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1 IntroductionMany randomly generated NP-hard problems display a phase transition as someorder parameter is varied, and as the problems go from being almost always solubleto being almost always insoluble [2]. This phase transition is often associatedwith problems which are typically hard to solve. In this paper, we show thatwith several di�erent classes of satis�ability problems including random 3-SAT,the phase transition is indeed associated with problems which are typically hardbut there are also regions of very variable problem di�culty in which problemsare usually easy but sometimes extraordinarily hard. We identify the cause of thisbehaviour and show that it does not disappear with better algorithms or heuristics.We predict that similar regions of very variable problem di�culty will be foundwith many other NP-hard problems besides satis�ability. The extraordinarilyhard problems found in these regions may be of considerable use in analysing andcomparing the performance of algorithms for NP-hard problems.2 Satis�abilityPropositional satis�ability (or SAT) is the problem of deciding if there is an as-signment of truth values for the variables in a propositional formula that makesthe formula true using the standard interpretation for logical connectives. Wewill consider SAT problems in conjunctive normal form (CNF); a formula, � inCNF is a conjunction of clauses, where a clause is a disjunction of literals, and aliteral is a negated or un-negated variable. A standard procedure for determiningsatis�ability is due to Davis and Putnam [4] (see Figure 1).procedure DP(�)if � is empty then return satis�ableif � contains an empty clause then return unsatis�able(Tautology) if � contains a tautologous clause c then return DP(�� c)(Unit propagation) if � contains a unit clause flg thenreturn DP(� simpli�ed by assigning l to True)(Pure literal deletion) if � contains a literal l but not the negation of l thenreturn DP(� simpli�ed by assigning l to True)(Split) if DP(� simpli�ed by assigning a literal l to True) is satis�ablethen return satis�ableelse return DP(� simpli�ed by assigning the negation of l to True)Figure 1: The Davis-Putnam ProcedureAn empty clause contains no literals, a unit clause contains just a single literal,and a tautologous clause contains both a literal and its negation. To simplify a2



set of clauses by the assignment of the literal l to True, we delete every clausethat contains l and delete the negation of l whenever it occurs in the remainingclauses. Note that the Davis-Putnam procedure is non-deterministic since theliteral used by the split rule is unspeci�ed. As in previous studies (eg. [6, 12]),we will split upon the �rst literal in the �rst clause. We call this variant of theDavis-Putnam procedure \DP". Despite its simplicity, with good heuristics forchoosing the literal to split on, an e�cient implementation of the Davis-Putnamprocedure is still the best complete procedure for satis�ability [5].3 Constant Probability ModelThe constant probability model of randomly generated problems has been thesubject of considerable theoretical and experimental attention. In this model,given N variables and L clauses, each clause is generated so that it contains eachof the 2N di�erent literals with probability p. Our experiments use a variant of theconstant probability model proposed in [9] and since used in other experimentalstudies [6, 7, 12]. In this problem class, if an empty or unit clause is generated, it isdiscarded and another clause generated in its place. This is because the inclusionof empty or unit clauses typically makes problems easier. We shall call this the\CP" model. In all our experiments, as in [6, 7], we choose p so that 2Np = 3 andthe mean clause length remains approximately constant as N varies. In [12], it isshown that there is a phase transition between satis�ability and unsatis�abilityfor CP as the ratio of clauses to variables, L=N is varied. If 2Np is kept constant,then this phase transition occurs at a �xed value of L=N [7]. For 2Np = 3, thephase transition occurs at L=N � 2:80.The satis�ability phase transition is of computational importance since thereis an easy-hard-easy pattern in problem di�culty as we cross the phase trans-ition with the hardest instances occuring in the phase transition [12]. When theratio of clauses to variables is large, problems are usually over-constrained, andthus easily shown to be unsatis�able. When the ratio is small, problems areusually under-constrained, and a satisfying assignment can be \guessed" quickly.The hard instances tend to occur in the phase transition where the problems areneither over-constrained nor under-constrained. In [6], we showed that whilst me-dian problem di�culty has a simple easy-hard-easy pattern, there is also a regionof very variable and sometimes exceptionally hard problem di�culty at a highpercentage satis�ability. The worst case problems in this region can be orders ofmagnitude harder than those in the middle of the satis�ability phase transition.These extraordinary problems can easily dominate the mean problem di�culty.Similar behaviour has been observed by Hogg and Williams for randomly gener-ated 3-colourability problems [8].Figure 2 (a) gives the mean and median number of branches used by DP for1000 problems from the CP model at N = 100 with L=N from 0.1 to 6.0 in intervalsof 0.1. The number of branches is the number of leaf nodes in the search tree.3
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the last of these ratios indicates the number of variable assignments that can bededuced for each guess during search. To avoid division by zero, we exclude thetrivial problems which tend to occur at small L=N that are solved with no splits.Such problems can be solved in polynomial time using a simple preprocessing stepwhich exhaustively applies the unit and pure rules. As a guide, the dotted line re-peats the probability of satis�ability from Figure 2 (a). We show the e�ect of bothunit and pure propagations individually, and of them both together. The upper-most solid line shows the ratio of all constraint propagations to splits. Underneaththis, plotted to the same scale, are plotted the ratio of number of applications ofthe pure rule to splits, and the ratio of number of applications of the unit rule tosplits. The number of pures dominates behaviour at small values of L=N, whileunit propagations start to dominate at large values. The ratio of all propaga-tions to splits shows a large peak of 73.5 at L=N = 1:3. In this region, almostall problems are trivial, being solved almost exclusively by pure literal deletion.However, with increasing L=N, the number of pure literal deletions drops veryrapidly, and applications of unit propagation take over. A local maximum of 33.8propagations per split is reached at L=N = 5:2, though in this region performanceis comparatively noisy.The most interesting region in Figure 3 (b) is the region where neither pureliteral deletions nor unit propagations dominate behaviour, since in this region thenumber of all propagations shows a pronounced minimum. The minimum in themean ratio of the sum of units and pures to splits is 9.8 and occurs at L=N = 2:5,close to the position of the hardest worst case.These graphs con�rm that the unit and pure rules are not e�ective in themostly satis�able region. There appears to be a \constraint gap"; that is, thereseems to be a region where the unit and pure rules are often unable to identifyconstraints on the truth assignments and we have to use the split rule extensively.This would suggest that the depth of search (i.e. the depth of nesting of split ruleapplications) would also peak in this region. In Figure 4 (a), we plot the meanminimum, and mean maximum depth of search. The peak of the minimum depthis 10:0 at L=N = 2:5 while the peak of maximum depth is 11:6 at L=N = 2:8. Thiscoincides closely with the minimum in the ratio of the sum of units and pures tosplits, and with the position of the hardest worst case. For unsatis�able problems,a peak in minimum search depth corresponds to an exponentially larger peakin problem di�culty, as all branches must be searched to at least the minimumdepth of the tree. We con�rmed this by plotting the logarithm of problem di�cultyfor unsatis�able problems alone. This was approximately proportional to meanminimum search depth.5 Scaling of the Constraint GapThe importance of the constraint gap depends in part upon the relationship ofthe constraint gap to the phase transition from satis�ability to unsatis�ability.6
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75, 100, 150, and 300. The x axes are scaled in the same way as Figure 4 (b).Using �u = 3:3, vu = 2:5, we found a very good �t to Equation (2), as can be seenclearly from the graph, particularly in the region of L=N from approximately 2 to4. Behaviour at very small or large values of L=N does not seem to �t the modelas closely. It is particularly important to note that the value of �u used here,namely 3.3, is larger than values of L=N where we earlier observed very bad worstcase behaviour, and the constraint gap. The maximum ratio of units to splitsseems to scale as approximately N0:6. We would expect less than linear scalingof this ratio, as otherwise the number of splits required would not increase withN. Sublinear scaling of this ratio suggests exponential growth in the number ofbranches required to be searched.The scaling of the ratio of pures to splits is less simple than that of units. InFigure 5 (b) we show the ratios of the number of pure literal deletions to splits forthe same values of N as before, normalised by the relevant maximum value on they-axis but unscaled on the x-axis. It can be seen that there is a very large peak atvery low L=N, in a region where most problems are proved to be satis�able simplyby a large number of applications of the pure rule. This peak moves slightly to theright with increasing N. By contrast, the decline from this peak value is very fast,and takes place with dramatically increasing speed as N increases. Unlike unitpropagations, the peak of ratio of pures to splits seems to approach the numberof variables as Nincreases. However, this peak occurs at extremely small valuesof L=N, suggesting that such problems are essentially trivial. It seems likely thatin the constraint gap, and beyond, scaling of the number of pures to splits isindeed sublinear. For example, at L=N = 2, the ratio of pures to splits increasesonly from 16 at N = 100 to 18 at N = 300, hardly increasing at all while theproblem size triples. It is harder to come to any de�nite conclusion as it was forunit propagations. However, it should be noted that the peak in pure applicationsseems to occur at signi�cantly lower values of L=N than where we observed badbehaviour and the constraint gap. As the behaviour at low L=N is dominatedby easy or trivial problems, it is possible that if these could be eliminated in asuitable way, we would observe a similar scaling to that seen with the probabilityof satis�ability and of unit propagations to splits.These results suggest that the constraint gap will get more pronounced withincreasing N. In particular, the decline on the number of unit propagations as Nincreases and L=N decreases below �u gets sharper. The behaviour of the purerule is less clear-cut, but seems to show broadly similar behaviour. In [6], weshowed worst case behaviour is due to unsatis�able problems and to unsatis�ablesubproblems of satis�able problems [6]. As pure literal deletions only directly helpto solve satis�able problems (though at least simplifying unsatis�able problems),we would not expect pure literal deletion to help suppress bad worst case behaviourin the constraint gap, even if the utility of the pure literal rule did not decay.These results show that the constraint gap for CP, like the phase transitionbetween satis�ability and unsatis�ability, occurs at a �xed value of L=N; that is,9



at a �xed ratio of constraints to variables. The constraint gap seems to be openbetween approximately L=N = 2 and 3:3. The position of the constraint gap isthus �xed relative to the position of the satis�ability phase transition. From theshape of g , the scaling of the maximal values, and the value vu it also appearsthat the constraint gap will become more pronounced as N increases.6 Random k-SATFollowing [12], many studies of the satis�ability phase transition have concentratedon the random k-SAT problem class. A problem in random k-SAT consists ofL clauses, each of which has k literals chosen uniformly from the 2NN possiblevariables, each literal being positive or negative with probability 12 . Unlike CP, allclauses in the random k-SAT model are of the same length. In [12], it was shownthat there is a satis�ability phase transition for random 3-SAT at L=N � 4:3, andthat median behaviour displays a simple easy-hard-easy pattern through this phasetransition. In [6] we showed that hard random 3-SAT problems can also occur inthe mostly satis�able region, and Crawford and Auton also anecdotally report thisfor very large problems [3]. Indeed, problems in the mostly satis�able region can beseveral orders of magnitude harder than the hardest problems from the middle ofthe satis�ability phase transition (the point of worst median performance). Theseextraordinary hard problem appear to be rarer in random 3-SAT than in CP.Although we found such hard problems in a sample of 1000 for CP, it required100,000 for random 3-SAT. As with CP, these hard random 3-SAT problemsoccur in the region of a constraint gap, a minimum in the ratio of constraintpropagations to splits. Again, as with CP, the constraint gap and the probabilityof satis�ability scale as in Equations (1), (2).In Figure 6 (a) and (b) we plot the probability of satis�ability and the normal-ized ratios of units to splits for random 3-SAT problems for N = 10 to 70 in stepsof 10 Using � = 4:15, v = 1:5 (following [11]), �u = 3:3 and vu = 2:85, we founda very good �t to Equations (1) and (2). The peak ratio of units to splits seemsto vary approximately as N0:65. Again, mean minimum depth of search peaks ata small value of L=N. For example, at N = 50, the maxium value was 11.1 atL=N = 2:6 As with CP, we did not obtain a similar scaling result for the ratio ofpures to splits. However, the regions of many pure literal deletions again decaysat a smaller value of L=N than the region of many unit propagations.To conclude, hard problems can also occur with random 3-SAT in the mostlysatis�able region. These hard problems again appear to be associated with aconstraint gap. This constraint gap occurs at a �xed value of L=N, and becomesmore pronounced as N increase. The position of the constraint gap is �xed relativeto the position of the satis�ability phase transition. While the satis�ability phasetransition for CP seemed to be within the constraint gap (see x5), this does notseem to be the case for 3-SAT. The probability phase transition seems to occurat approximately 4.2, while the constraint gap seems to end at approximately10
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will observe a similar scaling of the constraint gap for 2,4,4-SAT as we observedabove for CP.8 k-ColourabilityAnother way of randomly generating SAT problems is to map random problemsfrom some other NP-hard problem into SAT. For example, the k-colourability(kCOL) of random graphs can be easily mapped into SAT. Given a graph, G thek-colourability problem is to assign one of k labels to each vertex of G so thatadjacent vertices carry di�erent labels. For a graph with n vertices and e edges,our encoding of kCOL into SAT uses n:k variables. We generate random graphsto encode into SAT by choosing e edges from the n:(n � 1)=2 possible uniformlyat random. We use �(n; e) to denote graphs drawn from this class.In Figure 8 (a) we plot the breakdown in percentiles for the number of branchesused by DP for encodings of 3-colourability for 1000 problems taken from �(n; e)with n = 40 and e=n = 0:5 to 4 in steps of 0.1. The worst case was 2,905,011branches at e=n = 1:6, while at e=n = 2:4, the point of worst median performance,the worst case was just 4,139 branches, 3 orders of magnitude smaller. As with theother random problem classes, median problem di�culty shows a simple easy-hard-easy pattern through the k-colourability phase transition. Very similar behaviourfor k-colourability was observed by Hogg and Williams using two special purposecolouring algorithms [8].The constraint gap seems to be an important feature in 3COL as well as inother problem classes of satis�ability problems. However, pure literal deletionsseem less important than previously. Even at e=n = 0:4 the number of purepropagations per split is only 3.8 at n = 40, compared to a peak of 34.9 unitpropagations per split at e=n = 2:65. The number of unit propagations per splitseems to scale similarly with n to the earlier cases of CP and 3-SAT, suggestingthat once again the constraint gap is an important way of understanding search.In Figure 8 (b) we plot normalized values of the ratio of unit propagations to splitsfor n = 10, 20, 25, 30, 40, scaled by Equation 1 with the values �u = 2:4, v = 3.The depth of search also peaks in the region of exraordinary hard problems.9 Critically Constrained ProblemsCrawford and Auton [3] have suggested that hard problems in the satis�ab-ility phase transition are critically constrained. That is, they are neither sounder-constrained that we can guess one of the many models easily, nor so over-constrained that we can determine their unsatis�ability with little search. Suchproblems are on the knife edge between satis�ability and unsatis�ability. To testthis hypothesis, we ran a series of experiments in which we added and deletedconstraints from the hardest CP problems in the experiments described in x3.13
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many constraints without making them satis�able. The hardest satis�able prob-lems in this region are more critically constrained than typical problems, and thusthey can reduce at early point in search to a hard unsatis�able problem. In thenext section we will argue that, whilst problems in the middle of the satis�abilityphase transition are di�cult because they are so critically constrained, problemsin the mostly satis�able region are di�cult because they are so uncritically con-strained.10 Minimal Unsatis�able SubsetsIn [6], we showed that hard problems in the mostly satis�able region are eitherhard unsatis�able problems or are satis�able problems that give rise to hard unsat-is�able subproblems following an incorrect split at the start of search. To explainthe di�culty of problems in the mostly satis�able region, we will therefore focuson unsatis�able problems. Since hard unsatis�able problems in the mostly satis-�able region are not critically constrained, we can delete many clauses from themwithout making them satis�able. This suggests that hard unsatis�able problemsfrom the mostly satis�able region contain a large number of irrelevant clauses.To test this hypothesis, we computed minimal unsatis�able subsets of the hardestunsatis�able problems. S is a minimal unsatis�able subset of T i� S � T , S is un-satis�able and there does not exist R with R � S and R unsatis�able. To computea minimal unsatis�able subset of T , we deleted each clause of T in turn, adding itback only if deleting it makes the set of clauses satis�able. Unfortunately, it is toocomputationally expensive to compute all minimal unsatis�able subsets. We did,however, determine if the computed minimal unsatis�able subset is unique. S, aminimal unsatis�able subset of T is unique i� for all ' 2 S, T �f'g is satis�able.In Figure 10 (a), at each value of L=N, we took the 100 hardest unsatis�ableCP problems for DP from 100,000 and measured the probability that they have aunique minimal unsatis�able subset. For reference, the dotted line gives the prob-ability of satis�ability for all problems at this point. In Figure 10 (b) we plot theaverage number of variables in the computed minimal unsatis�able subset. Whenthere is not a unique minimal unsatis�able subset, our method of computationwill tend to under-estimate the average number of variables of all the minimalunsatis�able subsets since there are more ways of computing a small minimal un-satis�able subset than a large one. Again, for reference, the dotted line gives theprobability of satis�ability for all problems at this point. A graph of the averagenumber of clauses in the minimal unsatis�able subsets looks very similar in shapeto that of the number of variables in the minimal unsatis�able subsets. The ratioof clauses to variables in the minimal unsatis�able subsets increases slowly from1.15 at L=N = 2:2 to 1.29 at L=N = 4:6. The observed minimal unsatis�ablesubsets are typically dominated by binary clauses, especially the very small min-imal unsatis�able subsets observed at small values of L=N. As the size of minimalunsatis�able subsets increase, the number of non-binary clauses increases accord-16
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subset is small in comparison to L and N, it could increase in size with N andstill be hard to identify. The length of the shortest proof could therefore easilybe unbounded. For example, the size of the minimal unsatis�able subset, and lmight increase as O(pN) or O(log(N)).These results help to explain why hard problems are much rarer in the mostlysatis�able region of random 3-SAT than the mostly satis�able regions of CP andrandom 2,4,4-SAT. CP and random 2,4,4-SAT problems contain large numbersof binary clauses. It is thus not too di�cult to hide a small and unique minimalunsatis�able subset within a large satis�able CP or random 2,4,4-SAT problem.By comparison, all clauses in a random 3-SAT problem must contain 3 literals.The minimal unsatis�able subsets in random 3-SAT are therefore typically largerand mentionmore variables. It is thus more di�cult to hide a minimal unsatis�ablesubset within a satis�able random 3-SAT problem.In the mostly satis�able region, the problem of solving a rare unsatis�ableproblem is that of identifying a single minimal unsatis�able subset. Once foundit is usually very easy to solve. However, there may be few clues available to itsidenti�cation. On the other hand, in the middle of the phase transition, the identi-�cation of a minimal unsatis�able subset is not so important, because the minimalunsatis�able subsets are comparatively large, and indeed may not in themselvesbe signi�cantly easier than the problem as a whole. Furthermore, choice pointsin search are less likely to be wasted, because most splits contribute towards aproof of unsatis�ability, as is seen by the large number of variables in the min-imal unsatis�able subsets. In the mostly satis�able region, bad choices can doublesearch time, as they may make no contribution to deriving the unsatis�ability ofthe unique minimal unsatis�able subset.To conclude, hard unsatis�able problems in the mostly satis�able region oftenhave very small and unique minimal unsatis�able subsets. These minimal unsat-is�able subsets are hidden within much larger random satis�able problems. It isthus very di�cult to �nd such minimal unsatis�able subsets. An analogy can bemade with cryptography where it is very di�cult to identify a short message ifit is hidden in a long stream of white noise. By comparison, hard unsatis�ableproblems in the middle of the satis�ability phase transition typically have muchlarger minimal unsatis�able subsets which are not unique.11 Binary ConstraintsThe minimal unsatis�able subsets often contain many binary clauses, or reduceto binary clauses after just one variable assignment. Since there exists a lineartime algorithm for the satis�ability of binary clauses [1], problems containing suchminimal unsatis�able subsets can be solved in polynomial time. We have thereforeaugmented DP with the following rule:(Binary) if the binary clauses of (� simpli�ed with the literal l assigned to True)are unsatis�able then assign the negation of l to True.18



This rule has a non-deterministic choice of literal; this may a�ect the number ofpure, unit or binary rules applied but not the number of splits or branches. Wetested DP augmented with the binary rule on 100 variable CP problems. Theworst mean performance was only 2.5 branches at L=N = 3:4, more than anorder of magnitude less than the performance of DP alone. (Note that it cannotbe deduced from this that run-time is reduced, as there is a large overhead inapplying the rule.)The binary rule is able to solve many of the (previously hard) unsatis�ableproblem in the variable region, sometimes without search. For example, we testedthe 100 worst unsatis�able 100 variable problems of 100,000 CP problems testedat L=N = 2:6. This point was chosen as it has very bad performance of the worstcases, and is in the middle of the constraint gap. DP augmented with the (Binary)rule was able to solve 92 of these 100 problems without needing to search at all.That is, the binary and near-binary clauses contained enough information aloneto prove unsatis�ability. By contrast, at the point of worst median performance,L=N = 3:9, only 43 of the 100 worst problems were solved without search.It can thus be seen that in terms of reducing the amount of search, augmentingDP with the (Binary) rule is highly e�ective. Nevertheless, it is not able to elimin-ate the extremely bad worst case performance in the mostly satis�able region. Ofthe 8 of the worst 100 unsatis�able problems not solved trivially at L=N = 2:6, onerequired as many as 6,520 branches using the binary rule and another 2,454. Bycontrast, at L=N = 3:9, the worst of the 57 problems not solved trivially neededonly 574 branches using the binary rule. Furthermore, the binary rule is not ableto eliminate the constraint gap. The ratio of applications of the binary rule tosplits is broadly similar in behaviour to the ratio of units to splits seen in Figure3 (b), peaking at comparatively large values of L=N.The fact that the variable behaviour in an otherwise easy region of problemscannot be eliminated by the (Binary) rule is particularly signi�cant. This rule wasan especially good candidate to eliminate variable behaviour, since we showedabove that the worst case problems were associated with minimal unsatis�ablesubsets largely containing binary clauses. Furthermore, we have shown in thepast [6] that improved branching heuristics seem unable to eliminate the variablebehaviour. Thus, neither better heuristics, nor better constraint propagation areable to eliminate variable behaviour.We also implemented a restricted version of the binary rule which just determ-ines the satis�ability of the binary clauses and does not simplify on any of theliterals. Although this restricted rule is less expensive, it appears to be of littleuse in reducing search; for CP at N=100, 2Np = 3, it closed at most 20% ofbranches at large L=N but less than 3% of branches in the region of the constraintgap. It thus had little a�ect on mean behaviour.19



12 Related WorkPhase transitions are becoming increasingly important in the study of AI systems.Huberman and Hogg [10] predict that many large scale systems will undergo sud-den phase transitions that a�ect computational performance. They show, forexample, that a simple model of heuristic search changes from linear to exponen-tial behaviour at a phase boundary. Cheeseman et al. [2] observed that manyNP-hard problems (eg. graph colouring and Hamiltonian circuits) have an orderparamter, that a phase transition between underconstrained (and typically sol-uble) problems and overconstrained (and typcially insoluble) problems occurs ata critical values of this parameter, and that hard problems occur at this criticalvalue.For random 3-SAT and CP, Mitchell et al. [12] demonstrated that the orderparameter is L=N, the ratio of clauses to variables, and that median performanceof DP has an easy-hard-easy pattern through the phase transition with the hard-est median instance occurring in the phase transition. Although they noted thatthe mean is inuenced by a very small number of very large values, they concen-trated solely on the median as they felt that \it appears to be a more informativestatistic". Our results suggest that the distribution of values is, in fact, of consid-erable importance in understanding problem di�culty, and that the median aloneprovides a somewhat incomplete picture. Crawford and Auton have also observeda secondary peak in mean problem di�culty for a tableau based procedure in amostly satis�able region of random 3-SAT [3]. However, they failed to observethis peak with DP and therefore speculated that it was probably an artifact ofthe branching heuristics used by their procedure. In fact it seems more likely thatit is an artifact of the statistics they compiled, namely the number of nodes inthe search tree. Obviously this is related to depth of search, and we observed adistinctive peak in this at low L=N in CP (see x4) and a similar one in 3-SAT(see x6). This would be enough to account for the secondary peak they report ofapproximately 13 nodes at N = 50. It was only on much larger problems, withhundreds of variables, that they report occasional extremely hard behaviour. In[6] we were able to show, however, that unusually hard problems do occur at lowL=N at N = 50 in 3-SAT using a simpli�ed variant of DP, but that it requiresvery large sample sizes to be seen. For this e�ect in 3-SAT to be studied in moredetail, larger problems and larger sample sizes will be needed.Hogg and Williams have observed extremely variable problem di�culty forgraph colouring using both a backtracking algorithm based on the Berlaz heur-istic and a heuristic repair algorithm [8]. They found that the hardest 3 colouringproblems were in an otherwise easy region of graphs of low connectivity. The me-dian search cost, by comparison, shows the usual easy-hard-easy pattern throughthe 3 colourability phase transition. They propose that these very hard prob-lems are associated with a transition between polynomial and exponential averagesearch cost. 20



13 ConclusionsWe have performed a detailed experimental investigation of the satis�ability phasetransition for several di�erent classes of randomly generated problems includingthe constant probability model, random k-SAT, random mixed SAT, and an en-coding of k-COL into SAT. With each problem class, the median problem dif-�culty for the Davis-Putnam procedure displays an easy-hard-easy pattern withthe hardest problems being associated with the satis�ability phase transition. Wehave shown, however, that the \conventional" picture of easy-hard-easy behaviouris inadequate since the distribution of problem di�culties has several other import-ant features. In particular, all the problem classes have a region of very variableproblem di�culty where problems are typically underconstrained and satis�able.Within these regions, we have found problems orders of magnitude harder thanproblems in the middle of the phase transition. These extraordinary hard prob-lems appear to be associated with a constraint gap, a mimimum in the ratio of theconstraint propagations to splits. The position and shape of both the constraintgap and the satis�ability phase transition are remarkably consistent with problemsize. For example, both occur at �xed ratios of constraints to variables.We have shown that the hardest problems in the middle of the satis�abil-ity phase transition are more critically constrained between being satis�able andunsatis�able than typical problems. By comparison, hard problems in the vari-able region arise for di�erent reasons. The hardest unsatis�able problems in thevariable region are actually less critically constrained than typical unsatis�ableproblems. Indeed, the hardest unsatis�able problems in the variable region of-ten contain a very small and unique minimal unsatis�able subset. The di�cultyin solving such problems is thus in identifying the minimal unsatis�able subsetfrom the many irrelevant clauses. All branching points or constraint propagationsduring search which do not a�ect a variable in the minimal unsatis�able subsetrepresent entirely wasted work. As each branching point doubles the search space,search time can be exponential in the number of irrelevant choices. On the otherhand, hard satis�able problems in the variable region are much more criticallyconstrained than typical satis�able problems. As a result, an incorrect assign-ment at an early stage in search leads to an unsatisi�able subproblem, which thenbehaves like hard unsatis�able problems in the same region, and contains a smalland unique minimal unsatis�able subset.The di�culty in solving the hardest unsatis�able problems away from the prob-ability phase transition is in identifying a small minimal unsatis�able subset. Theexistence of a constraint gap greatly hinders our ability to �nd such minimal un-satis�able subsets. Despite the fact that the minimal unsatis�able subsets containmany binary clauses, or reduce to a large number of binary clauses after justone variable assignment, the addition of a rule to the Davis-Putnam procedureto propagate on binary or near-binary constraints reduces but does not eliminatevery variable behaviour. We have shown elsewhere that improved branching heur-istics also do not eliminate this behaviour. The fact that neither heuristically nor21
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