with provability systems, irrespective of how the goal is negated? 
To answer this question, we introduce the notion of negation preserving 
abstractions. This notion is crucial for abstractions to be used in both 
refutation and provability systems. 

Definition 6.6 (Negation preserving abstractions). Let 27~ and 2?2 be two sys- 
tems such that a is a wff iff - ~  is. An abstraction f : $1 =~ $2 is negation 
preserving iff, for any a, f ( - ~ )  = ~ f ( a ) .  

Preserving negation is a powerful concept. If an abstraction preserves 
negation then the notions of preserving provability and of preserving incon- 
sistency collapse. In fact the following theorem holds. 
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Theorem 6.7. I f  XI and X2 are two formal systems with negation, then a 
negation preserving abstraction f : Xl =~ X2 is a T* abstraction iff it is a 
NT* abstraction. 

Proof. Let us consider TI abstractions and only one direction. The other 
proofs are analogous. Suppose that f is a TI abstraction. Since X~ is 
a system with negation, if a ~ NTH(XI) then -~a ~ TH(X1). But f is 
TI . Thus f(-~a) E TH(X2). As f is negation preserving, this implies 
--,f(a) E TH(X2). From which it follows that f ( a )  E NTH(X2) and that 
f is NTI. [] 

A consequence of this theorem is that a negation preserving abstraction 
mapping can thus be used in both refutation and provabifity systems. Notice 
moreover that we have made no hypotheses about the deductive machinery 
used in the ground and abstract spaces. The choice of deductive machinery 
is, in this perspective, irrelevant. All that matters is the deductive closure 
it generates. This intuition can be exploited to show that if a negation 
preserving abstraction f is T*/NT* then all the abstractions which differ 
from f only in the choice of the deductive machineries are T*/NT* as long 
as their deductive machineries compute the same set of theorems. This is 
what the following theorem says. 

Theorem 6.8. Let ~v" 1 "-  ( A I , ~ ' 2 1 , A 1 )  and X2 = (A2, f f22 , .42)  be two systems 
with negation, and f : Xl =~ X2, any negation preserving T* abstraction. 
Let X~ = (A1,g21,A~) and X~ = ( A 2 , ~ ' 2 2 , ~ )  be any two systems such that 
TH(X/) = TH(Xi), i = 1,2. Then the abstraction f '  : X~ ~ X~, which uses 
the same mapping function as f : X1 =~ X2 is a T*/NT* abstraction. 

One significant consequence of Theorem 6.8 is that any abstraction on the 
language and the axioms defined for a refutation-based system can be safely 
applied with a provability system (and vice versa) as long as they generate 
the same set of  theorems. Thus for instance, an abstraction developed for 
refutation systems (e.g. all those suggested by Plaisted) can be safely used 
with any provability system complete for first-order logic, for instance ND 
(modulo extending it to be defined over the richer syntax of ND, e.g. "~" ,  
but this is a minor point). 

As far as we know, most of the abstractions proposed in the past are 
negation preserving. However, there are abstractions which are not (see 
Table 1 at the end of Section 8). An interesting class of abstractions which 
are not negation preserving and work between systems with negation is the 
class of ground abstractions (see Example 8.27). In some cases, negation 
may not be part of the language of the ground or abstract spaces, or negation 
may only be partially preserved by the mapping. One such abstraction, used 
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in GPS [57] and described in Example 8.3, is such that the abstract language 
allows only sets of  atomic formulas. The mapping deletes negation as well 
as any other logical symbol. Not considering the logical symbols seems quite 
a drastic step as a lot of  the information is lost; on the other hand it allows 
very fast formula manipulation. Intuitively, it seems that it might work well 
with short proofs. 

7. Some further classifications 

The definitions of T* and NT* abstractions are not constraining enough; 
they only partially capture "certain desirable" properties preserved by a 
mapping (property (2)).  Abstractions (and abs t r ac t ions  as a particular 
case) usually satisfy much stronger requirements than simply preserving 
provability or inconsistency. 

Most abstractions f (and all abstractLons)  are such that for any element 
el in the abstract space (e.g. a wff in its language, an axiom in its axiom set, 
an inference rule in its deductive machinery), it is possible to find at least 
one corresponding element el,  in the ground space such that, loosely writing, 
f (e l )  = el. This is very important, for instance in abstractLons,  in order 
to use effectively the similarity between abstract and ground proof. (We 
can exploit the similarity by substituting each wff/axiom/inference rule in 
the abstract proof with one among the ground wffs/axioms/inference rules 
mapped onto it.) The definition of abstraction given above can be refined 
to capture this idea of correspondence simply by exploiting Definition 4.2 
of a formal system. It is sufficient to describe how the the axioms and the 
inference rules of the ground and abstract spaces are related via the use of 
two extra mapping functions f~ and f~. Analogously to fA, the functions 
f~ and f~ are requested to be total and computable. This definition of 
abstraction with three mapping functions corresponds closely to the way 
abstractions are often used. Given a ground space, we often construct the 
abstract space using three functions: a function that maps the wffs in the 
ground language onto the wffs in the abstract language, a second function 
that maps the axioms of the ground space onto the axioms of the abstract 
space, and a third function that maps the deductive machinery of the 
ground space onto that of the abstract space. This three-part description of 
an abstraction in terms of the mappings on the language, on the axioms, 
and on the deductive machinery was introduced in [21] and it is especially 
appropriate when the axioms of the ground space are not fixed. We often 
define the function for mapping the axioms sufficiently generally so that it 
will work with whatever axioms we happen to have in the ground space; 
the abstract space is not fixed but depends on the particular axioms of 
the ground space. In this paper we need not introduce the extra notation. 
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However we will sometimes allude to this description of abstraction when 
we talk about the mapping of the axioms, the mapping of the inference rules, 
and the mapping of the ground space onto the abstract space. 

A second important requirement, satisfied by most abstractions f (and by 
all ab s t r ac t i ons )  is that the abstract space --F2 is completely generated from 
the ground space 271; in other words that the language, the axioms, and the 
deductive machinery are constructed only on the basis of the corresponding 
elements in the ground space. In this case we write that 272 = f ( /1) ,  where 
f is the abstraction, and say that f is surjective. This condition can be 
formally captured by requiring that the mapping functions be surjective. As 
in the notion of  abstraction used here we do not consider the extra two 
mappings, we need only request that fa be surjective. 

In this paper we restrict ourselves to surjective abstractions. 

Abstractions can be further classified depending on how they map axioms 
and inference rules in the ground onto those of the abstract space. This 
will be the topic of the remainder of this section. These definitions capture 
concepts that are very relevant to the theory of mapping an abstract proof 
back onto a ground proof [24]. In this paper they will be used extensively 
in Section 8 to classify previous examples of abstraction. 

The first definition captures the class of abstractions which map the 
axioms the same way as the language. (If A is a set and f a function 
defined over A, by f ( A )  we mean the set ( f ( a ) :  a E A}.) 

Definition 7.1 (A/t2-invariant abstraction). Let 271 = (Al, 121,/11) and 272 = 
(A2, Q2,/t2) be two formal systems. An abstraction, f : 271 =~ --rE is said to 
be A/t2-invariant iff 122 = fa (t21), and A/O-variant otherwise. 

A/Q-abstractions are used whenever we do not distinguish between wffs 
and axioms. This is often true of abstractions which are not tuned to a 
particular theory or when no special constraints are imposed on the abstract 
space. Example 8.1 6 uses a A/Q-variant abstraction. 

Our second definition is of  an abstraction which keeps the same inference 
rules in the abstract space as in the ground space. 

Definition 7.2 (/1-invariant abstraction). Let 271 = /Al,121, /11) and 272 = 
(A2,122,/12) be two formal systems. An abstraction f : 271 =~ 272 is called 
A-invariant iff A 2 C_/11, A-variant otherwise. 

In a d-invariant abstraction, a subset of  the inference rules of '~1 is used 
in 272. Most abatraet±ona are /1-invariant since the same inference engine 
can be used for both the ground and the abstract spaces. This gives a 
great economy of  implementation. Moreover the problem of mapping back 
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is simplified since abstract and ground proof trees can be matched more 
easily--the abstract proof looks essentially like a ground proof with gaps. 
Notice that A2 _c Al may hold even if the alphabet of A1 is different from 
that of  A2. The variables used in defining the inference rules are meta- 
variables and only commit us to a particular logical syntax for the object 
language. The abstraction used in Example 8.3 is A-variant. 

Our third definition is of  an abstraction which maps the inference rules 
the same as the language. 

Definition 7.3 (A/A-invariant abstraction)• Let Xl = (Al,12~,Al) and S2 = 
(A2,g22,32) be two formal systems• An abstraction f : S~ ~ $2 is called 
A/A-invariant iff 

A2 = { fA(ctl) ' ' ' ' ' fA(~n) c~l'''''~n } 
• C A  l . 

fA ( ~ + l )  O!n+l 

It is called A/A-variant otherwise. 

Note that fA (a j )  must be read as applying )CA tO the wff substituted for aj  
when applying the inference rule. A/A-invariant abstractions are also often 
used as a b s t r a c t i o n s  since they make the problem of mapping back easier• 
For example, it is easier to establish a connection between the premises 
of  the application of  an abstract inference rule and the premises of  the 
application of a ground inference rule. Notice also that the notions of A- 
invariance and A/A-invariance are independent; A/A-invariance does not 
imply A-invariance (or vice versa). A/A-invariant abstractions change the 
input and outputs to the inference rules according to fA while A-invariant 
abstractions keep the same inference engine. For example, the abstraction 
in GPS (see Example 8.3) is A/A-invariant, but it is not A-invariant; the 
inference rules used in the abstract theory are completely different to those 
in the ground theory. 

Our fourth definition is of an abstraction which maps both the axioms 
and the inference rules the same as the language. 

Definition 7.4 (X-invariant abstraction). An abstraction f is X-invariant iff 
it is A/I2-invariant and A/A-invariant, S-variant otherwise. 

In [70,71], veridicality, which is a notion very similar to (but slightly 
weaker than) X-invariance, has been claimed to be fundamental for an 
a b s t r a c t i o n  to make any sense at all. 

The four definitions so far have characterized various relationships be- 
tween the mapping of the language and the mapping of the axioms and 
inference rules. The final definition in this section, that of a theory ab- 
straction, captures a large class of  abstractions which map the theory and 
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not the logic; that is, abstractions that leave the logical syntax of formulas 
unchanged. 

Definition 7.5 (Theory abstraction). If f : Z1 ~ 2"2 is an abstraction, then 
f is called a theory abstraction iff for any wffs a and fl, 

• fA (*fl) = *fA(fl) for all the logical unary connectives, ,; 
• f A ( a  o fl) = f A ( a )  o fA ( f l )  for all the logical binary connectives, o; 
• fA (ox .a )  = ox. fA (a)  for all the quantifiers, o. 

Note that a theory abstraction can be used to drop variables (if fA (P) 
does not mention x, then oX.fA (p)  is equivalent to f,~ (p)) and to drop 
conjuncts and disjuncts (for example, if fA (q) maps onto ±, then fa (p v q ) 
is equivalent to fA (P) ). The idea underlying theory abstractions is that most 
useful abstractions abstract the theory but preserve the logic. That is, they 
map the atomic wits and not the logical structure of the wff. In general, the 
logic is well-behaved and it is the theory that needs to be simplified. Indeed, 
the authors would argue that you should only change the logical structure of 
a wff with great care as the consistency of a logic is very finely balanced. As 
they preserve the logical structure of formulas, theory abstractions are often 
A-invariant with the same inference rules used in both the ground and the 
abstract spaces. 

8. Examples of abstractions 

This section describes some case studies, some of which are very famous, 
taken from various subfields of artificial intelligence. In most cases the 
original description was quite informal. In order to fit these examples into 
our framework we have performed a (hopefully faithful) reconstruction of 
what was said in the original papers. For each example we first briefly 
describe the work (this description is not meant to be self-contained) and 
then we formalize the abstraction and analyze its properties. 

This section has many goals. First, we hope it will convince the reader 
that our framework is very powerful and can capture not only most previous 
work in abstraction but also work which initially seems completely unrelated. 
Second, it provides a unified view of work from many different areas 
which was carried out with a great variety of goals. Third, it supports the 
authors' belief that most work in automated reasoning should be formally 
characterizable in terms of the provability relation. Fourth, it demonstrates 
how this framework generalizes some important results. Fifth, if (as we 
believe) this sample of abstractions is representative of abs t rac t ions  as a 
whole, it highlights the simple properties of most abs t rac t ions  and thus 
suggests what properties the abs t rac t ions  we construct should possess. We 
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view this section as one of  the most important contributions of this paper. 
Our understanding and definition of abstraction has been strongly influenced 
by these examples. 

The structure of this section is as follows. We begin by describing three 
historically important examples of  abs t rac t ion .  We divide the remaining 
examples into four classes: propositional abstractions (in which the abstract 
space is propositional), predicate abstractions (in which predicate symbols 
are mapped together), domain abstractions (in which constants are mapped 
together) and metatheoretic mappings (which capture some major metathe- 
oretic results like Herbrand's theorem). We conclude with a summary of 
the properties of  each of  the examples, and a brief discussion of the general 
properties of abs t r ac t ions .  

8.1. Historical examples 

Example 8.1 (Planning).  ABSTRIPS [69] was one of  the very first and 
most famous uses of abstraction. ABSTRIPS built STRIPS plans in which 
operators applied to states of  the world, generating new states. The pre- 
conditions to operators are atomic formulas abstracted according to their 
criticality, computed semi-automatically by the system. Each precondition Pi 
has its own criticality which is a natural number associated to the predicate 
symbol occurring in it. Criticalities are therefore totally ordered. The idea is 
to build a hierarchy of  abstract spaces, each level in the hierarchy containing 
all the preconditions above a given criticality. We write i ~ cri t (x)  to mean 
that the criticality of the precondition Pi is greater than K. (Therefore, if 
~:1 < K2 then crit(x2 ) c crit(Kl ).) To put this into a theorem proving con- 
text and following Green [29], we adopt a situation calculus. ABSTRIPS 
can then be formalized as a A/~-invariant  abstraction, lAB : X~ ~ $2, 
which maps between situation calculi, X~ and X2, with first-order languages, 
frame, operator, and theoretic axioms, and natural deduction rules of  infer- 
ence. Operators are wffs of  the form " Vs. (Al<.<i<~nPi(S)  --* q ( f ( s ) ) )  ", 
where Pi is a precondition, s is a state of the world, f is some action, and q 
describes the new state of the world. Goals are wffs of the form "3s r ( s ) ' .  
Axioms are mapped from X~ to 2:2 using the same mapping function as the 

language. 
The mapping of wffs (and axioms) is as follows: 

• l A B ( a )  ---- a if ~* is an atomic formula; 

• f~ ,B( -~a )  = ~ f A B ( a ) ;  
• fAB(a o fl) = fAn(a) o fAS(/~), where "o" is "A" or "V"; 
• fAs(~X.a) = ~x.fAB(a), where "~" is "3" or "V"; 
• fAs(a ~ fl) = lAB(a) --+ fAB(fl), provided "c~ --+ fl" is not an operator; 
• f A B ( A l ~ i < ~ n P i ( S )  --~ r )  = A i 6 c r i t c x ) p i ( s )  --~ f A s ( r ) ,  f o r  any operator 

(where i c cr i t (x)  if the criticality of p; is greater than K). 
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For example, the operator for climbing a (climbable) object, 

a t ( z , x , s )  A climbable(y, z ,s)  ~ a t (z ,x ,  climb(y, z ,s)  ), 

might abstract to one in which we do not bother to check that the object is 
climbable, 

a t ( z , x , s )  ~ a t (z ,x ,  cl imb(y,z ,s)  ) 

This abstraction is TI. 

Theorem 8.2. I f a  ~ TH(271), then fAa(a) e TH(272). 

Proof (Outline). By proving that given a deduction tree H1 of a, we can 
build a deduction tree HE of fAB (a) discharging the abstraction of the same 
assumptions. The proof proceeds by induction on the depth N of H I. For 
proofs of length 1, fAB is applied to the single wff in the tree; this generates 
a valid deduction in HE. Assume that we have shown it for trees up to size 
N. We shall use fAB (H) to represent the tree in 272 constructed from a tree 
H in 271 of size N or less. We show that it is true for deduction trees of 
size N + 1 irrespective of the rule application used to construct the tree of 
size N + 1 from tree(s) of size N (or less). Any rule application that is not 
modus ponens involving an operator translates unmodified. For instance, 
an or-introduction on (a in  H1 becomes an or-introduction on fA~ (q~) in//2. 
For an operator application, the following transformation is performed: 

/7 

q A Pi A Pi 
l~i~n l~i~n 

AB 

==~ 

q 
A 

iEcrit(x) 
A Pi ~ fAB(q) 

iEcrit(x ) 

AB(q) 

By the induction hypothesis and the fact that Aiccrit(x)Pi follows from 
AI <i<n Pi by a (possibly empty) sequence of applications of and-elimination, 
this is a valid abstract deduction tree which discharges the (abstraction of 
the) same assumptions as the deduction tree in 271. [] 

Note that the proof in the abstract space is longer than the proof in 
the ground space. The purpose of abstraction is not to find these longer 
proofs; we hope that there are also going to be shorter proofs. These shorter 
proofs are those that don't try to satisfy Pi for i ~ crit(x). However, there 
is no guarantee that there will be a shorter proof than the one exhibited; 
we will always be able to devise an obtuse theory in which to prove the 
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Pi for i c critO¢) we have to prove all the other Pi for i f[ crit(~:). This 
problem would be eliminated if ABSTRIPS had abstracted both left- and 
right-hand sides of  operators. Under such circumstances, Pi for i f[ crit(x ) 
would not even appear in the abstract language. Note also that since this 
abstraction is TI there is no guarantee that given an abstract proof we 
will be able to construct a ground proof which uses the same operators. 
ABSTRIPS works because the operators are (largely) independent. Thus we 
can solve the preconditions separately. Actually, ABSTRIPS is a little more 
clever than this; the use of  criticalities allows some operator dependence to 
occur as it restricts the order in which the operator preconditions have to 
be satisfied. For an abstraction like ABSTRIPS to be useful, the area of the 
region TH(S2)  - f  ( T H ( Z I ) ) ,  that is those abstract theorems which don't 
map back, needs to be small in comparison to f ( T H ( S I  )), those abstract 
theorems which do. 

Example 8.3 (Problem solving). Abstraction has been a useful problem solv- 
ing heuristic ever since the early days of AI research. Indeed, GPS used 
abstraction in its planning method [57] for state space search. After the 
objects and operators for a problem have been abstracted, the entire de- 
ductive machinery of  GPS is used to solve the abstracted problem; this 
solution is then used to construct a plan to guide the solution of  the original 
problem. We will just consider one of the S-invariant abstractions suggested 
for propositional logic problems in [57]. Let us call it fGPS : Xl ~ X2. S~ is 
the propositional calculus of Principia Mathematica. $2 is a formal system 
in which the wffs are (nested lists of) propositional sentence letters. To 
construct the abstract space, the same mapping is applied to the wffs, the 
axioms, and the premises and consequences of the inference rules of the 
ground space. If ~ and fl are two formulas in the ground language then: 

fGPS(~ V /~) = fGPS(~ A /~) = .fG~s(~ ~ /3) = ( fGPs(~) ,  f¢ ;~S(3)) ;  

fGPS(~(Y) = fGPs(O~); 

fGPS (a) = c~ if a is a propositional sentence letter. 

For example, p V (~q -~ p)  maps to (p, (q ,p) ) .  This is a TI abstraction. 

Theorem 8.4. I f a  E TH(ZI  ), then fGps (c~) E TH(S2) .  

The proof is by induction on the length of  the proof. We just take a proof 
tree/71 of O~ and apply fGvs to every wff in the tree. Note that the reverse of  
Theorem 8.4 is not true. For example (p,p) E TH(S2)  but pA-~p f[ TH(2~2). 
Not every abstract theorem maps back. 
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Exmltple 8.5 (Theorem proving). Plaisted developed a theory of  
a b s t r a c t i o n  for resolution systems [60,61]. His work is the most com- 
plete and well-developed work on the theory of abstraction developed in the 
past. He defines three classes of abstract±on8 for refutation systems that 
preserve inconsistency. His first two classes, ordinary abstractions and weak 
abstractions map a set of clauses onto a simpler set of  clauses. These abstrac- 
tions are A/12-invariant abstractions; that is, the same mapping function is 
used to abstract the wiTs and the axioms of the ground space onto those of 
the abstract space. 

For ordinary abstractions, the mapping function maps a clause in the 
ground language onto a set of clauses in the abstract language subject to the 
following conditions (notice that we interpret the empty clause as falsity): 

(a) f ( ± )  = {±}; 
(b) if a3 is a resolvent of OL 1 and Ot 2 in 271 and f13 E f ( a 3 ) ,  then there 

exist f12 e f(a2) and f l l e  f ( a l )  such that a resolvent of  fll and f12 

subsumes fla in 2:2; 
(c) i f a l  subsumes Ot 2 in 271 and f12 E f ( a 2 ) ,  then there exists fll E f ( a l )  

such that fll subsumes fiE in X2. 

Weak abstractions are identically defined to ordinary abstractions except 
condition (b) is weakened to the property that if a3 is a resolvent of  al 
and ~2 in 271 and f13 ~ f ( a 3 ) ,  then there exist f12 e f ( a 2 )  and fll e f ( a l )  
such that fll subsumes f13, or f12 subsumes fl~ or a resolvent of  fll and fl 2 
subsumes f13 in 2:2. All ordinary abstractions are (trivially) weak, but not 
all weak abstractions are ordinary. 

Theorem 8.6. Weak and ordinary abstractions are NTI. 

This is a corollary to [60, Theorem 2.4, p. 268]. However, not all A/I2- 
invariant NTI abstractions are weak or ordinary. 

Theorem 8.7. There exist NTI abstractions between resolution systems that 
are not weak or ordinary abstractions. 

Proof. Indeed, we can find NTI abstractions that fail every one of  the three 
conditions in the definition of  weak and ordinary abstractions. 

Condit ion (a) is failed by the NTI abstraction for which f (~) = {~ V ±}. 
The problem with condition (b) is that we may also need to resolve with 

an axiom of  the theory. Consider, for instance, the abstraction defined by 
f (p V q) = {p V r} and f (q~) = {~} otherwise. I f  271 contains the axioms, 
~q and ~r, then f is NTI. In particular, p v q resolves with -~p in 271 
to give q. However, no clause in the abstraction of  p V q or -~p (or their 
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resolvent) subsumes the clause q found in the abstraction of q. We theretbre 
fail condition (b). 

For condition (c), consider the abstraction defined by f (p v q ) = { r, p V q } 
and f(q~) = q~ otherwise. Now f is NTI. However, f fails condition (c) 
of  the definition of  weak and ordinary abstractions as p subsumes p v q but 
no clause in the abstraction of  p subsumes r which is in f (p v q). [] 

Note that the definition of  weak and ordinary abstractions can be extended 
to overcome the counter-examples given above in the proof of Theorem 8.7. 
For instance, as far as the first counter-example is concerned, we could 
replace condition (a) with the more general requirement that there must 
exist ~0 • f ( ± )  such that ~q~ • TH(,S2). In general there are many NTI 
abstractions which are not weak or ordinary. But the right question is 
whether there are any NTI abstractions which are not weak or ordinary and, 
at the same time, are "interesting" a b s t r a c t i o n s  between resolution systems. 
(The examples in the above proof, for instance, are not very interesting.) 
Weak and ordinary abstractions seem to capture most of the interesting 
abs t r ac t ions .  One exception is given by Plaisted's generalization functions 
(see Example 8.8). NTI a b s t r a c t i o n s  which are not weak or ordinary 
can also be built for particular theories by allowing us to perform extra 
resolutions, for instance, against a subset of the axioms or against some 
derived theorems. ABSTRIPS, for instance, uses this idea and distinguishes 
between operators and the other axioms (which for instance codify the state 
of  the world). This makes ABSTRIPS fail condition (c) above. (Notice 
that the abstraction which deletes all literals containing a predicate symbol 
p is a weak abstraction [60, p. 267]. This abstraction looks very similar 
to ABSTRIPS. However ABSTRIPS a b s t r a c t i o n s  do not delete all the 
occurrences o f p  but only those occurring in the preconditions to operators.) 

The restriction of  fAB to clausal form and resolution is an abstraction J~B 
such that: 

• f d B ( ~ p l  V . . .  V ~Pn V q )  -= {~Pk,  V - V ~Pk~ V q} in the case of  oper- 
ators, where {-~Pk, . . . . .  ~Pk,,} C_ {~Pl , - . . ,  ~Pn} is computed, as for JAB, 
according to the criticality associated to preconditions; 

• f~B(r) = {r} otherwise. 

Weak and ordinary abstractions map onto sets of clauses. This mapping is 
actually only onto sets with one member, so we can forget the set brackets 
from now on. Let us concentrate on condition (c). It requires that if c~ 
subsumes a2 in Xl and f12 • f~a (a2 ) ,  then there exists fll • f~(B(C~I) 
such that fll subsumes f12 in 2;2. Which is not the case. It is sufficient to 
consider the case where f,~B(~p~ V ~P2 v q)  = ~P2 v q (where -~p~ v -~P2 v q 
is an operator) and f f ,  B(~pl  v q)  = ~Pl v q (where -~Pl v q is not an 
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operator). -,p~ V q subsumes -,p~ v--,p2 v q but f~B (-~Pl V q ) does not subsume 
f, B v - p2 v q).  

Ordinary and weak abstractions have the advantage over NTI abstrac- 
tions of capturing a notion of mapping into simpler theories. The proof of 
[60, Theorem 2.4] shows in fact how, given a proof of a theorem in the 
ground space, we can construct a proof of the abstract theorem; this proof 
of the abstract theorem, Plaisted notes, is no longer than the original ground 
proof. Ordinary and weak abstractions are therefore guaranteed to satisfy 
the simplicity property as there will be an abstract proof no longer than the 
shortest ground proof. 

We feel that our definitions of abstraction are "more natural" in the 
sense that they better reflect and capture the properties for which they are 
defined (mapping search spaces, preserving provability, preserving incon- 
sistency, and so on). Also they capture a more general phenomenon than 
weak or ordinary abstractions (which formalize abs t rac t ions  in refuta- 
tion systems). NTI abstractions on the other hand have the disadvantage 
of not guaranteeing to map onto simpler theories. We have identified a 
subclass of the NTI abstractions, called PI (and NPI) abstractions, which 
have this simplicity property [24] (this topic will be covered in a following 
paper). 

Example 8.8 (Theorem proving). Plaisted's third class of abs t rac t ions  use 
generalization functions [62]. Ordinary and weak abstractions abstract the 
language and axioms of a theory but keep the deductive machinery the 
same (what we call J-invariant abstractions and what Plaisted called input 
abstractions). Abstractions using generalization functions, on the other hand, 
keep the language and axioms the same but abstract the resolution rule of 
inference; after every resolution, a "generalization" operation is performed 
on the resulting clause. For example, we might replace all terms of depth n 
or greater by (new) variables. We thereby construct a proof which is "more 
general" than one we could find in the ground theory. This general proof 
is guaranteed to be no longer than one of the ground proofs and can be 
used to aid the search for a ground proof as it has a similar structure. Note 
that, though the abstract proof can be shorter than the ground proof, the 
cost of inference in the abstract theory is more expensive than that in the 
ground theory. In general we have to perform both full-blown resolution and 
generalization. 

An abstraction using a generalization function maps a first-order calculus 
using resolution onto another first-order calculus with the same axioms but 
with a "generalized resolution" rule of inference. The identity function is 
used to map wffs between the two formal systems. Generalization functions 
are therefore A/Q-abstractions with ]~ the identity function. Generalized 
resolution is resolution followed by application of a generalization function, 
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g, to the resolvent; this generalization function maps a wff, ~0, onto a set of 
(more general) wffs that have ~ as instances. In other words: 

g(q~) c_ {~: ~0 ~ s0}. 

(When g(~o) = {}, we interpret {} as L.) If g(~0) = {~0}, the identity 
generalization, then S~ will be identical to $2, and the abstraction will 
trivially be TC/NTC.  In general abstractions with generalization functions 
are TI/NTI.  

Theorem 8.9. / f  f : 2;1 ~ X2 is a generalization abstraction jor which, Jor 
any q~, g(q~) ~ {}, then f is TI/NTI. 

The proof that f is NTI is a simple corollary to [62, Theorem 1, p. 368] 
(using the notation of [62], when S = T and when all the deductions 
considered are refutations). This assumes that g ( Z )  = L; this is true of 
all generalization functions. Since f is negation preserving, it is also TI. It 
is also guaranteed by [62, Theorem 1 ] that the abstract proof is no longer 
than the ground proof. 

Abstractions with generalization functions are not usually TD* as gen- 
eralizing a theorem can produce a nontheorem. For example, if we have 
the generalization function that replaces all terms by free variables and 
the set of  axioms, g21 = {p,~p v q(a),-~p v ~q(b)},  then ± E TH(X2) but 
L ~ TH(S~) .  We can come up with (extreme) examples that are TD*. 
Consider, for instance, the formal system which contains p as an axiom and 
for which 

{±}, if~0 = -~p, 
g (~o) = { ~0 }, otherwise. 

This is TC/NTC as the generalization function merely replaces a wff that is 
inconsistent with L itself. 

8.2. Propositional abstractions 

We call an abstraction propositional if the abstract theory is propositional. 
Such abstractions are very important when the abstract space is decidable. 
(Section 11 suggests one way to exploit the decidability of  the abstract space 
of propositional abstractions. 

Example 8.10 (Theorem proving). Connection methods have been proposed 
in various forms as an efficient way to perform theorem proving [ 10,11,46 ]. 
Common to these proposals is a connection graph which represents possi- 
ble refutations between complementary literals; the approaches differ in 



A theory of abstraction 355 

how they search this graph. Most of these approaches can be treated as 
propositional abstractions. 

Let us consider, for example, Chang [10], who describes an approach 
in which the connection graph is searched for a resolution plan, a list 
of possible resolutions from which we can derive i ;  this plan is then 
executed, by finding a unifier that simultaneously makes all the appropriate 
literals in the plan complementary. The (expensive) cost of unification is 
thus delayed until we have a complete plan. This approach can eliminate 
many redundancies of conventional resolution (e.g. simple reorderings of the 
resolutions) and allows all the strategies developed for resolution (like linear, 
set of support, . . . )  to be used. Indeed, the fact that we can use conventional 
resolution strategies is a trivial observation, once we have described this 
example, as we note that the abstract theory in which we construct the 
resolution plan merely uses a "restricted" form of propositional resolution. 

We will formalize this example as a propositional A/12-invariant theory 
abstraction, f : 271 , 272, which maps from a first-order calculus using 
resolution to a propositional calculus using "restricted" propositional reso- 
lution. The abstraction preserves the logical structure of the wffs, mapping 
the atomic formulas as follows: 

f (p(x , . . . )  ) = p. 

All atomic formulas with the same predicate symbol map onto the same 
propositional constant. The "restriction" on the propositional resolution in 
the abstract theory is that f ( a  V p)  and f (a ' v -~ f l ' )  are only allowed to 
resolve together in 272 if p resolves with -,fl' in Xl (allowing for renaming of 
any common variables); this prevents us from drawing up a plan in which 
there is no hope of ever finding a suitable unification to make the literals 
complementary (e.g. f ( p ( a ) )  and f(-~p(b)) are not allowed to unify in 
the abstract theory even though they map to p and -,p ). The resolution plan 
may not be of any use as no consistent substitution for the variables need 
exist. The links in a connection graph are just a means of pre-compiling the 
allowed resolutions. 

Consider, for example, the problem in [10] where we wish to show that 
the clauses 

{-~p (x) Vp(g(x) ) ,p (a) , -~p(g(g(a) ) )}  

are unsatisfiable. On the left, we give a proof in the abstract theory and 
show how this resolution plan maps onto a proof (on the right) in the 
ground theory by finding suitable unifications for every step suggested by 
the abstract proof. Not all abstract proofs will be able to map back; however, 
we can always find one that will. 
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~pVp  p ~ p ( x ) V p ( g ( x ) )  p(a) 

p - ,pVp p(g(a) )  - ~ p ( y ) V p ( g ( y ) )  

p -~p p (g (g (a ) ) )  ~p(g(g(a) ) )  

l A_ 

The proof in the abstract theory is not the shortest we can find; having 
deduced p, there is a redundant step where we resolve with -~p v p to deduce 
p again; this extra resolution is needed in the ground theory in order to 
make the unifications work. Presumably if we were using this abstraction for 
general purpose theorem proving, we would find the abstract proof without 
the redundant step first; being unable to find a suitable unifier to map the 
proof  back into the ground theory, we would then backtrack and generate 
the abstract proof with the necessary redundant step. As redundant steps can 
be added without limit, this theorem proving strategy will not terminate, 
which is not surprising as it is complete. We may also have to resolve with 
the input clauses more than once, and to use multiple versions of them with 
distinct variables. See [10] for a longer discussion of these issues. 

The fact that the abstract proof is useful as a plan for the ground proof 
follows from the proof that this abstraction is TI. More precisely, this proof 
shows that there is an abstract proof which contains the same resolutions as 
the ground proof. Thus, given an abstract proof, we generate the ground proof 
by finding a unifier that makes all the appropriate literals complementary. 

Theorem 8.11. fchang is TI/NTI. 

The proof can be easily given by mapping a proof H~ of ~ in ~1 onto a proof 
//2 of  f ( ¢ )  in 2:2. We simply need to apply f to every wff in HI. Note 
tha t / /2  is simpler than H1 even though it contains the same resolutions as 
//~ since we do not perform any unification in X2. 

A significant problem with all TI abstractions, this one included, is that 
they can map a consistent system into an inconsistent system [22,27]. 
The restriction on resolution in X: overcomes many problems (e.g. ~2~ = 
{p (a), ~p (b)} does not map into an inconsistent theory as f (p(a)) and 
-~f (p (b))  are not allowed to resolve together); however, there still exist less 
trivial sets of axioms which map a consistent theory into an inconsistent 
theory (e.g. £2~ = {p(x)  v q (x) ,  ~p(a ) ,  ~q(b)}) .  

Example 8.12 (Decision procedures). A propositional abstraction was used 
in [19] to implement a decider for first-order logic; this decides whether 
a (first-order) wff is derivable from a set of (first-order) wffs applying 
only the propositional connective inference rules. We define it as a A/~2- 
invariant abstraction, fGG : Xx ~ X2 between a first-order calculus with a 
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complete deductive machinery and a propositional calculus with a complete 
propositional decider. The mapping function used to abstract the wits (and 
the axioms) is defined by: 

(1) fGo (a) = Pk, where a is an atomic formula; occurrences of identical 
atomic formulas are rewritten as occurrences of the same propo- 
sitional constant, Pk; occurrences of different atomic formulas are 
rewritten differently. 

(2) fco(3x .a)  = Pi; occurrences of identical existential formulas or of  
existential formulas which differ only in the name of the bounded 
variables are rewritten as occurrences of the same propositional con- 
stant, Pi ; 

(3) foo(Vy.a)  = Pj; occurrences of identical universal formulas or of  
universal formulas which differ only in the name of the bound vari- 
ables are rewritten as occurrences of the same propositional constant 
rj ;  

(4) foo(a^/ ) = f o e ( a )  ^ 
(5) fGG(aVfl)  = fGO(a) Vfoo(f l ) ;  
(6) f o o ( - ' a ) = - ' f o e ( a ) ;  
(7) f o o ( a  #) = f o e ( a )  --, foo (# ) ;  
(8) foo(a  ~ ,6) = fOG(a) ~ foa( f l ) .  

This is a T D / N T D  abstraction. 

Theorem 8.13. fGG is TD/NTD. 

The theorem can be proved by noticing that, for any proof in 272, a proof 
can be built in Z1 which performs the same sequence of applications of 
inference rules. There is no problem with the different names of bound 
variables as we can always prove the equivalence of formulas which differ 
only in the names of the bound variables, The reverse of  Theorem 8.1 3 is 
clearly false. For example "Vx. (p (x) v-~p (x ) ) "  is provable in Z1 but its 
abstraction is not in 272. 

8.3. Predicate abstractions 

Predicate abstractions are abstractions, f : ,t~ 1 :=~ '~2,  in which distinct 
predicate symbols on 271 are mapped onto (possibly not distinct) predicate 
symbols in 272. 

Example 8.14 (Theorem proving, planning). Plaisted [61 ] and Tenenberg 
[73] both consider the class of predicate abstractions which are A/O- 
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invariant theory abstractions between first-order calculi using resolution. 
Atomic formulas are mapped by a function fpred for which 

f p r e d ( P ( X  . . . .  ) )  = q ( x  . . . .  ) 

for all p belonging to a given class. Such predicate abstractions are TI and, 
since they are negation preserving, NTI. Of course, any such mapping that 
is 1-1 is trivially TC/NTC. 

Theorem 8.15. fpred is TI/NTI. 

The proof can be given by showing that given a resolution proof H~ of c~, we 
can build a resolution proof of fpred (c~). The proof proceeds by induction on 
the depth N of Ha. We just take the proof Hi and apply fpred to every wff in 
it. Note that the reverse (that fpred is TD) is not in general true. For example, 
if fpred (Pl)  = fpred (P2) = P then p V -~p E TH(272) but Pl v -~P2 ~ TH(27~ ). 
As with propositional abstractions, predicate abstractions can map consistent 
theories into inconsistent theories. For example, if fpred (P~) = fpred (P2) = P 
and ~ = {p~, ~P2} then 27! is consistent but 272 is inconsistent. 

Example 8.16 (Theorem proving, planning). To overcome the problem of 
inconsistent abstract spaces encountered in the last example, Tenenberg [73] 
has suggested a restricted predicate mapping. This abstraction is guaranteed 
to map a consistent theory, 27~, onto a consistent theory, 272. Unfortunately, 
imposing the restriction involves an arbitrary amount of theorem proving in 
generating 272 and loses the property of being TI; as a consequence it does 
not seem a very satisfactory solution to the problem of having inconsistent 
abstract spaces. As before any restricted predicate mapping that is 1-1 is 
(trivially) TC/NTC. 

A restricted predicate mapping is a theory abstraction between first-order 
calculi using resolution. The same function, fpred, as the (unrestricted) pred- 
icate mapping is used to map wffs in Z~ onto wffs in 272. The "restriction" is 
that not every abstraction of the axioms of 271 is kept in 272; this restriction 
ensures that we don't keep the axioms that introduce inconsistency. To this 
end, the axioms of X2 are given by g ( ~ l  ) where: 

g( 'Q1)  = { fp red (~ ) :  ~0 E ~1 and 
(~0 is a positive clause or for every ( such 
that fpred(~) ----- fpred(~ O) we have ~1 ~-z~ C)}. 

In other words g preserves all the axioms q~ which satisfy at least one of 
two conditions. The first is that they are positive clauses; the second is 
that g (~0), to be kept as an axiom, must be such that all the formulas 
which abstract into g(~0) (that is, that have the same abstraction as ~p) are 
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theorems of the ground space. Note that to determine which axioms from 271 
we can include in 272 requires an arbitrary amount of theorem proving in Z'I 
(deciding whether I21 ~-,rt ().  The purpose of this inference is to guarantee 
that consistency is preserved. 

Theorem 8.17. I f  f : ,~1 ~ ,~2 is a restricted predicate mapping and 271 is 
consistent, then 272 is consistent. 

In [73], Tenenberg demonstrates how, given a model of the axioms of 
271, you can construct a model of the axioms of 272. Since a set of clauses is 
consistent iff it is satisfiable this proves that if 271 is consistent then 272 is 
as well. As a simple corollary to this theorem, for every clause derivable in 
the abstract theory, some clause in the ground theory that abstracts to it is 
also derivable. 

Corollary 8.18. I f  f is a restricted predicate mapping and ~2 E TH (272), then 
there exists ~1 such that f(~Pl) = ¢2 and ~1E TH(~rl). 

Note that the property described in Corollary 8.1 8 iS not the same as being 
TD; all TD abstractions satisfy this property, but not all restricted predicate 
mappings are TD. Consider, for instance, the restricted predicate mapping 
fpred(Pl) ---- fpred(P2) ---- P and 121 = {Pl} then fpred(P2) E TH(Z2) but 
P2 ~ TH (271). If, however, the definition of restricted predicate mappings is 
strengthened slightly, then they can be made TD. Indeed, we merely have to 
remove the condition in the definition of the g that allows positive clauses 
into the abstract axiom set regardless. That is, the axioms of 272 are given 
by the set g' (12z) where: 

g'(I21) = {fpred(~):  ~ E if21 and for every ( such that 
fpred(() = fpred((/)) we have •1 ]"Z! ~}. 

We shall call such abstractions very restricted predicate mappings; unlike 
restricted predicate mappings, they are TD. 

Theorem 8.19. Very restricted predicate mappings are TD. 

Proof. Given a proof tree/72 in 272 that ends in fp~d (¢) we show how you 
can construct a proof tree /71 in 271 that ends in q~. Note that ~ is not 
necessarily Z. The proof proceeds by induction on the depth (that is, the 
length of the longest branch), N, of/72. 

If N = l, then fpred(~0) is an axiom of 272. From the definition of the 
axioms of 272, ~0 is either an axiom of 271 or ~ ~ TH (271). 

Assume we have shown it for all proof trees up to depth M. Consider a 
proof tree/72 of depth M + 1 that ends in fpred (~) and in which fpred (q~) is 
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the resolvent of  c v ql v .-. v qn and c' V -'ql V . V ~q'n- That is, JPred (~0) = 
(CVC')O where 0 is a most general unifier and qiO - q;O for 1 ~< i (- n. Let 
qi have a predicate symbol r. Then, as they are complementary literals, q; 
must have the same predicate symbol. Construct the wffs p~ and Pl which 
map to qi and q; and which both have the same predicate symbol s c R,.. 
Now, Pi and ~p; will resolve together with unifier 0 (fpred is transparent 
to substitutions). Pick the wffs d and d' which map to c and c' such that 
~o - ( d v d ' ) O .  By the induction hypothesis, we can prove dvp~  v . . .  vp~ and 
d' v -'P'1 v . - -  v ~p~. Finally, note that d vpl  v . . .  vpn and d' v ~p'~ 'v' - • • v -lp~ 
will successfull resolve together with unifier 0 to give ~0. [] 

A major problem with (very) restricted predicate mappings, unlike their 
unrestricted counterparts, is that (unless they are 1-1 ) they are not TI. We 
therefore lose "completeness" as there is bound to be a wff, a, which is 
provable in X~ but whose abstraction is not provable in X2. 

The other major problem with restricted predicate mappings is that de- 
termining which axioms to include in the abstract theory is, in general, 
undecidable. This makes them not very interesting even for uses outside 
the a b s t r a c t i o n  tradition. One solution suggested in [73] is to weaken the 
derivability condition in the definition of g (namely, g21 F-z, ~) to a con- 
dition of  derivability within certain resources. This conservative approach 
would construct an abstract theory weaker than it theoretically needs to be 
to preserve consistency (that is, an abstract theory with fewer theorems). 
(See [74] for other similar solutions to this problem.) 

8.4. Domain  abstractions 

Domain abstractions are abstractions which map the domain (that is, the 
constants) of the ground theory onto a (smaller) domain in the abstract 

theory. 

Example 8.20 ( C o m m o n  sense reasoning). Hobbs has suggested [31] a the- 
ory of granularity in which a complex theory is abstracted onto a simpler, 
more "coarse-grained" theory with a smaller domain. For example, the real 
world of continuous time and positions could be mapped onto a (mi- 
cro)world of discrete time and positions. Granularity can be formalized as 
a A/O-invariant theory abstraction (let us call it "fgran :~Y'I ~ ~v'2") between 
first-order calculi. Different constants in Xl are mapped onto (not necessar- 
ily different) constants in Zl according to an indistinguishability relation, 

",-~" defined by the (second-order) axiom, 

V x , y . x  ~ y ~ Vp E R . p ( x )  ~ p ( y ) ,  
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where R is the subset of  the predicates of the theory determined to be relevant 
to the situation at hand. As in [ 31 ], we define indistinguishability for unary 
predicates; it can, however, be easily generalized to n-ary predicates. The 
mapping function keeps the same logical structure of wffs (it is a theory 
abstraction) but translates any constant into its equivalence class, namely 

fgran(p(a) ) = p(r.(a)  ), 

where a is any constant symbol and x(a)  is the constant in the abstract 
language representing the equivalence class of the constant a with respect 
to the indistinguishability relation; that is, 

x(x) = { y :  x ~ y } .  

Such an abstraction is TI. 

Theorem 8.21. f~an is TI/NTI. 

In fact we can map a proof  tree HI of ~ onto a proof  t r ee / /2  of fgran ({0) 
merely by applying fgran to every wff in the proof  tree. Like any TI abstraction 
that is not TC, f ~ n  can map a consistent theory onto an inconsistent theory. 
For example, if the constants a and b are "indistinguishable" and {a, b} 
represents the equivalence class of a and b, then a consistent ground theory 
with equality and the axiom -~(a = b) maps into an inconsistent abstract 
theory with the axiom -~({a, b} = {a, b}). The consistency of the abstract 
theory can be guaranteed if we define a suitable indistinguishability relation. 

Theorem 8.22. fgran preserves consistency i f  indistinguishability is defined over 
all predicates. 

Proof. By contradiction. Assume that a consistent theory, 271, maps onto an 
inconsistent theory, 272. That is, we can find a proof t ree, / /2,  of 3_. We can 
then construct a proof  tree, 171, of 3_ in 271, contradicting the assumption that 
271 is consistent. For every equivalence class, x (a), we pick one member  of 
that class, b; to every wiT, ~0, i n / / 2  we apply the substitutions {x (a)/b} ... . .  
This will generate a proof  t ree, / /1,  whose assumptions will either be axioms 
of  271 or will be derivable from them using the indistinguishability relation 
and substitution of equivalences. If  indistinguishability is not defined over 
all predicates, this last fact will not necessarily be true. [] 

This theorem might seem to contradict our claim that, for every TI 
abstraction which is not TC, there exist a choice of axioms that map a 
consistent theory into an inconsistent theory. The obvious solution is that, 
if  indistinguishability is defined over all predicates, then fvan is TC (a TC 
abstraction can never map a consistent theory into an inconsistent one). 
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Finally, we note that fgran is just a special case of the example of Plaisted's 
weak and ordinary abstractions described in [60,61 ] where function symbols 
(constants are 0-ary function symbols) are renamed in a systematic (but 
not necessarily 1-1) way. 

Example 8.23 (Approximate reasoning). Abstraction has been proposed by 
Imielinski [32] as a basis for "approximate" methods of reasoning with low 
complexity. Though such methods can return answers that are not always 
correct, their errors should be characterizable. As an example, Imielinski 
considers two domain abstractions; the first is TI while the second is TD. 
However, there is a subset of  the language over which both abstractions 
agree with the ground theory; that is, a subset of the language with respect 
to which both abstractions are TC. 

Like granularity, Imielinski's TI abstraction maps objects in the domain 
onto their equivalence classes. In granularity, the equivalence classes con- 
sist of  objects that can be shown to be indistinguishable. Imielinski's TI 
abstraction allows arbitrary equivalence relations. However, the language 
of the ground theory is restricted to a subset of first-order predicate logic 
sufficient to express queries to a database. We formalize Imielinski's TI 
abstraction, fl : Z~ ~ Z2, as a A/~-invariant  theory abstraction between 
first-order database-like theories. The languages of these theories consist of 
closed formulas containing only the 3 quantifier, and the A and v con- 
nectives. The mapping function, fl ,  used to abstract the language and the 
individual axioms of ZI is defined by 

fl (P(a) ) = pOe(a)) ,  

where a is any constant symbol, tc (a) is the equivalence class of the constant 
a with respect to an indistinguishability relation, ~, and 

f~ (p(x)  ) = p ( x ) ,  

where x is any variable. The mapping is extended to n-ary predicates in 
the obvious way. See [31,32] for some examples of indistinguishability 
relations. Analogously to the granularity abstraction fgran, this abstraction is 
TI. A TI abstraction overestimates answers; that is, the abstract theory will 
suggest certain wffs are true which are not, in fact, true in the ground space. 
The problem of inconsistent abstract spaces is not relevant for this type of 
abstraction as the ground and abstract languages lack negation. However, 
we will often use a closed world assumption to deduce negative information 
from such a database, in which case we would have to worry about the 
consistency of  the abstract space. 
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Example 8.24 (Approximate reasoning). Imielinski's second domain ab- 
straction [32], which we will call A, is a TD abstraction. Such an abstraction 
underestimates answers; that is, the abstract space will suggest certain wits 
are false which are, in fact, true in the ground space. Though 3~ is not 
complete, it is sound; all the abstract theorems it returns are guaranteed to 
be theorems of the ground space. For this abstraction, properties true of an 
object in the ground space hold in the abstract space for some unidentified 
member of the (possibly larger) equivalence class of the object. 

We define J~ as a A/12-invariant abstraction from a first-order database- 
like theory (whose language consists of closed formulas containing only the 
3 quantifier and the A and v connectives) to another first-order theory 
(whose language consists of closed disjunctive normal formulas containing 
only the 3 quantifier and the A and v connectives). The language of 272 
differs in two ways from the abstracted language of the previous example: 
its domain is the same as that of A1 (and not the equivalence classes) and it 
contains a new unary predicate for each equivalence class, [x (a ) ] (x) ,  true 
for every member x of the equivalence class r (a); we will use "Ix (a) ]" to 
represent the name of this predicate. 

The mapping function, J~, is used to abstract the language (and the 
individual axioms) of 271. All wits of AI and I21 are first transformed into 
disjunctive normal form. Then for each disjunct ~ we have: 

(a) If ~o contains the constant a, then it is replaced by an existentially 
quantified variable restricted to members of a's equivalence class 
(that is, ~o is rewritten to 3x. [x (a) ] (x) A ~o{x/a}). The idea is to re- 
place each named constant by an arbitrary member of its equivalence 
class. The domain of 272 is thus no smaller than that of 271; however, 
the properties true in 271 of an object a are merely true in 272 of some 
object in the equivalence class of a. 

(b) If ~o contains multiple occurrences of an existentially quantified vari- 
able, each occurrence is replaced by a new existentially quantified 
variable. The occurrences of an existentially quantified variable can 
thereby represent different members of an equivalence class. 

For example, 3x.p(a,x) Ap(b,x)  is mapped to 

3x, u,w.[x(a)](u) Ap(u,x)  A [x(b) ] (w)  Ap(w,x)  

by step (a), and then to 

3u, v ,w,y .[x(a)  ] (u) Ap(u,v) A Ix (b)] (w) Ap(w,y)  

by step (b). This abstraction is TD. 

Theorem 8.25. J~ is TD. 
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Proof. By showing that the axioms of Z2 follow from a set of axioms logically 
equivalent to the axioms of Zl. TH(Z'2) is therefore a subset of TH(Z~ ). 
First transform each axiom in £21 into (the equivalent) disjunctive normal 
form. Then for each disjunct ~0, if (p contains the constant a, replace ~0 
by the equivalent formula, 3x . [K(a) ]  (x) A ~o{x/a}/~ x = a. If ~0 contains 
multiple occurrences of  an existentially quantified variable, replace each 
occurrence by a new existentially quantified variable and add the equality 
condition that these new existentially quantified variables are equal. The 
resulting axioms are logically equivalent to those of  Z~. The axioms of  Z2 
are just the result of  dropping from these clauses all the equality conditions 
added for the constants and existentially quantified variables. [] 

Note that the language of the abstract space is more complex than the 
language of the ground space, and that the axioms of  the abstract space are 
more complicated than the axioms of the ground space. It therefore seems 
doubtful that theorems will be easier to solve in the abstract space than 
in the ground space. The only saving is that instead of having to show a 
property true for a, we merely have to find it true for any of the members 
of  lc(a) (and one of these proofs might be easier to find). 

lmielinski's two domain abstractions, one TI and the other TD, provide 
upper and lower bounds on the theorems of the database. That is, the answers 
returned by f2 are a subset of the theorems of the ground space while those 
returned by f~ are a superset. Imielinski is also able to characterize a subset 
of the language of  Z over which J] (Z)  and j~ (Z)  agree exactly with Z. 
Consider the "propositional" subset, F ,  of the language of Zl; that is, those 
wffs in A l without existential quantifiers. The following result holds. 

Theorem 8.26. fl  and f2 are TC with respect to F. 

(Here an abstraction f 'Z1 ~ ~v'2 is said to be TC with respect to F iff 
for any (p E F,  (p E TH(XI)  iff f(~0) E TH(Z2) . )  This theorem is stated as 
[32, Lemma 4]. 

8.5. Metatheoretic results 

This section describes some important metatheoretic results which can be 
captured as abstractions. 

Example 8.27 (Theorem proving). An important class of abstractions intro- 
duced by Plaisted [60,61] is the class of  the so-called ground abstractions. 
(Note that here the word "ground" is used with a meaning different from 
before. This is due to an historical accident. We could have eliminated 
the confusion by changing the terminology, e.g. by talking of the "concrete 
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space" instead of the "ground space". As the two uses of the word "ground" 
overlap in a very limited number of places and in such a way that the 
context always makes clear the correct meaning, we have preferred not to 
do so.) 

Ground abstractions are A/fl-invariant abstractions from a first-order 
calculus to a formal system with a variable and quantifier-free first-order 
language and a complete propositional decider that treats ground atomic 
formulas as propositions. The mapping function, fground is used to abstract 
the wffs (and the axioms) of z~ 1 onto those of 272. fgro,nd can be defined to 
work for refutation and provability systems. We consider the second case, 
the first case is dual. fground(~) first skolemizes ~0; for provability systems 
this means replacing universally quantified variables and free variables by 
skolem functions and constants in the usual way. This mapping produces a 
formula which is provable if and only if ~0 is. The second step performed by 
fgro,nd is to build a disjunction of some ground instances of the skolemized 
wff, each ground instance obtained by substituting the existential variables 
with elements of the Herbrand Universe. That is, if we write Vi pi to mean 
a disjunction of formulas, 

where the ~ are ground skolemized instances of 9, possibly infinite in 
number. 

Theorem 8.28. fground is TD. 

In fact fground is TC if we consider all the ground instances of ~0. This 
is a corollary to Herbrand's theorem [30]. For Herbrand's theorem an 
existential formula is provable iff a finite disjunction of  its ground instances 
is, which in turn is provable iff the (possibly infinite) disjunction of all 
its ground instances is. fsround can be made TD but not TC simply by 
dropping some ground instances (if a wff is a theorem, then any disjunction 
containing it is). Dropping instances implements the idea of approximating 
a theory. A smaller subset gives more savings in the cost of theorem proving 
in the abstract space but, at the same time, loses more theorems. The TC 
version of f~ound has been used in [19] to build a complete decider for 
a class containing the class of UE-formulas,(that is, those formulas whose 
prefix contains a sequence of universal quantifiers followed by a sequence 
of existential quantifiers). 

Notice that fground is not negation preserving. Therefore the fact that it 
is TD does not imply that it is NTD. Indeed in general it is not. On the 
other hand the version of fground defined for refutation systems, let us call 
it fg~o,,d, is NTD. The NTC version of fg~ound (that is, that considering all 
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the ground instances) has been proposed as an NTI abstraction by Plaisted 
[6o]. 

Example 8.29 (Theorem proving). Semantic abstractions can be constructed 
because of the soundness theorem for a logic. They can be defined for any 
logic which has a model-theoretic semantics. The soundness theorem for a 
logic states: 

Theorem 8.30 (Soundness). I f  ~- ~o, then for all interpretations, I, which are 
models o f  the axioms, ~I q~. 

The truth of  a wff can be computed in an interpretation after providing 
a universe of  objects for variables to range over, calculation procedures 
(computer programs in effect) for functions and predicates, plus the standard 
interpretations for connectives and quantifiers. The computation in the 
model can be formalized as deduction in a formal system consisting of some 
variation of the lambda calculus (this has been actually done to formalize 
the use of  the simulation structure inside the F0L system [28,59,72,79]). The 
soundness theorem thus expresses a TI abstraction between a formal system 
in which we prove theorems and a formal system in which we compute 
truth in an interpretation (which constitutes the intended model). 

The abductive use of  semantic abstractions is not very interesting as it 
is not obvious how we could use a computation in the model to drive 
the search for a proof in the theory. Also this computation needs usually 
an infinite amount of time (the domains of interpretation are in general 
infinite). Semantic abstractions are instead useful when used deductively to 
prune the search space. It follows from the soundness theorem that: 

Lemma 8.31. I f  there exists a model I in which ~:~ {o, then ~ ~o. 

Hence, if a (sub)goal turns out to be false in a given model then we know 
that this (sub)goal will not be provable and can be deleted from the search 
space. For example, Gelernter [16] in his famous geometry theorem prover 
and Reiter [68] in an incomplete natural deduction theorem prover used 
such counter-examples to remove unachievable subgoals. Semantics have 
been used extensively in the literature, sometimes in more sophisticated 
ways. For example, in [2,68] models are used to suggest the instantiation 
of  variables. Plaisted [60,61] proposes a class of "semantic abstractions" 
for resolution theorem proving which falls half way between the ground 
abstractions and the semantic abstractions described here. In this class of 
ordinary abstractions, clauses are grounded and each term (but not predi- 
cate) is replaced by its interpretation; normal (propositional) resolution is 
then applied to these abstracted clauses. 
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8.6. Summary 

The properties of the abs t rac t ions  described in the examples in this sec- 
tion are summarized in Table 1. We will make some general remarks about 
this table. We believe that this is a representative sample of abstractions in 
general and of abs t rac t ions  in particular. 

First, all the examples preserve provability in one way or another; almost 
all are, in fact, TI* abstractions. This supports our emphasis on provability 
preserving abstractions, and more especially on TI* abstractions. Second, the 
majority of these examples are negation preserving and theory abstractions. 
Indeed, we would argue that you should only change the logical structure of 
wffs with great care. It is the theory, not the logic, that needs taming. Third, 
almost all the abstractions use the same deductive machinery in the ground 
and the abstract spaces. This makes implementation very economical. It also 
allows us to use hierarchies of abstractions. Fourth, nearly all abstractions 
are A/I2-invariant. This, of course, guarantees that the abstraction of any 
wff that is an axiom of the ground space is itself an axiom of the ab- 
stract space. Fifth, all the TI* abstractions but the semantic abstraction are 
used abductively (to give a complete theorem proving strategy), while TD* 
abstractions are used both deductively (to give a sound theorem proving 
strategy) and abductively. Finally, most of the (theory) abstractions can be 
characterized by whether they map the terms or the predicate names. Since 
theory abstractions can only map the atomic formulas, this is perhaps not 
so surprising. 

9. Inconsistent abstract spaces 

Implicit in most work in abstraction is the assumption that the ground 
space is consistent. If this is not so, any abstraction is trivially TD/NTD. 

Lemma 9.1. I f  271 is inconsistent, then any abstraction f : 271 ~ 272 is a 
TD/NTD abstraction. 

Another common assumption is that an abstraction maps a (consistent) 
formal system onto a consistent formal system, If this is not the case, then 
the following fact holds: 

Lemma 9.2. I f  f : "~1 ::~ "~'2 is an abstraction andS2 is inconsistent, then it 
is a T1/NT! abstraction. 

The results of these two lemmas can be trivially composed. Thus, if "~1 and 
272 are both inconsistent then f : "~1 ::~ 272 is a T C / T D / T I / N T C / N T D / N T I  
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Table 1 
Summary  o f  a b s t r a c t i o n s ,  a 

A b s t r a c t i o n  Example T* /NT*  NP TA invariant used maps 

A A/.Q r P/T 

ABSTRIPS 8.1 TI x/ v / v / V' x abd N 
GPS 8.3 TI x x x x/ ~/ abd N 
Weak 8.5 NTI 9 9 ~/ x/ ? abd '~ 
Ordinary 8.5 NTI 9 ? x/' ~/ ? abd ~ 
General izat ion 8.8 TI ~/ v / x ~/ × abd T 
Chang 8.10 TI x/ x/ ~/ x/ V abd T 
Decider  b 8.12 TD x/ x V' v / x ded N 
Predicate 8.14 TI x/ x/ ~/ v / v / abd P 
Restr icted 8.16 TD , /  v / , f  × x abd P 

predicate c 
Granulari ty 8.20 TI v / v j , /  x/' V' abd T 
Imielinski 8.23 TI x/ v / , /  , /  v / abd T 
Imielinski 8.24 TD x/ x ,,/ v / x ded I" 
Ground  8.27 T D / N T D  x x , /  ~/ x a - d  T 
Semantic a 8.29 TI × × ~ ~ ~ ded N 

a In the column headings, NP stands for "negation preserving", TA for "theory abstrac- 
t ion", "maps  P / T "  for "maps  the predicate names or the terms".  

In the table entries, "x/" means that  this abstraction has this property, " x "  that this 
abstraction does not  have this property,  "?" that abstraction can have this property (but 
does not necessarily have to),  "g" that this property is not relevant for this abstraction, 
"abd" that this abstraction was used abductively, "ded" that this abstraction was used 
deductively, " a - d "  that  this abstraction was used both deductively and abductively, "P" 
that  this abstraction maps just  the predicate names,  "T'  that this abstraction maps just 
the terms, and "N" i f  nei ther  is true. 
b The proposit ional  decider  is not strictly speaking 3- invar iant  since (in the actual 
implementa t ion  of  the decider)  theorem proving in the abstract theory is by way of  
truth tables and not the proposit ional  natural deduct ion rules of  the ground theory. 
c Restr icted predicate abstract ions satisfy a property very close to that o f  TD abstractions. 
It is only very restricted predicate abstractions that  are actually TD. 

Since the abstract theory with semant ic  abstractions is one in which we compute  the 
truth o f  a wff  with respect to an interpretat ion,  it is not very appropriate  to discuss the 
various A-, A/O- and S- invar ian t  propert ies  of  this abstraction. 

abstraction. All these observations are neither deep nor particularly signif- 
icant. The ground space is usually consistent even if in most cases this is 
not explicitly verified. The interesting question is whether something can be 
said about the consistency of the abstract space under the assumption that 
the ground space is consistent. The following fact holds. 

Theorem 9 . 3 .  I f  X1 is consistent and f • Xl ~ X2 is a TD* abstraction, then 

X2 is consistent. 
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Proof. Proof by contradiction. Assume TH(272) =/12. From the totality of 
fA, for any wff @, fA(@) is defined. But for any fa(~) ,  fa (~)  E TH(272). 
This means that, for any wff @, fA(~) E TH(272). Since f is TD, for any 
wff ~, ~ E TH(27~ ). This contradicts the assumption that 27~ is consistent. 
The proof for NTD abstractions is very similar. [] 

TD* (and therefore TC*) abstractions always preserve the consistency 
of the ground space. However, this is not true for TI* abstractions; the 
abstract space can be inconsistent even though the ground space is consistent. 
Several examples of inconsistent abstract spaces have been given in the 
previous section. For instance, granularity (Example 8.20) and predicate 
abstractions (Example 8.14). For the ABSTRIPS abstraction, fAa, consider 
the abstraction which drops the second conjunct of the two operators "al A 
o~ 2 --~ a 3 "  and " a  1 A a 4 ~ -~a3"  , where a~ is a theorem, and 52 and a4 are 
not both theorems. Examples of consistent abstract spaces can be trivially 
found (see previous section). 

We have argued that TI* abstractions are the appropriate abs t rac t ions  
to be used. However, we have just shown how they can map a consistent 
ground theory onto an inconsistent abstract theory. This is a major problem 
for the use of TI* abstractions. 

The problem of inconsistent abstract spaces was first identified by Nilsson 
[58] for ABSTRIPS abstractions. Tenenberg [73] identified the same prob- 
lem for predicate abstractions, calling it the "false proof problem". (In [61 ], 
Plaisted talks of the problem of "false proofs" meaning abstract proofs which 
do not map back. The two problems are unrelated. ) In [27] we show that the 
problem is even more general than either Nilsson or Tenenberg claimed--it 
can happen under certain very weak restrictions with TI abstractions (an 
thus with abstractions). The intuitive interpretation of why the problem 
occurs is as follows. In order to build an abstract space "simpler" than the 
ground space, the trick is to "forget" some "irrelevant" details and to keep 
around what is judged important. The problem is that the irrelevant looking 
details may be exactly those that preserve the theory from being inconsistent 
(thus making them not so irrelevant). 

This is a major blow to the use of TI* abstractions as no proof which 
makes use of the inconsistency of the abstract space will map back. From 
an implementational point of view, at a first sight, it might not be obvious 
that an inconsistent abstract space is going to be such a bad thing. After all 
with TI* abstractions, it is never guaranteed that the abstract proofs map 
back. Besides the theoretical objections, which we think are of substantial 
importance, we argue that the problem is also very relevant from an imple- 
mentational point of view. If the theorem proving strategy in the abstract 
space is not suitably constrained, a lot of inefficiency could be introduced, 
and reasoning with abstraction could become less efficient than reasoning 
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without abstraction. Additionally, if the abstract space uses refutation, we 
will not know if inconsistency comes from the fact our goal is true or from 
the fact that our abstract axioms are inconsistent. To make the problem 
even more serious, it is in general not possible to decide in a finite amount 
of time whether a formal system is consistent. 

When working with a fixed formal system, one solution is to build ab- 
stractions which are proved a priori to construct a consistent abstract space. 
Often, however, the axioms are not fixed in advance. In such a situation, the 
ideal solution would be to find sufficient conditions which guarantee that 
whatever the axioms, the abstraction maps a consistent ground space onto a 
consistent abstract space. In [27] (or in the shorter version [22]) we show 
that this request turns out to be unsatisfiable. In fact, under certain very 
weak restrictions (satisfied by almost all abstractLons) ,  for (the mappings 
of) all the TI* abstractions which are not TC* there always exists a set c21 
consistent axioms whose abstract space is inconsistent. This problem should 
therefore be a major consideration for anyone proposing the use of a TI* 
abstraction. A discussion of a possible solution to this problem requires 
further machinery which has not yet been introduced and it is therefore 
postponed to the end of Section 12. 

I0. Operations on abstractions 

We have defined an abstraction as a mathematical object; that is, as a 
pair of formal systems and a mapping function. This has the advantage 
of allowing us to define mathematical operations (like composition and 
inversion) and to use them to formalize certain steps which are performed 
when using abstraction inside a theorem prover. In the following we give 
these definitions only considering fA. In order to tackle the problem of how 
to use abstractLons (when we need to describe how proof trees are mapped 
from the ground space to the abstract space and vice versa) we need to give 
stronger notions which consider also the mappings of the axioms and of the 
deductive machinery. These extensions are a trivial extension of the ones 
presented here and will be described in a following document. 

First we define what it means for two abstractions to be "equal". 

Definition 10.1 (Equality). If f : XI ~ X2 and g : X1 ~ X2 are abstractions, 
then f is equal to g iff their mapping functions are identical, that is, iff 

f t  = gA" 

The notion of equality between abstractions, which relies on the notion of 
functional (extensional) equality, allows us to identify abstractions whose 
fA'S are given different intensional definitions. 
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We also need a notion of  identity abstraction. 

Definition 10.2 (Identity). If  f : 27 =~ 27 is an abstraction, then f is called 
the identity abstraction of  27 iff the mapping function is the identity function. 

The identity abstraction maps any formal system, 27 into itself and it is 
uniquely determined by it. An identity abstraction is trivially TC/NTC.  

Composit ion is a very important  operation. 

Definition 10.3 (Composition). If  f : $1 ~ 272 and g : 272 =~ 273 are abstrac- 
tions, then f o g : 271 =~ 273 is the abstraction composition of f and g with 
the mapping function fA o gA. 

The composition of two abstractions (when possible) is itself an abstrac- 
tion. It is therefore a useful way of constructing new abstractions from old 
ones. The composition of two abstractions will give an abstraction f o g that 
is at least as "strong" as either of  the individual abstractions, f or g as it 
throws away the same information as f and the same information as g. 

Sometimes the proof  of the abstract goal is not enough as the proof  
of  the ground goal is also needed. The typical example is absZraction 
where the abstract space is used abductively, that is to suggest theorems or 
nontheorems (see Section 5 ). Another example is when the ground proof is 
a plan to be executed [74]. In these cases, we need to unabstract certain 
objects of  the abstract space, for instance the wffs occurring in a proof, 
to their corresponding objects in the ground space. To formalize (part 
of) this notion we introduce the notion of inverse of an abstraction. Not 
all abstractions have inverses; in fact, it is only possible to invert those 
abstractions which do not throw away any information. To be more precise, 
an abstraction must  be injective if it is to be invertible. (Remember that 
we are only considering surjective abstractions.) 

Definition 10.4 (Injectivity). An abstraction f : 271 :=~ 272 is injective iff if 
a ¢: fl then f ( a )  # f ( f l ) .  

Definition 10.5 (Inverse). If  f : 271 =~ 272 is injective, then the abstraction 
g, g : 272 =~ 271 such that f o g = J~, where J~ is the identity abstraction of 
271, is called the inverse of  f ,  written f - l .  

Notice that the inverse of  an abstraction is itself an abstraction and that 
it is uniquely determined by f (if g : 272 =~ 271 and h : 272 =~ 271 are both 
inverses of  f : 271 =~ 272, then g = h).  Since they cannot th rowaway  any 
information from the language, injective abstractions do not in general give 
a simpler abstract theory and are not of much practical use as abs t r ac t i ons .  
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In general, in the mapping back (for instance of a proof) from the abstract 
to the ground space there are many choices, and it is part of the theorem 
proving strategy to decide which to try first. This topic is discussed in [24]. 
A lot of the TC* abstractions are injective (for instance the TC* ground 
abstraction is injective modulo the renaming of the free and bound variable 
in the ground space, see Example 8.27). 

The inverse and the composition of  two abstractions are abstractions. In 
general we require stronger properties. For instance, we need to know how 
composition and inverse affect the preservation of provability and inconsis- 
tency. For instance, if we know that the composition of two abstractions 
is an a b s t r a c t i o n  then composition provides us with a tool for constructing 
new abstractions. 

The inverse of an abstraction f - L ,  not too surprisingly, has the inverse 
provability or inconsistency preserving property to f .  In other words a TI* 
abstraction inverts to a TD* abstraction (and vice versa). 

Theorem 10.6. I f  f : 271 ~ 272 iS a TI* abstraction (TD* abstraction) which 
admits an inverse f - l ,  then f - 1  is a TD* abstraction (TI* abstraction). 

Proof. We consider the case where f is TI. The other cases are analo- 
gous. If  ~0 E TH(271), then f(q~) E TH(X2). Now , f - l ( f ( ( o ) )  = q~. Thus, 
f - l ( f  (~0)) E TH (271 ) implies f (~0) E TH (272). Since f is surjective, f ( ~ )  
ranges over the whole language of  272. Thus f - ~  : Z2 ~ St is a TD abstrac- 
tion. [] 

The composition of two abstractions preserves provability or inconsistency 
in the same way as its components. For example, the composition of two 
TI abstractions is itself a TI abstraction. 

Theorem 10.7. I f  f : $1 ~ Z2 and g : $2 ~ 273 are TI* abstractions 
(TD* abstractions), then f o g : Y,1 ~ Z3 is also a TI* abstraction (TD* 
abstraction). 

Proofl We consider the case of TI abstractions. The other cases are anal- 
ogous. If f is a TI abstraction and ~0 E TH(ZI ) ,  then f(~o) E TH(S2) .  
However, g is also TI so if f(~o) E TH(272) then g(f (~o))  E TH(S3) .  
Thus, if~o ETH(271) then f o g ( ( o )  ETH(Z3) .  [] 

Composing abstractions which preserve provability or inconsistency in 
different ways is definitely "not safe". Consider, for example, when f is a 
TI abstraction and g is an identity abstraction. Now f o g is equal to f ,  
and is thus TI. However, being a TI abstraction gives no guarantee that the 
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Table 2 
Composi t ion of  abstractions. 

TD 
TC 
TI 
N T D  
NTC 
NTI  

TD TC TI N T D  NTC NTI 

T D  TD .9 .9 ? .9 
T D  TC TI .9 .9 .9 

.9 TI TI .9 .9 .9 

.9 .9 .9 N T D  N T D  .9 

.9 ? .9 N T D  NTC NTI  

.9 .9 .9 .9 NTI  NTI  
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abstraction maps nontheorems in a helpful way (except in syntactically com- 
plete systems); similarly, being NTI gives no guarantee that the abstraction 
maps theorems in a helpful way. Thus composing TI abstractions with NTI 
abstractions can give unpredictable effects; the resulting abstraction may be 
TI, NTI, or neither. 

We summarize all these results (and more) in Table 2. This table de- 
scribes the properties of an abstraction formed by composing an abstraction 
possessing the property given by the row heading with an abstraction pos- 
sessing the property given by the column heading. Thus, the entry in the 
second row and third column indicates that composing a TC abstraction 
with a TI abstraction gives another TI abstraction. The symbol "?" is used 
to indicate that the provability or inconsistency preserving properties of the 
abstraction composition is not predictable. Note that only eight question 
marks would appear in a table for mappings between syntactically complete 
formal systems (in which NTI is the same as TD, etc.); however, such a 
table would contain much redundancy and could be represented by just one 
quadrant of this full table. 

Two observations are worthwhile. First, in the case of abstractions,  
preserving provability is not enough as the similarity of proofs must be pre- 
served as well. To guarantee that the composition of two abstractions pre- 
serves this property (and therefore that it is itself an abstraction) Plaisted's 
abstraction mappings [61 ] additionally have to preserve subsumption (con- 
dition (c)). We do not need this additional requirement here, but we use a 
definition similar in spirit (called tree subsurnption) when studying how to 
use TI* abstractions as abstract ions [24]. Second, notice that abstraction 
composition can be iterated. Does such iteration always converge? That is, 
do we reach a fixed point? This question will be dealt with i n  Section 12 
below. 
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11. Ordering of abstractions 

We have called one abstraction "stronger" than another without precisely 
defining how we might order abstractions. Being able to order abstractions 
helps to describe the complexity of the abstract spaces. It also offers a 
solution to the problem of inconsistent abstract spaces identified in the last 
section. The definitions of T* and NT* abstractions suggest two obvious 
ways of ordering abstractions: T* abstractions can be ordered by the number 
of theorems in the abstract systems, and NT* abstractions by the number 
of nontheorems. For syntactically complete systems, these two orders are, 
of  course, related. 

To construct an order, the abstractions must map from the same ground 
space. However, they can map to completely different abstract spaces. For 
T* abstractions, we use the following order: 

Definition 11.1 (_) .  If f • 271 ~ 272 and fj  • 2~1 ~ 273 are two abstractions, 
then j~ _ f# i f f for  all wffs (p, if f (~0) E TH(Z2) then j~(~0) E TH(273). We 
also say that J) is stronger than ~,  or that ~ is weaker than ~ .  

J) is "stronger" than f in the sense that there are more wffs, ~, in 
TH(Z1) such that ~ ( ~ )  E TH(X3) than wffs, fl, in TH(XI)  such that 
f . ( f l )  E TH(272). _ will be used to order T* abstractions. Note that f ,  E_ 
does not imply that the abstract language of f is a subset of the abstract 
language of ~ .  

For NT* abstractions we will use a different order: 

Definition 11.2 (__). If J} : Xi =* X2 and ~ : X1 ~ 273 are two abstractions, 
then f __ fj iff for all wffs ~0 if J~(~o) E NTH(X2) then fj(~o) E NTH(Z3).  
We also say that fj  is stronger with respect to NTH than f ,  or that f is 
weaker with respect to NTH than .~. 

~ is the analogous order to E for NT* abstractions. Its properties are en- 
tirely dual to those of E. Indeed, when the systems involved are syntactically 
complete we have J) -_<_ f iff j~ _ f j  (by Theorem 6.3). The remainder of 
this section therefore concentrates on E with the observation that everything 
holds dually for _. We first introduce the symbol for equivalence. 

Definition 11.3 (--). ~ - ~ iff ~ E_ ~ and fj ~ f .  

If fi - 3~, we say that fi is equivalent to ~ .  - is in fact an equivalence re- 
lation and satisfies the usual properties of equivalence relations (transitivity, 
symmetry, and reflexivity). E_ is a preorder, in fact: 
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I.emma 11.4 (Preorder). E is a preorder. That is, it is 
• transitive:, ifJ~ E ~ and fj  E fk, then J~ E_ fk; 
• reflexive:, fi E_ fi. 

E is not a partial order as two equivalent abstractions are in general not 
equal as they have different abstract spaces and fa's (this makes antisym- 
metry fail). Starting from _ we can define, in the obvious way, the partial 
order E-- over the equivalence classes of abstractions. 

One very important property of this ordering on abstractions is that if 
we can order two abstractions, the provability preserving properties of one 
abstraction are also possessed by the other. 

Theorem 11.5. I f  fi : ~'l =~ "/~2 is a TI abstraction (TD) and J) • "~l ~ "~'3 is 
an abstraction such that J~ E fj  (fj  E Ji), then fj  is TI (TD). 

Proof. We only give the proof for TI abstractions; the proof for TD abstrac- 
tions is entirely dual. IfJ~ is TI, then ~ E TH(X1 ) implies j~(¢) E TH(X2). 
As J~E fj, ~ ( ¢ )  E TH(X2) implies J~(~) E TH(X3). Thus ~ E TH(XI) 
implies .~(¢) E TH(X3). That is, .~ is TI. [] 

Another useful property is that any TI abstraction is stronger than any 
TD abstraction. 

Theorem 11.6. I f  fi : ~'1 ~ "~'2 is a TI abstraction and fj  • X1 =~ X3 is a TD 
abstraction, then fj  E f i .  

Proof. Since fj is TD, J~(~) ~ TH(X3) implies ~ E TH(XI). But, as f,- is 
TI, ~ E TH(X1) implies J~(~) E TH(X2). Thus, f j (~)  E TH(X3) implies 
J~(~) e TH(X2). That is, fj  E J~. [] 

A simple coronary to this last theorem is that J) E Jl E j~ where J~ is 
an identity abstraction, J~ is any TI abstraction, and fj any TD abstraction. 
Another consequence is that ~ = J~ for any TC abstraction. Thus E generates 
orders with chains of TI abstractions on the right, all the TC abstractions 
in the middle, and chains of TD abstractions on the left. Given a set of 
ordered abstractions, if one of the abstractions is TI then all the stronger 
abstractions are also TI, and if one of the abstractions is TD than all the 
weaker abstractions are also TD. 

Composition is a very natural way to build such ordered sets of T* 
abstractions as the following result holds. 

Theorem 11.7. I f  fi : "~'1 :=~ ~'2 is an abstraction and 3~ " X2 ~ ~,3 is a T~ 
abstraction (TD abstraction), then fi E fj  o fi (fj o fi E fi). 
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Proof. As usual the proof for TD abstractions is dual to the proof for TI 
abstractions. If f(~o) E TH(Z2)  and S) is TI, then ~(~(~0))  c TH(Z3).  
Thus f ( 9 )  E TH(272) implies f j o f ( ~ o )  E TH(X3). That is, f _  [)oJi. [] 

Notice that in Theorem 11.7 we have made no hypotheses about Ji which 
could be TI, TD, TC, or none of these. On the other hand, we can use 
Theorem 11.7 to construct ordered sets of TI abstractions out of a basic set of  
TI abstractions. For example, we might reduce the computational complexity 
of a planning domain by composing an ABSTRIPS-like abstraction, fAB, with 
a propositional abstraction, fprop. It quickly follows that, 

.~ ~ lAB ----- fprop o JAB- 

In Section 9 we have shown that TI* abstractions can map a consistent 
theory onto an inconsistent theory. A very useful property of E_ is that 
a totally ordered set of  abstractions has all those with consistent abstract 
theories on the left and those with inconsistent abstract theories on the 
right; more precisely, if an abstract theory is consistent then all weaker 
abstractions map onto consistent abstract theories, while if an abstract 
theory is inconsistent then all stronger abstractions map onto inconsistent 
abstract theories. 

Theorem 11.8. I f  fi " 271 =z~ X 2  ' and fj " 27~ ~ Z3 are two abstractions such 
that fj  E_ fi, then if Z2 is consistent, Z3 is also. Alternatively, ~f Z3 is 
inconsistent then Z2 is also. 

Proof. As f j  _ f ,  then fj((p) E TH(Z3)  implies j'}(~o) E TH(Z2).  Assume 
that 2;2 is consistent but that 273 is inconsistent. There will exist a wff, ~,, for 
which f ( ~ / )  ~ TH(X2).  But f j ( ~ )  ~ TH(Z3)  as all wffs are provable in an 
inconsistent theory. Thus, f ( ~ , )  ( T H ( X 2 )  and ~ (~ , )  c TH(-Y3). But this 
contradicts ~(~0) 6 TH(X3) implying J~(~o) 6 TH(Z72) for all ~0. Hence, if 
272 is consistent then 273 cannot be inconsistent. And if X3 is inconsistent 
then 2"2 cannot be consistent. [] 

This result will be used, in Section 12, to propose a solution to the problem 
of inconsistent abstract spaces discussed in Section 9. 

12. Hierarchies of abstraction spaces 

So far we have concentrated on applying abstraction only once. However, 
the process of abstraction can be iterated to generate hierarchies of  abstract 
spaces. Almost all the work done in the past with a b s t r a c t i o n s  used this 
technique as well as that on approximations (which uses also TD abstractions 
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as a means to underestimating the solution). The goal of this section is to 
discuss the use of hierarchies on the basis of  the results presented before in 
this paper. We concentrate on TI abstractions but everything is generalizable 
to NT* and TD* abstractions. 

By iterating the process of abstracting we mean repeatedly: 

• picking an abstraction; 
• explicitly generating the abstract space; 
• using (or abstracting further) the abstract space. 

By composing abstractions we mean abstraction composition (in the math- 
ematical sense of function composition) as defined in Section 10. Notice 
that, while the iteration of abstractions implies the generation of  all the 
intermediate spaces, this is not the case with abstraction composition. 

At each step, both in abstraction iteration and in abstraction composition, 
a different abstraction can be applied, as long as it is TI. Thus, for instance, 
we might first collapse predicates (as Tenenberg proposes), then collapse 
constants (as Hobbs' granularity theory suggests), then apply an ABSTRIPS 
abstraction or granularity again, and so on. Which, among all the possible 
sequences of abstractions, is the best to use is very much dependent on the 
problem. 

If we choose to perform abstraction iteration by composing abstractions, 
the abstract spaces can be constructed starting directly from the most abstract 
and then going back towards the ground space; this avoids us going forwards 
through all the intermediate abstract spaces. Having decided which set of 
abstractions to compose, it is sufficient to build the composite mapping 
function and with this the most abstract space. Note that this trick can also 
be used to generate all the intermediate abstract spaces back to the ground 
space. 

The question which arises is then as follows. If we do not put a bound on 
the number of abstractions applied in the chain, can we get to an abstract 
space 27/ such that abstracting 27i generates 27i itself or, more generally, the 
same number of theorems as 27/? That is, can we get to a fixed point? A 
related question is "if we get to such a situation, are we actually able to 
recognize it?". In general there are many sequences of abstractions. Are the 
fixed points computed by each sequence the same or different? 

There are two possible situations. 
In the first case, 27i is inconsistent. In fact, as we increase the strength 

of the abstraction, we monotonically increase the number of theorems; we 
eventually reach an upper bound when the set of theorems coincides with 
the language. Notice that it may not be possible to recognize that we are 
at the fixed point due to undecidability. Thus, in trying to generate simpler 
and simpler abstract spaces, it is actually possible to generate indefinitely 
long chains of abstractions. Putting an upper bound on the depth of the 
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chain is one solution to this problem. A better solution perhaps is to require 
that there is a point after which all the X~ are decidable (an easy way to 
generate a decidable abstract space Xi is to use an propositional abstraction, 
that is an abstraction whose abstract space is propositional). 

In the second case, Z'~ is consistent but abstracting it further does not 
increase the number of theorems. This happens when the abstraction tries 
to forget details which have already been forgotten. This might be the case 
with most a b s t r a c t i o n s  which, at each step, decrease the complexity of the 
search space. Possible situations are: trying to delete preconditions which 
do not occur, applying a propositional abstraction to a propositional ground 
space, or collapsing predicates already collapsed. In this situation, the fixed 
point is different for each different abstraction. We are, however, always 
able to recognize when we are at such a fixed point. 

Abstraction iteration can be used to tackle the problem of inconsistent 
abstract spaces (see Section 9). Because abstract spaces are usually undecid- 
able, no general methods for building consistent abstract spaces independent 
of  the (consistent) ground space can exist. In Section 9 we have argued that 
an inconsistent abstract space should be avoided. One way around the prob- 
lem of inconsistent abstract spaces is to place strong restrictions on the 
types of abstraction and/or  axioms allowed. For example, we might only 
work with TD* abstractions but this loses completeness. Or we might fix in 
advance the formal system or the class of formal systems so that the ab- 
straction is guaranteed to construct a consistent abstract space; for instance, 
we might place a syntactic restriction on the axioms allowed in the ground 
space. 

Many attempts in this direction have been tried. We will briefly repeat 
some observations from the examples reported in Section 8. Tenenberg 
[73,74] presents two solutions to this problem for predicate abstractions. 
The first keeps in the abstract space only those axioms from the ground 
space that do not distinguish between the predicates which are mapped to- 
gether. Unfortunately deciding indistinguishability is an undecidable prop- 
erty requiring an arbitrary amount of  theorem proving in the ground space. 
Additionally, the abstractions in this class are not TI as the abstract space 
has fewer axioms than the ground space (since we don't map all of them) 
and therefore fewer theorems. Tenenberg's second solution [74] overcomes 
the objection to undecidability. In this proposal, axioms are kept in the 
abstract space provided they can be trivially shown not to distinguish in the 
ground space between predicates which are conflated together; thus, instead 
of performing an arbitrary amount of  theorem proving in the ground space 
to determine indistinguishability, we insist that it is an immediate conse- 
quence of the axioms. While being decidable, this solution is again not TI. 
Hobbs [31] and Imielinski [32] also suggest solutions to the false proof 
problem for domain abstractions in which the objects in the language (and 



A theory of abstraction 379 

not the predicate symbols) are mapped together. Hobbs' proposal, however, 
requires arbitrary theorem proving in the ground theory, while Imielinski's 
proposed solution is not TI. 

One solution (discussed in detail in [21] ), suggested by Theorem 11.8 
in Section 11, is to use an ordered chain of TI* abstractions, the strongest 
of which gives a decidable abstract space. If this abstract space is consis- 
tent, then all the intermediate abstract spaces back to the ground space 
will be also. Thus we can iterate back through the chain of abstractions 
safe in the knowledge that all the intermediate (and possibly undecidable) 
abstract spaces are consistent. Of course, we can't escape undecidability so 
this trick is inevitably cautious; for instance there will be cases where the 
strongest abstract space is inconsistent but the intermediate abstract spaces 
are consistent. 

13. Building abstractions 

We have argued at length that abstractions should preserve provability. 
Unfortunately, it is difficult to predict in advance how an abstraction will 
affect the "global" property of provability. 

The goal of this section is to define some "local" properties of an ab- 
straction we can test, that is a set of restrictions on fa and on the rela- 
tions between axioms and deductive machinery in the ground and abstract 
spaces, which guarantee that it is TI*. One step in this direction was done 
by Plaisted, who provided a set of properties, built inside his definition 
of ordinary and weak abstractions, for NTI abstractions between resolution 
systems. However his definitions are still based on the preservation of prov- 
ability and not on the more primitive notions of fA, 271, and Z'2. This means 
that, given a definition of abstraction we still have to prove that it satisfies 
these properties. (Plaisted, in fact, lists, as examples, a set of abstractions 
which satisfy those properties [60].) 

A first result is that all 2?-invariant abstractions are TI. (A 2?-invariant 
abstraction is an abstraction in which the language, axioms, and inference 
rules are all abstracted using the same mapping function.) 

Theorem 13.1. I f  f : S l  =~ S,2 is a ~,-invariant abstraction, then it is a TI  
abstraction. 

The proof follows trivially from the consideration that we can map a proof 
tree H1 of (D onto a proof tree/72 of f (q~) merely by applying f to every 
wff in the proof tree. Notice that Theorem 13.1 holds even if the abstraction 
is d-variant, that is, even if the deductive machinery in the abstract space 
is different from that in the ground (as in GPS). 
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This is, of course, not the only way to build TI abstractions. Indeed, there 
are TI abstractions that are not X-invariant. In most cases, we inherit a 
fixed language and inference engine for the abstract and ground theories. 
We cannot therefore use S-invariant abstractions which change the inference 
rules. Instead we want to find A-invariant abstractions as this saves us 
implementing a new inference engine for the abstract theory, and allows us 
to use hierarchies of abstractions. Plaisted proves [61, Theorem 2.t] some 
local properties that are sufficient but not necessary to make such mappings 
between resolution systems NTI abstractions. We can generalize this result 
to find conditions on a A-invariant abstraction between first-order languages 
with complete deductive machinery that make the abstraction TI/NTI. 

As we noted before, most useful abs t r ac t i ons  change the theory not the 
logic. That is, they map the predicates but not the logical structure of the 
wff. In general, the logic is well-behaved and it is the theory that needs to 
be simplified. There is another good reason for using theory abstractions; 
if the abstraction is to be TI, then it needs to preserve the meaning of the 
connective introduction and elimination rules. For example, since we can 
derive p A q from p and q, we need to be able to derive f ( p / ' ,  q) from 
f (p) and f (q). A theory abstraction will guarantee that deductions using 
the connective rules remain valid deductions in the abstract theory'. The 
majority of useful abs t r ac t i ons  are also A/~2-invariant abstractions. For 
an abstraction to be TI, the abstraction of the axioms of the ground theory 
must also be theorems of the abstract theory. This is easily achieved by 
making the abstraction A/~2-invariant. 

We have thus reduced the problem of  constructing a A-invariant abstrac- 
tion to the much easier problem of  deciding on a suitable mapping of  atomic 
formulas for a A/12-invariant theory abstraction. The question now becomes: 
can we come up with any syntactic test on this mapping which guarantees 
that the abstraction is TI? Given the undecidability of provability, it is 
impossible for us to find a test that captures the whole class of TI abstrac- 
tions. However, it is possible to come up with a test that captures a very 
large subclass. Indeed, the test captures most of the abs t r ac t ions  listed in 

Section 8. 

Theorem 13.2. I f  f : S1 ~ X2 is a A/~2-invariant theory abstraction such 
that its mapping function, f t ,  preserves the names" of  the occurrences of  the 
free and bound variables which occur in the abstract space and preserves 
substitution instances, that is, fA (P [a] ) = fA (P [x] ){f~ (a)/x},  then f is a 
TI* abstraction. 

Proof (Outline). (Remember that we are restricting ourselves to first-order 
systems). Since f is a theory abstraction it is negation preserving. Thus 
it is sufficient to prove that f is a TI abstraction. We show how, given a 
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proof tree H~ of ~ in ,a~l, w e  can construct a proof t ree / /2  of f ( ~ )  in 272. 
The argument proceeds by induction on the length of the proof tree HI. 
If the proof tree is of  length 1, then (0 must be an axiom. But, as f is 
A/t'2-invariant, f ( ~ )  is also an axiom. We then assume that we can show 
it for all proof trees up to length N, and prove it is true of all proof trees 
H~ of length N + 1. We consider the last inference in the proof tree H~. If 
it is a connective introduction or elimination, a universal elimination or an 
existential introduction, then we apply the same rule at the bottom of the 
proof tree we construct in 272. For a reductio ad absurdum, the preservation 
of  substitution instances guarantees f (±)  = ±. We can therefore apply an 
application of reductio ad absurdum at the bottom of 272. If it is a universal 
introduction or an existential elimination, then the same rule can also be 
applied in 272 since the conditions on applying the rule (that the assumptions 
do not mention the free variable being universally quantified, etc.) still hold 
as variable names are preserved. [] 

Notice that we can drop variables in the abstract space, for instance by 
applying a propositional abstraction (this is why the theorem is restricted 
to the variables which occur in the abstract space). Actually, we can drop 
the requirement on preserving the name of bound variables provided we 
are carefully to avoid any naming clashes. If we restrict ourselves to ab- 
straction mappings between resolution systems, Theorem 13.2 is similar to 
[61, Theorem 2.1 ]; for Plaisted's abstractions, our extra condition on the 
name of variables is redundant since all wffs are already skolemized and no 
variable naming problems can arise. Note that preserving variable names 
and substitution instances does not capture all TI theory abstractions. For 
example, the theory abstraction that maps p (a) onto -I- and p (x) onto p (x) 
is TI if p ( a )  is a theorem of the ground space; however, this abstraction 
does not preserve substitution instances. 

Thus we have found a useful syntactic condition on the mapping that 
guarantees that the resulting abstraction be TI. The question now becomes: 
what sort of  mappings preserve substitution instances and preserve (or 
drop) variables? Historically, most abstractions fall into four main types 
(see Sections 8.1-8.4): 

• predicate abstractions where we map the predicate names in some uni- 
form way; 

• domain abstractions where we map the constants or function symbols 
in some uniform way; 

• propositional abstractions where we drop some or all of  the arguments 
to predicates; 

• A B S T R I P S  abstractions where we map some of  the preconditions onto 
q- (the condition on preserving substitution is vacuously satisfied). 



382 F. Giunchiglia, T. Walsh 

All the abstractions in these four classes satisfy the hypotheses of Theo- 
rem 13.2. 

Taking a closer look at the classes of a b s t r a c t i o n s  defined above it is easy 
to notice that all of  them work on atomic formulas and that each abstracts 
different parts. This observation can be exploited to make a systematic clas- 
sification of abstractions which satisfy the hypotheses of  Theorem 13.2. This 
characterization can be given following the recursive definition of atomic 
formulas. Thus theory abstractions that preserve substitution instances can 
be characterized as follows: 

(1) term abstractions which map the terms, themselves classified into: 
• constant symbol abstractions which map constants, 
• function symbol abstractions which map function symbols; 

(2) predicate symbol abstractions which map predicate symbols. 

Notice that this last classification is exhaustive in the sense that it considers 
all and only the possible ways to build TI abstractions by manipulating the 
parts of the atomic wffs. 

The only examples of constant symbol abstractions are domain abstrac- 
tions. In fact the only syntactic information that a constant carries is its 
name, which is thus the only thing which can be forgotten. To forget details 
of a constant necessarily means to collapse it with another one (to introduce 
a new name is useless). We call this collapsing. 

With function symbol abstractions, it is possible to collapse the function 
name, or to change the arity. Thus the arity can be decreased by any number 
of  arguments (in the limit, functions become constants), or the order of 
the arguments can be changed (increasing the number of arguments is not 
considered here since it corresponds to an increase of complexity). We call 
this argument manipulation. 

With predicate symbol abstractions it is possible to collapse the pred- 
icate name (i.e. predicate abstractions) and argument manipulation (e.g. 
propositional abstractions). The one type of mapping which distinguishes 
function symbol abstractions from predicate symbol abstractions is that 
predicate symbols can be (selectively) mapped, after having deleted all the 
arguments, onto the special symbols q- or ±. We call this a truth mapping. 
ABSTRIPS is an example of a truth mapping. 

Finally we note that Theorems 13.1 and 13.2 provide us with a way 
to build abstractions which are TI irrespective of the particular axioms 
of the ground space. Theorems 13.1 and 13.2, in fact, do not place any 
restrictions on the axioms of the ground space, all X-invariant abstractions, 
and A-invariant abstractions which preserve substitution instances are TI 
irrespective o f  the axioms of  the ground space. Notice that it is not sufficient 
that we abstract the axioms in the same way as the wffs since not all 
A/f2-invariant abstractions are TI. For example, let ~1 and X2 be complete 
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propositional theories. If  f (p ) = T, f ( q ) = p A q, f ( ~ ) = q~ otherwise, 
and 121 = {p, q, r}, then it is TI. However, if  Q1 = {P, r}, then f is not TI 
(since we cannot show p ---, r E TH(272)). 

Once we have built up a collection of abstractions, we can use the various 
operations on abstractions to construct yet more abstractions. In particular, 
we can use the fact that the composition of two T* (NT*) abstractions is 
itself a T* (NT*) abstraction, and that the inverse of a TI* abstraction is 
a TD* abstraction (and vice versa). Finally, to construct NT* abstractions, 
we can call upon the fact that a T* abstraction that is negation preserving 
is also an NT* abstraction, and vice versa to construct T* abstractions. 

14. Summary and conclusions 

We have presented the beginnings of a theory of abstraction. Abstraction is 
defined as a mapping between formal systems. We consider such mappings 
in the light of  how they preserve provability and, for refutation systems, 
inconsistency. This framework is very general. Indeed it captures a lot of  the 
work on abstraction done in the past (see the references in Section 1 ) and, 
as a particular case, abs t rac t ion .  Abstractions often satisfy much stronger 
requirements than just the preservation of provability; for example, there is 
frequently a correspondence between the structure of proof in the abstract 
formal system and that in the ground. However, even restricting ourselves 
to the weak property of  preserving provability, we are able to prove some 
very interesting results. 

We have used this theory of abstraction to capture and generalize 
previous work on abstraction and, in particular, because of  our inter- 
ests, on abs t rac t ion .  This has allowed us to formalize work often in- 
formally described in an uniform way, and to classify the different types of 
abs t rac t ions .  Many, at first sight, seemingly different abstractions are in 
fact related; for example, we have shown that Hobbs' granularity [31] is an 
example of one of Plaisted's abstractions [61 ]. 

The other main use of this theory of abstraction has been to study the 
formal properties of abstractions and the operations like composition and 
ordering which can be defined upon them. In particular, we have investigated 
the properties of  the four main classes of abstraction (TI, TD, NTI, NTD),  
and the relationships that exist between them. We have also considered the 
different ways to use abstractions. Finally we have presented some results 
which tackle the problem of how to build "useful" abstractions. 

Three individual results are worth highlighting. Firstly, preserving prov- 
ability seems a good way to characterize abstractions (and in particular 
abs t r ac t ions ) .  Indeed, with very few exceptions, abstractions fall into one 
of  two classes, those in which proof (inconsistency) in the abstract space 
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implies proof (inconsistency) in the ground, and those in which the opposite 
holds. This has immediate implications on the different ways we can use 
abstractions (that is, deductively or abductively). Secondly, the problem of 
inconsistent abstract spaces, where a consistent space maps onto an incon- 
sistent abstract space, is inevitable for almost all abstractions. We have 
proposed a solution which exploits the fact that abstractions can ordered. 
Thirdly, there are very few choices to be made in building abstractions. 
Since in general it is the theory not the logic that is introducing complexity 
into the problem solving, one needs merely to decide how to map the atomic 
formulas. For an abstraction to preserve provability, it is sufficient that the 
mapping of  atomic formulas preserve substitution instances. And the sorts of 
mappings that preserve substitution instances (that is, collapsing, argument 
manipulation, and truth mapping abstractions) capture the four main types 
of a b s t r a c t i o n s  (that is, predicate, domain, propositional, and ABSTRIPS 
abstractions) identified in Section 8. 

15. Further work 

This paper describes the basic underlying theory we are currently using in 
our work on abstraction. At the moment we are working on the following 
topics: 

• Firstly, we want to refine our formal definition of abstraction to capture 
more properties of abs t r ac t ions .  This result is a direct consequence 
of  the development of a theory of  mapping an abstract proof back 
into the ground space. This requires the definition of  the class of 
abstractions which preserve (as well as provability) the structure of the 
proof between the ground and the abstract spaces. Some preliminary 
results can already be found in [24]. 

• Secondly we need to study what is meant by the abstract representation 
being "simpler to handle". Ultimately this will involve a complexity 
analysis of the process of solving an abstract problem and using the 
abstract solution to aid the proof in the ground space. Some preliminary 
results can already be found in [25 ]. 

• Thirdly, we want to define and implement a theorem prover for using 
abstraction. As hinted in Section 1, we want to implement abstraction 
inside an abstract proof checker, that is, inside a system which allows 
us to use abstraction interactively. The abstract proof checker is under 
development (some preliminary ideas can be found in [26] ) and it is 
being implemented on top of GETFOL [20 ], an interactive theorem prover 
which runs on top of  a re-implementation of  the F0L system [28,79]. 
Some preliminary testing has been made; for instance we have proved 
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with GETFOL a (very) simplified version of G6del's theorem. The results 
are encouraging. 

• Fourthly, if such a theorem prover is going to be used on real problems, 
it will have to construct automatically (or, possibly, suggest in the case 
of interactive theorem proving) abstractions. We have done some work 
in the case of ABSTRIPS abstractions [7,8]. 

There are also some areas where we plan on developing our work. In 
particular, we are interested in broadening our definition of abstraction to 
look at analogy. Abstraction is closely related to analogy and we would 
like to study (and implement) them in a uniform framework. Finally, we 
would like to combine abstraction with other theorem proving techniques 
like proof plans [9]; a successful synthesis of such techniques would help 
us towards the dream of creating artificial (mathematical) reasoners. 
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