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Abstract. We study the fair division of items to agents supposing that
agents can form groups. We thus give natural generalizations of popular
concepts such as envy-freeness and Pareto efficiency to groups of fixed
sizes. Group envy-freeness requires that no group envies another group.
Group Pareto efficiency requires that no group can be made better off
without another group be made worse off. We study these new group
properties from an axiomatic viewpoint. We thus propose new fairness
taxonomies that generalize existing taxonomies. We further study near
versions of these group properties as allocations for some of them may
not exist. We finally give three prices of group fairness between group
properties for three common social welfares (i.e. utilitarian, egalitarian
and Nash).
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1 Introduction

Fair divisions become more and more challenging in the present world due to
the ever-increasing demand for resources. This pressure forces us to achieve more
complex allocations with less available resources. An especially challenging case
of fair division deals with the allocation of free-of-charge and indivisible items
(i.e. items cannot be divided, items cannot be purchased) to agents cooperating
in groups (i.e. each agent maximizes multiple objectives) in the absence of infor-
mation about these groups and their group preferences. For example, food banks
in Australia give away perishable food products to charities that feed different
groups of the community (e.g. Muslims) [18,20]. As a second example, social
services in Germany provide medical benefits, donated food and affordable edu-
cation to thousands of refugees and their families. We often do not know the
group members or how they share group preferences for resources. Some other
examples are the allocations of office rooms to research groups [12], cake to
groups of guests [16,33], land to families [26], hospital rooms to medical teams
[35] and memory to computer networks [31].

In this paper, we consider the fair division of items to agents under several
assumptions. For example, the collection of items can be a mixture of goods
and bads (e.g. meals, chores) [6,10,28]. We thus assume that each agent has
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some aggregate utility for a given bundle of items of another agent. However,
these utilities can be shared arbitrarily among the sub-bundles of the bundle
(e.g. monotonically, additively, modularly, etc.). As another example, the agents
can form groups in an arbitrarily manner. We thus assume that each group has
some aggregate utility for a given bundle of items of another group. As in [33], we
consider arithmetic-mean group utilities. We study this problem for five main
reasons. First, people form groups naturally in practice (e.g. families, teams,
countries). Second, group preferences are more expressive than individual pref-
erences but also more complex (e.g. complementarities, substitutabilities). Third,
we seek new group properties as many existing ones may be too demanding (e.g.
coalitional fairness). Fourth, the principles in which groups form are normally
not known. Fifth, with arithmetic-mean group utilities, we generalize existing
fairness taxonomies [4,5] and characterization results for Pareto efficiency [9].

Two of the most important criteria in fair division are envy-freeness (i.e. no
agent envies another agent) and Pareto efficiency (i.e. no agent can be made bet-
ter off without another agent be made worse off) [14,15,17,43]. We propose new
generalizations of these concepts for groups of fixed sizes. Group envy-freeness
requires that no group envies another group. Group Pareto efficiency requires
that no group can be made better off without another group be made worse
off. We thus construct new sets of fairness properties, that let us interpolate
between envy-freeness and proportionality (i.e. each agent gets 1/n their total
utility for bundles), and utilitarian efficiency (i.e. the sum of agent’s utilities is
maximized) and Pareto efficiency. There is a reason why we focus on these two
common properties and say not on other attractive properties such as group
strategy-proofness. Group strategy-proofness may not be achievable with lim-
ited knowledge of the groups [3]. By comparison, both group envy-freeness and
group Pareto efficiency are achievable. For example, the allocation of each bun-
dle uniformly at random among agents is group envy-free, and the allocation
of each bundle to a given agent is group Pareto efficient. This example further
motivates why we study these two properties in isolation. In some instances, no
allocation satisfies them in combination.

Common computational problems about group envy-freeness and group
Pareto efficiency are inherently intractable even for problems of relatively small
sizes [8,13,25]. For this reason, we focus on the axiomatic analysis of these prop-
erties. We propose a taxonomy of n layers of group envy-freeness properties such
that group envy-freeness at layer k implies (in a logical sense) group envy-freeness
at layer k + 1. This is perhaps a good news because envy-free allocations often
do not exist and, as we show, allocations satisfying some properties in our tax-
onomy always exist. We propose another taxonomy of n layers of group Pareto
efficiency properties such that group Pareto efficiency at layer k+1 implies group
Pareto efficiency at layer k. Nevertheless, it is not harder to achieve group Pareto
efficiency than Pareto efficiency and such allocations still always exists. We also
consider α-taxonomies of near group envy-freeness and near group Pareto effi-
ciency properties for each α ∈ [0, 1]. We finally use prices of group fairness to
measure the “loss” in welfare efficiency between group properties.



Group Envy Freeness and Group Pareto Efficiency 59

Our paper is organized as follows. We next discuss related work and define
our notions. We then present our taxonomy for group envy-freeness in the cases
in which agents might be envy of groups (Theorem1), groups might be envy
of agents (Theorem 2) and groups might be envy of groups (Theorem3). We
continue with our taxonomy for group Pareto efficiency (Theorem4) and gen-
eralize an important result from Pareto efficiency to group Pareto efficiency
(Theorem 5). Further, we propose taxonomies of properties approximating group
envy-freeness and group Pareto efficiency. Finally, we give the prices of group
fairness (Theorem 6) and conclude our work.

2 Related Work

Group fairness has been studied in the literature. Some notions compare the
bundle of each group of agents to the bundle of any other group of agents
based on Pareto dominance (i.e. all agents are weakly happier, and some agents
are strictly happier) preference relations (e.g. coalitional fairness, strict fair-
ness) [19,23,27,32,41,42,45]. Coalitional fairness implies both envy-freeness and
Pareto efficiency. Perhaps this might be too demanding in practice as very often
such allocations do not exist. For example, for a given allocation, it requires
complete knowledge of agents’ utilities for any bundles of items of any size
in the allocation, whereas our notions require only knowledge of agents’ util-
ities for their own bundles and the bundles of other agents in the allocation.
Other group fairness notions are based on the idea that the bundle of each
group should be perceived as fair by as many agents in the group as possible
(e.g. unanimously envy-freeness, h-democratic fairness, majority envy-freeness)
[34,39]. The authors suppose that the groups are disjoint and known (e.g. fam-
ilies), and the utilities of agents for items are known, whereas we suppose that
the groups are unknown, thus possibly overlap, and the utilities of agents are in
a bundle form.

More group fairness notions have been studied in the context of cake-
cutting (e.g. arithmetic-mean-proportionality, geometric-mean-proportionality,
minimum-proporti-onality, median-proportionality) [33]. These notions compare
the aggregate bundle of each group of agents to their proportional (wrt the
number of groups) aggregate bundle of all items. Unlike us, the authors assume
that the group members and their monotonic valuations are part of the common
knowledge. Group envy-freeness notions are also already used in combinatorial
auctions with additive quasi-linear utilities and monetary transfers (e.g. envy-
freeness of an individual towards a group, envy-freeness of a group towards a
group) [40]. The authors assume that the agents’ utilities for items and item
prices are known. Conceptually, our notions of group envy-freeness resemble
these notions but they do not use prices. We additionally study notions of near
group fairness. Our near group fairness notions for groups of agents are inspired
by α-fairness for individual agents [11,21,22,36,37].
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Most of these existing works consider allocating divisible resources (e.g. land,
cake) with money (e.g. exchange economies), whereas we consider allocating
indivisible items without money. We further cannot directly apply most of these
existing properties to our setting with unknown groups, bundle utilities and
priceless items. As a result, we cannot directly inherit any of the existing results.
In contrast, we can apply our group properties in settings in which the group
members and their preferences are actually known. Therefore, our results are
valid in some existing settings. Our properties are new and cannot be defined
using the existing fairness framework proposed in [4]. Moreover, existing works
are somehow related to our properties of group envy-freeness. However, we addi-
tionally propose properties of group Pareto efficiency. Also, most existing prop-
erties may not be guaranteed even with a single indivisible item (e.g. coalitional
fairness). By comparison, many of our group envy-freeness properties and all
of our group Pareto efficiency properties can be guaranteed. Furthermore, we
use new prices of fairness for our group properties similarly as for other proper-
ties in other settings [2,7,24,30]. Finally, several related models are studied in
[29,38,44]. However, none of these focuses on axiomatic properties such as ours.

3 Preliminaries

We consider a set N = {a1, . . . , an} of agents and a set O = {o1, . . . , om} of
indivisible items. We write π = (π1, . . . , πn) for an allocation of the items from O
to the agents from N with (1) ∪n

a∈Nπa = O and (2) ∀a, b ∈ N, a �= b : πa∩πb = ∅,
where πa, πb denote the bundles of items of agents a, b ∈ N in π. We suppose
that agents form groups. We thus write πG for the bundle ∪a∈Gπa of items of
group G, and uG(πH) for the utility of G for the bundle πH of items of group H.
We assume arithmetic-mean group utilities. That is, uG(πG) = 1

k · ∑a∈G ua(πa)
and uG(πH) = 1

k·h · ∑
a∈G

∑
b∈H ua(πb), where the group G has k agents, the

group H has h agents and the utility ua(πb) ∈ R
≥0 can be arbitrary for any

agents a, b ∈ N (i.e. monotonic, additive, modular, etc.).
We next define our group fairness properties. Group envy-freeness captures

the envy of a group towards another group. Group Pareto efficiency captures
the fact that we cannot make each group weakly better off, and some group
strictly better off. These properties strictly generalize envy-freeness and Pareto
efficiency whenever the group sizes are fixed. Near group fairness is a relaxation
of group fairness.

Definition 1 (group envy-freeness). For k, h ∈ {1, . . . , n}, an allocation π
is (k, h)-group envy-free (or simply GEFk,h) iff, for each group G of k agents
and each group H of h agents, uG(πG) ≥ uG(πH) holds.

Definition 2 (group Pareto efficiency). For k ∈ {1, . . . , n}, an allocation π
is k-group Pareto efficient (or simply GPEk) iff, there is no other allocation π′

such that uG(π′
G) ≥ uG(πG) holds for each group G of k agents, and uH(π′

H) >
uH(πH) holds for some group H of k agents.
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Definition 3 (near group envy-freeness). For k, h ∈ {1, . . . , n} and α ∈
R

[0,1], an allocation π is near (k, h)-group envy-free wrt α (or simply GEFα
k,h) iff,

for each group G of k agents and each group H of h agents, uG(πG) ≥ α·uG(πH)
holds.

Definition 4 (near group Pareto efficiency). For k ∈ {1, . . . , n} and α ∈
R

[0,1], an allocation π is near k-group Pareto efficient wrt α (or simply GPEα
k )

iff, there is no other allocation π′ such that α · uG(π′
G) ≥ uG(πG) holds for each

group G of k agents, and α · uH(π′
H) > uH(πH) holds for some group H of k

agents.

We use prices to measure the “loss” in the welfare w(π) between these
properties in a given allocation π. The price of group envy-freeness pw

GEF

is maxk,h
maxπ1 w(π1)

minπ2 w(π2)
where π1 is a (h, h)-group envy-free and π2 is a (k, k)-

group envy-free with h ≤ k. The price of group Pareto efficiency pw
GPE is

maxk,h
maxπ1 w(π1)

minπ2 w(π2)
where π1 is a h-group Pareto efficient and π2 is a k-group

Pareto efficient with h ≥ k. The price of group fairness pw
FAIR is maxk

maxπ1 w(π1)

minπ2 w(π2)

where π1 is a (k, k)-group envy-free and π2 is a k-group Pareto efficient.
We consider these prices for common welfares such as the utilitarian welfare
u(π) =

∑
a∈N ua(πa), the egalitarian welfare e(π) = mina∈N ua(πa) and the

Nash welfare n(π) =
∏

a∈N ua(πa).
Finally, we write ΠH for the expected allocation of group H that assigns a

probability value to each bundle of items, and uG(ΠH) for the expected utility of
group G for ΠH . We observe that we can define our group properties in terms
of expected utilities of groups for expected allocations of groups.

4 Group Envy Freeness

We start with group envy-freeness for arithmetic-mean group utilities. Our first
main result is to give a taxonomy of strict implications between group envy-
freeness notions for groups of fixed sizes (i.e. GEFk,h for fixed k, h ∈ [1, n)). We
present the taxonomy in Fig. 1.

Fig. 1. A taxonomy of group envy-freeness properties for fixed k, h ∈ [1, n).

Our taxonomy contains n2 group envy-freeness axiomatic properties. By def-
inition, we observe that (1, 1)-group envy-freeness is equivalent to envy-freeness
(or simply EF) and (1, n)-group envy-freeness is equivalent to proportionality (or
simply PROP). Moreover, we observe that (n, 1)-group envy-freeness captures
the envy of the group of all agents towards each agent. We call this property grand
envy-freeness (or simply gEF). (n, n)-group envy-freeness is trivially satisfied by
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any allocation. In our taxonomy, we can interpolate between envy-freeness and
proportionality, and even beyond. From this perspective, our taxonomy general-
izes existing taxonomies of fairness concepts for individual agents with additive
utilities [4,5]. We next prove the implications in our taxonomy. For this purpose,
we distinguish between agent-group properties (i.e. (1, h)-group envy-freeness),
group-agent properties (i.e. (k, 1)-group envy-freeness) and group-group proper-
ties (i.e. (k, h)-group envy-freeness) for k ∈ [1, n] and h ∈ [1, n].

Agent-Group Envy-Freeness. We now consider n properties for agent-group
envy-freeness of actual allocations that capture the envy an individual agent
might have towards a group of other agents. These properties let us move from
envy-freeness to proportionality (i.e. there is h ∈ [1, n] such that “EF ⇒ GEF1,h

⇒ PROP”). If an agent is envy-free of a group of h ∈ [1, n] agents, then they
are envy-free of a group of q ≥ h agents.

Theorem 1. For h ∈ [1, n], q ∈ [h, n] and arithmetic-mean group utilities, we
have that GEF1,h implies GEF1,q.

Proof. Let us pick an allocation π. We show the result by induction on i ∈ [h, q].
In the base case, let i be equal to h. The result follows trivially in this case. In
the induction hypothesis, suppose that π is (1, i)-group envy-free for i < q.
In the step case, let i be equal to q. By the hypothesis, we know that π is
(1, q − 1)-group envy-free. For the sake of contradiction, let us suppose that π
is not (1, q)-group envy-free. Consequently, there is a group of q agents and an
agent, say G = {a1, . . . , aq} and a �∈ G, such that inequality (1) holds for G and
a, and inequality (2) holds for G, a and each agent aj ∈ G.

ua(πa) < ua(πG) =
1
q

·
∑

b∈G

ua(πb) (1)

ua(πa) ≥ ua(πG\{aj}) =
1

(q − 1)
·

∑

b∈G\{aj}
ua(πb) (2)

We derive ua(πa) < ua(πaj
) for each aj ∈ G. Let us now form a group of

(q − 1) agents from G, say G \ {aq}. Agent a assigns arithmetic-mean value to
the allocation of this group that is larger than the value they assign to their own
allocation. This contradicts with the induction hypothesis. Hence, π is (1, q)-
group envy-free. The result follows. �

By Theorem 1, we conclude that (1, h)-group envy-freeness implies (1, h+1)-
group envy-freeness for h ∈ [1, n). The opposite direction does not hold. Indeed,
(1, q)-group envy-freeness is a weaker property than (1, h)-group envy-freeness
for q > h. We illustrate this in Example 1.

Example 1. Let us consider the fair division of 3 items o1, o2, o3 between 3
agents a1, a2, a3. Further, let the utilities of agent a1 for the items be 1, 3/2 and
2, those of agent a2 be 3/2, 2, and 1, and the ones of agent a3 be 2, 1 and 3/2
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respectively. Now, consider the allocation π that gives o2 to a1, o1 to a2 and o3 to
a3. Each agent receives in π utility 3/2. Hence, this allocation is not (1, 1)-group
envy-free (i.e. envy-free) as each agent assigns in it utility 2 to one of the other
agents. In contrast, they assign in π utility 3/2 to the group of all agents. We
conclude that π is (1, 3)-group envy-free (i.e. proportional). �

The result in Example 1 crucially depends on the fact that there are 3 agents
in the problem. With 2 agents, agent-group envy-freeness is equivalent to envy-
freeness which itself is equivalent to proportionality. Finally, Theorem1 and
Example 1 hold for expected allocations as well.

Group-Agent Envy-Freeness. We next consider n properties for group-agent
envy-freeness of actual allocations that capture the envy a group of agents might
have towards an individual agent outside the group. These properties let us move
from envy-freeness to grand envy-freeness (i.e. there is k ∈ [1, n] such that “EF
⇒ GEFk,1 ⇒ gEF”). If a group of k ∈ [1, n] agents is envy-free of a given agent,
then a group of p ≥ k agents is envy-free of this agent.

Theorem 2. For k ∈ [1, n], p ∈ [k, n] and arithmetic-mean group utilities, we
have that GEFk,1 implies GEFp,1.

Proof. Let us pick an allocation π. As in the proof of Theorem1, we show the
result by induction on i ∈ [k, p]. The most interesting case is the step case. Let
i be equal to p and suppose that π is (p − 1, 1)-group envy-free. For the sake of
contradiction, let us suppose that π is not (p, 1)-group envy-free. Consequently,
there is a group of p agents and an agent, say G = {a1, . . . , ap} and a �∈ G, such
that inequality (3) holds for G and a, and inequality (4) holds for G, a and each
aj ∈ G.

p · uG(πG) =
∑

b∈G

ub(πb) <
∑

b∈G

ub(πa) (3)

(p − 1) · uG\{aj}(πG\{aj}) =
∑

b∈G\{aj}
ub(πb) ≥

∑

b∈G\{aj}
ub(πa) (4)

We derive uaj
(πaj

) < uaj
(πa) for each aj ∈ G. Let us now form a group of

(p−1) agents from G, say G\{ap}. This group assigns arithmetic-mean value to
the allocation of agent a that is larger than the arithmetic-mean value they assign
to their own allocation. This contradicts with the fact that π is (p − 1, 1)-group
envy-free. We therefore conclude that π is (p, 1)-group envy-free. �

By Theorem 2, we conclude that (k, 1)-group envy-freeness implies (k +1, 1)-
group envy-freeness for k ∈ [1, n). However, (p, 1)-group envy-freeness is a weaker
property than (k, 1)-group envy-freeness for p > k. We illustrate this in Exam-
ple 2.

Example 2. Let us consider again the instance in Example 1 and the allocation
π that gives to each agent the item they value with 3/2. We confirmed that π is
not (1, 1)-group envy-free (i.e. envy-free). However, π is (3, 1)-group envy-free
(i.e. grand envy-free) because the group of all agents assigns in π utility 3/2 to
their own allocation and utility 3/2 to the allocation of each other agent. �
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The choice of 3 agents in the problem in Example 2 is again crucial. With 2
agents, group-agent envy-freeness is equivalent to envy-freeness and proportion-
ality. Finally, Theorem2 and Example 2 hold for expected allocations as well.

Group-Group Envy-Freeness. We finally consider n2 properties for group-
group envy-freeness of actual allocations that captures the envy of a group of
k agents towards another group of h agents. Similarly, we prove a number of
implications between such properties for fixed parameters k, h and p ≥ k, q ≥ h.

Theorem 3. For k ∈ [1, n], p ∈ [k, n], h ∈ [1, n], q ∈ [h, n] and arithmetic-mean
group utilities, we have that GEFk,h implies GEFp,q.

Proof. We prove by inductions that (1) (p, h)-group envy-freeness implies (p, q)-
group envy-freeness for any p ∈ [1, n], and that (2) (k, h)-group envy-freeness
implies (p, h)-group-envy freeness for any h ∈ [1, n]. We can then immediately
conclude the result. For p = 1 in (1) and h = 1 in (2), the base cases of the
inductions follow from Theorems 1 and 2. We start with (1). We consider only
the step case. That is, let π be an allocation that is (p, q − 1)-group envy-free
but not (p, q)-group envy-free. Hence, there are groups G = {a1, . . . , ap} and
H = {b1, . . . , bq} such that inequality (5) holds for G and H, and inequality (6)
holds for G, H and each bj ∈ H.

∑

a∈G

ua(πa) <
1
q

·
∑

a∈G

∑

b∈H

ua(πb) (5)

∑

a∈G

ua(πa) ≥ 1
(q − 1)

·
∑

a∈G

∑

b∈H\{bj}
ua(πb) (6)

We derive
∑

a∈G ua(πa) <
∑

a∈G ua(πbj
) for each bj ∈ H which leads to a

contradiction with the (p, q − 1)-group envy-freeness of π. We next prove (2) for
h = q in a similar fashion. Again, we consider only the step case. That is, let
π be an allocation that is (p − 1, q)-group envy-free but not (p, q)-group envy-
free. Hence, there are groups G = {a1, . . . , ap} and H = {b1, . . . , bq} such that
inequality (5) holds for G and H, and inequality (7) holds for G, H and each
aj ∈ G.

∑

a∈G\{aj}
ua(πa) ≥ 1

q
·

∑

a∈G\{aj}

∑

b∈H

ua(πb) (7)

We obtain that q · uaj
(πaj

) <
∑

b∈H uaj
(πb) holds for each aj ∈ G. Finally,

this conclusion leads to a contradiction with the (p − 1, q)-group envy-freeness
of π. The result follows. �

By Examples 1 and 2, the opposite direction of the implication in Theorem3
does not hold with 3 or more agents. With 2 agents, group-group envy-freeness
is also equivalent to envy-freeness and proportionality. Finally, Theorem3 also
holds for expected allocations.
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5 Group Pareto Efficiency

We continue with group Pareto efficiency properties for arithmetic-mean group
utilities. Our second main result is to give a taxonomy of strict implications
between group Pareto efficiency notions for groups of fixed sizes (i.e. GPEk for
fixed k ∈ [1, n)). We present the taxonomy in Fig. 2.

Fig. 2. A taxonomy of group Pareto efficiency properties for fixed k ∈ [1, n).

Our taxonomy contains n group Pareto efficient axiomatic properties. By
definition, we observe that 1-group Pareto efficiency is equivalent to Pareto effi-
ciency, and n-group Pareto efficiency to utilitarian efficiency. In fact, we next
prove that the kth layer of properties in our taxonomy is exactly between the
(k − 1)th and (k + 1)th layers. It then follows that k-group Pareto efficiency
implies j-group Pareto efficiency for any k ∈ [1, n] and j ∈ [1, k]. We now show
this result for actual allocations.

Theorem 4. For k ∈ [1, n], j ∈ [1, k] and arithmetic-mean group utilities, we
have that GPEk implies GPEj.

Proof. The proof is by backward induction on h ∈ [j, k] for a given allocation
π. For h = k, the proof is trivial. For h > j, suppose that π is h-group Pareto
efficient. For h = j, let us assume that π is not j-group Pareto efficient. We write
Gj for the fact that group G has j agents. We derive that there is π′ such that
both inequalities (8) and (9) hold.

∀Gj :
∑

a∈Gj

ua(π′
a) ≥

∑

a∈Gj

ua(πa) (8)

∃Hj :
∑

b∈Hj

ub(π′
b) >

∑

b∈Hj

ub(πb) (9)

We next show that π′ dominates π in a (j + 1)-group Pareto sense. That is,
we show that inequalities (10) and (11) hold.

∀G(j+1) :
∑

a∈G(j+1)

ua(π′
a) ≥

∑

a∈G(j+1)

ua(πa) (10)

∃H(j+1) :
∑

b∈H(j+1)

ub(π′
b) >

∑

b∈H(j+1)

ub(πb) (11)

We start with inequality (10). Let G(j+1) be a group of (j + 1) agents for
which inequality (10) does not hold. Further, let Ga

j = G(j+1) \ {a} be a group
of j agents obtained from G(j+1) by excluding agent a ∈ G(j+1). By the fact
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that inequality (8) holds for Ga
j , we conclude that ua(π′

a) < ua(πa) holds for
each a ∈ G(j+1). We can now form a set of j agents such that inequality (8) is
violated for π′. Hence, inequality (10) must hold. We next show that inequality
(11) holds as well. Let H(j+1) be an arbitrary group of (j + 1) agents for which
inequality (11) does not hold. By inequality (8), we derive ub(π′

b) ≤ ub(πb) for
each b ∈ H(j+1). There cannot exist a group of j agents for which inequality (9)
holds for π′. Hence, inequality (11) must hold. Finally, as both inequalities (10)
and (11) hold, π is not (j + 1)-group Pareto efficient. This is a contradiction. �

The implication in Theorem4 does not reverse. Indeed, an allocation that is
1-group Pareto efficient might not be k-group Pareto efficient even for k = 2 and
2 agents. We illustrate this in Example 3.

Example 3. Let us consider the fair division of 2 items o1, o2 between 2 agents
a1, a2. Further, suppose that a1 likes o1 with 1 and o2 with 2, whilst a2 likes
o1 with 2 and o2 with 1. The allocation π1 that gives both items to a1 is 1-
group Pareto efficient (i.e. Pareto efficient) but not 2-group Pareto efficient (i.e.
utilitarian efficient). To see this, note that π1 is 2-group Pareto dominated by
another allocation π2 that gives o2 to a1 and o1 to a2. The utility of the group
of two agents is 3/2 in π1 and 2 in π2. �

We next consider expected allocations. We know that an expected allocation
that is Pareto efficient can be represented as a convex combination over actual
allocations that are Pareto efficient [9] (cited by 502 other papers in Google
Scholar). This result holds for actual allocations as well. We generalize this
result to our setting with groups of agents and bundles of items. That is, we
show that a k-group Pareto efficient expected allocation can be represented as a
combination over k-group Pareto efficient actual allocations. We believe that our
result is much more general than the existing one because it holds for arbitrary
groups and bundle utilities (e.g. monotone, additive, modular, etc.). In contrast,
not each convex combination over Pareto efficient actual allocations represents
an expected allocation that is Pareto efficient [9]. This observation holds in our
setting as well.

Theorem 5. For k ∈ [1, n], a k-group Pareto efficient expected allocation can
be represented as a convex combination over k-group Pareto efficient actual allo-
cations.

Proof. Let Π1 denote an expected allocation that is k-group Pareto efficient
and c1 be a convex combination over group Pareto efficient allocations that
represents Π1. Further, let us assume that Π1 cannot be represented as a convex
combination over k-group Pareto efficient allocations. Therefore, there are two
types of allocations in c1: (1) allocations that are j-group Pareto efficient for
some j ≥ k and (2) allocations that are j-group Pareto efficient ex post for
some j < k. By Theorem 4, allocations of type (1) are k-group Pareto efficient.
And, by assumption, allocations of type (2) are not g-group Pareto efficient for
any g > j. Let us consider such an allocation π in c1 of type (2) that is not
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k-group Pareto efficient. Hence, π can be k-group Pareto improved by some
other allocation π′. We can replace π with π′ in c1 and thus construct a new
convex combination c1,π. We can repeat this for some other allocation in c1,π of
type (2) that is not k-group Pareto efficient. We thus eventually can construct
a convex combination c2 over k-group Pareto efficient ex post allocations with
the following properties: (1) there is an allocation π2 in c2 for each allocation π1

in c1 and (2) the weight of π2 in c2 is equal to the weight of π1 in c1. Let Π2

denote the allocation represented by c2.
Let c1 be over π1 to πh such that π1 to πi are k-group Pareto efficient and

πi+1 to πh are not group k-Pareto efficient. Further, by construction, let c2 be
over π1 to πi and π′

i+1 to π′
h such that π′

g k-group Pareto dominates πg for each
g ∈ [i + 1, h]. We derive

∑
al∈G(ual

(π′
g) − ual

(πg)) ≥ 0 for each group G of k
agents and

∑
al∈H(ual

(π′
g) − ual

(πg)) > 0 for some group H of k agents. The
expected utility ual

(Π1) of agent al in combination c1 is equal to
∑

g∈[1,i] w(πg) ·
ual

(πg) +
∑

g∈[i+1,h] w(πg) · ual
(πg). The expected utility ual

(Π2) of agent al in
combination c2 is equal to

∑
g∈[1,i] w(πg) · ual

(πg) +
∑

g∈[i+1,h] w(πg) · ual
(π′

g).
Therefore,

∑
al∈G(ual

(Π2)−ual
(Π1)) ≥ 0 holds for each group G of k agents and∑

al∈H(ual
(Π2) − ual

(Π1)) > 0 holds for some group H of k agents. Hence, Π2

k-group Pareto dominates Π1. This is a contradiction with the k-group Pareto
efficiency of Π1. �

Theorem 5 suggests that there are fewer k-group Pareto efficient allocations
than j-group Pareto efficient allocations for j ∈ [1, k]. In fact, there can be
substantially fewer such allocations even with 2 agents. We illustrate this in
Example 4.

Example 4. Let us consider again the instance in Example 3. Further, consider
the expected allocation Πε in which agent a1 receives item o1 with probability 1
and item o2 with probability 1 − ε, and agent a2 receives item o2 with probability
ε. In Πε, a1 receives expected utility 3 − 2ε and a2 receives expected utility ε.
For each fixed ε ∈ [0, 1/2), Πε is 1-group Pareto efficient (i.e. Pareto efficient).
Hence, there are infinitely many such allocations. By comparison, there is just
one 2-group Pareto efficient (i.e. utilitarian efficient) allocation that gives to
each agent the item they like with 2. �

Interestingly, for an n-group Pareto efficient expected allocation, we can show
both directions in Theorem5. By definition, such allocations maximize the util-
itarian welfare. We, therefore, conclude that an expected allocation is n-group
Pareto efficient iff it can be represented as a convex combination over actual
allocations that maximize the utilitarian welfare. Finally, Theorem4 and Exam-
ple 3 also hold for expected allocations and Theorem5 and Example 4 also hold
(trivially) for actual allocations.



68 M. Aleksandrov and T. Walsh

6 Near Group Fairness

Near group fairness relaxes group fairness. Our near notions are inspired by α-
fairness proposed in [11]. Let k ∈ [1, n], h ∈ [1, n] and α ∈ [0, 1]. We start with
near group envy-freeness (i.e. GEFα

k,h). For given k and h, we can always find
a sufficiently small value for α such that a given allocation satisfies GEFα

k,h.
Consequently, for given k and h, there is always some α such that at least
one allocation is GEFα

k,h. By comparison, for given k and h, allocations that
satisfy GEFk,h may not exist. Therefore, for given k, h and α, allocations that
satisfy GEFα

k,h may also not exist. For example, note that GEFk,h is equivalent
to GEFα

k,h for each k, h and α = 1. Moreover, for given k, h and α, we have
that GEFk,h implies GEFα

k,h holds. However, there might be allocations that are
near (k, h)-group envy-free with respect to α but not (k, h)-group envy-free. We
illustrate this for actual allocations in Example 5.

Example 5. Let us consider again the instance in Example 1 and the allocation
π that gives to each agent the item they like with 3/2. Recall that π is not (1, 1)-
group envy-free (i.e. envy-free). Each agent assigns in π utility 2 to one of the
other agents and 1 to the other one. For α = 3/4, they assign in π reduced
utilities 2α, α to these agents. We conclude that π is near (1, 1)-group envy-free
wrt α (i.e. 3/4-envy-free). �

For a given α, we can show that Theorems 1, 2 and 3 hold for the notions
GEFα

k,h with any k and h. We can thus construct an α-taxonomy of near group
envy-freeness concepts for each fixed α. Moreover, for α1, α2 ∈ [0, 1] with α2 ≥
α1, we observe that an allocation satisfies an α2-property in the α2-taxonomy
only if the allocation satisfies the corresponding α1-property in the corresponding
α1-taxonomy. We further note that GEFα2

k,h implies GEFα1
k,h. By Example 5, this

implication does not reverse.
We proceed with near group Pareto efficiency (i.e. GPEα

k ). For a given k,
allocations satisfying GPEk always exists. For given k and α, we immediately
conclude that allocations satisfying GPEα

k also always exists. Similarly as for
near group envy-freeness, GPEk is equivalent to GPEα

k for each k and α = 1,
and GPEk implies GPEα

k for each k and α. However, there might be allocations
that are near k-group Pareto efficient with respect to α but not k-group Pareto
efficient. We illustrate this for actual allocations in Example 6.

Example 6. Let us consider again the instance in Example 3 and the allocation
π that gives to each agent the item they like with 1. This allocation is not 1-group
Pareto efficient (i.e. Pareto efficient) because each agent receives utility 2 if they
swap items in π. For α = 1/2, π is not α-Pareto dominated by the allocation
in which the items are swapped. Moreover, π is not α-Pareto dominated by any
other allocation. We conclude that π is near 1-group Pareto efficient wrt α (i.e.
1/2-Pareto efficient). �
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For a given α, we can also show that Theorem 4 holds for the notions GPEα
k

with any k. We can thus construct an α-taxonomy of near group Pareto efficiency
properties for each fixed α. In contrast to near group envy-freeness, allocations
that satisfy an α-property in an α-taxonomy always exists. Also, for α1, α2 ∈
[0, 1] with α2 ≥ α1, we observe that GPEα2

k implies GEFα1
k holds. By Example 6,

we confirm that this is a strict implication. Theorem5 further holds for near k-
group Pareto efficiency. Finally, Examples 5 and 6 hold for expected allocations
as well.

7 Prices of Group Fairness

We use prices of group fairness and measure the “loss” in social welfare efficiency
between different “layers” in our taxonomies. Our prices are inspired by the price
of fairness proposed in [7]. Prices of fairness are normally measured in the worst-
case scenario. We proceed similarly and prove only the lower bounds of our prices
for the utilitarian, the egalitarian and the nash welfares in actual allocations.

Theorem 6. The prices pu
GEF, pu

GPE, pu
FAIR are all at least the number n of

agents, whereas the prices pe
GEF, pe

GPE, pe
FAIR and pn

GEF, pn
GPE, pn

FAIR are all
unbounded.

Proof. Let us consider the fair division of n items to n agents. Swelfares in
actual allocations uppose that agent ai likes item oi with 1, and each other
item with ε for some small ε ∈ (0, 1). For k ∈ [1, n], let πk denote an allocation
in which k agents receive items valued with 1 and (n − k) agents receive items
valued with ε. By Theorem 3, πn is k-group envy-free as each agent receives their
most valued item. By Theorem 4, πn is also k-group Pareto efficient. Further,
for a fixed k, it is easy to check that πk is also k-group envy-free and k-group
Pareto efficient. We start with the utilitarian prices. The utilitarian welfare in
πn is n whereas the one in πk is k as ε goes to 0. Consequently, the corresponding
ratios for “layer” k in each taxonomy all go to n/k. Therefore, the corresponding
prices go to n as k goes to 1. We next give the egalitarian and Nash prices. The
egalitarian and Nash welfares in πn are both equal to 1. These welfares in πk are
equal to ε and ε(n−k) respectively. The corresponding ratios for “layer” k in each
taxonomy are then equal to 1/ε and 1/ε(n−k). Consequently, the corresponding
prices go to ∞ as ε goes to 0. �

Theorem 6 holds for expected allocations as well. Finally, it also holds for
near group fair allocations.

8 Conclusions

We studied the fair division of items to agents supposing agents can form groups.
We thus proposed new group fairness axiomatic properties. Group envy-freeness
requires that no group envies another group. Group Pareto efficiency requires
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that no group can be made better off without another group be made worse off.
We analyzed the relations between these properties and several existing prop-
erties such as envy-freeness and proportionality. We generalized an important
result from Pareto efficiency to group Pareto efficiency. We moreover considered
near group fairness properties. We finally computed three prices of group fair-
ness between such properties for three common social welfares: the utilitarian
welfare, the egalitarian welfare and the Nash welfare.

In future, we will study more group aggregators. For example, our results
hold for arithmetic-mean group utilities (i.e. Theorems 1–6). We can however
also show them for geometric-mean, minimum, or maximum group utilities (i.e.
the root of the product over agents’ utilities for the bundle, the minimum over
agents’ utilities for the bundle, the maximum over agents’ utilities for the bun-
dle). We will also study the relations of our group properties to other fairness
properties for individual agents such as min-max fair share, max-min fair share
and graph envy-freeness. Finally, we submit that it is also worth adapting our
group properties to other fair division settings as well [1].
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