
Loal Consistenies in SATChristian Bessière1, Emmanuel Hebrard2, and Toby Walsh21 LIRMM-CNRS, Université Montpellier IIbessiere�lirmm.fr2 Cork Constraint Computation Centre, University College Cork{e.hebrard, tw}�4.u.ieAbstrat. We introdue some new mappings of onstraint satisfationproblems into propositional satis�ability. These enodings generalize mostof the existing enodings. Unit propagation on those enodings is thesame as establishing relational k-ar onsisteny on the original prob-lem. They an also be used to establish (i,j)-onsisteny on binary on-straints. Experiments show that these enodings are an e�etive methodfor enforing suh onsistenies, that an lead to a redution in runtimesat the phase transition in most ases. Compared to the more traditional(diret) enoding, the searh tree an be greatly pruned.1 IntrodutionPropositional Satis�ability (SAT) and Constraint Satisfation Problems (CSPs)are two losely related NP-omplete ombinatorial problems. There has beenonsiderable researh in developing algorithms for both problems. Translationfrom one problem to the other an therefore pro�t from the algorithmi im-provements obtained on the other side. Enforing a loal onsisteny is one ofthe most important aspet of systemati searh algorithms. For CSPs, in par-tiular, enforing ar onsisteny is often the best tradeo� between the amountof pruning and the ost of pruning. The AC enoding [12℄ has the property thatar onsisteny in the original CSP is established by unit propagation in theenoding [10℄. A omplete baktraking algorithm with unit propagation, suhas DP [6℄, therefore explores an equivalent searh tree to a CSP algorithm thatmaintains ar onsisteny. Likewise, DP on the Diret enoding behaves as theForward Cheking algorithm whih maintains a weaker form of Ar Consisteny[17℄. In this paper we show that there is a ontinuity between diret and supportenodings, and following this line, many other onsistenies an be simulated byunit propagation in the SAT enoding, for any onstraint arity and all in optimalworst ase omplexity.The rest of the paper is organized as follows. In setion 2 we present the basionepts used in the rest of the paper. In setion 3 we introdue a family of enod-ings alled the k-AC enodings where k is a parameter. These enodings enablea large family of onsistenies, the so alled relational k-ar-onsisteny [8℄ tobe established by unit propagation on the SAT enoding. They work with any

onstraint arity. Setion 4 fouses on binary networks, and shows that these en-odings an also be used to establish any (i,j)-onsisteny (another large familyof onsistenies [9℄). We also show that unit propagation on the k-AC enodingsan ahieve the given level of onsisteny in optimal time omplexity in all ases.Setion 5 introdues mixed enodings that ombine previous ones to perform ahigh level of �ltering only where it is really needed. And �nally, in setion 6,we present some experiments, that assess the improvement of these enodingsin omparison with the diret enoding. The results also show the ability ofthis approah to solve large and hard problems by omparing it with the bestalgorithms for CSPs.2 Bakground2.1 Constraint Satisfation Problem (CSP)A CSP P = (X ;D; C) is a set X = fX1; : : : ; Xng of n variables, eah takinga value from a �nite domain D(X1); : : : ; D(Xn) elements of D, and a set Cof e onstraints, d is the size of the largest domain. A onstraint CS , whereS = fXi1 ; : : : ; Xiag � X , is a subset of the Cartesian produt of the domainsof the variables in S, CS � D(X1) � D(X2) � : : : � D(Xa) that denotes theompatible values for the variables in S. The inompatible tuples are allednogoods. We are alling S, the sope of CS and jSj = a its arity. An instantiationI of a set T of variables is an element of the Cartesian produt of the domains ofthe variables in T . We denote I [A℄ for the projetion of I onto the set of variablesA, and CS [A℄ the projetion of the onstraint CS onto A. An instantiation I isonsistent if and only if it satis�es all the onstraints, that is, 8CS 2 C suh thatS � T; I [S℄ 2 CS . A solution is a onsistent instantiation over X .Let T and S be two distint sets of variables T; S � X , and I an instantiationof T whih is onsistent. A support J of I on S is an instantiation J of S suhthat I [J is onsistent. For an instantiation I , if there exists a set S suh thatI has no support on S, then I doesn't belong to any solution.2.2 Diret EnodingThe diret enoding [17℄ is the most ommonly used enoding of CSPs intoSAT. There is one Boolean variable Xv for eah value v of eah CSP variable X .Xv = T means the value v is assigned to the variable X . Those variables appearin three sets of lauses :At-least-one lause : There is one suh lause for eah variable, and theirmeaning is that a value from its domain must be given to this variable.Let X be variable and D(X) = fv1; v2; : : : ; vng, then we add the at-least-onelause : Xv1 _Xv2 _ : : : _Xvn.At-most-one lause : There is one suh lause for eah pair of values for eahvariable, and their meaning is that this variable annot get more than one value.Let vi; vj 2 D(X); i 6= j, then we add the at-most-one lause : :Xvi _ :Xvj .

Con�it lause : There is one suh lause for eah nogood of eah onstraint,and their meaning is that this tuple of values is forbidden.Let CXY Z be a onstraint on the variablesX;Y; Z and [u; v; w℄ 2 D(X)�D(Y)�D(Z) an instantiation forbidden by CXY Z ([u; v; w℄ =2 CXY Z), then we add theon�it lause : :Xu _ :Y v _ :Zw.2.3 AC EnodingThe AC enoding [12℄ enables a SAT proedure to maintain ar-onsistenyduring searh through unit propagation. It enodes not only the struture ofthe network, but also a onsisteny algorithm used to solve it. It di�ers fromthe diret enoding only on the on�it lauses whih are replaed by supportlauses, the others lauses remain unhanged.Support lause : Let X;Y be two variables, v 2 D(X) a value of X andfw1; : : : ; wkg the supports of X = v on Y , then we add the support lause ::Xv _ Y w1 _ Y w2 _ : : : _ Y wk.This lause is equivalent to Xv ! (Y w1 _ Y w2 _ : : : _ Y wk) whih means : aslong as Xv holds (i.e, Xv 6= False, that is �the value v remains in X 's domain�),then at least one of its support must hold. Therefore when all the supports ofX = v are falsi�ed Xv is itself falsi�ed.3 Generalisation of the AC EnodingThe AC enoding an only be applied to binary networks, beause supportlauses enode the supports of a single variable on another single variable. Ourgoal is to enode any kind of support that follows from the de�nition in se-tion 2.1. The new enoding we introdue here, k-AC enoding, represent supportson subsets S of variables of any size, for an instantiation of another subsets T ofany size. Sine a literal stands for an assignment, an instantiation (or a support)of several variables orresponds to a onjuntion of positive literals. A k-AClause represents the impliation between the instantiation and its supports: ifthe instantiation holds, one of the supports must hold. Let [v1; : : : ; vp℄ be a sup-port on X1; : : : ; Xp of a given instantiation on other variables. The onjuntionthat enodes this support is (X1v1^ : : :^Xpvp). To keep the enoding in lausalform, we need then to add an extra variable, say s, for this support and thefollowing equivalene, s $ (X1v1 ^ : : : ^ Xpvp) whih result in the followingequivalene lauses : (:s_X1v1); : : : ; (:s_Xpvp) and (:X1v1_ : : :_:Xpvp_s).We all s support-variable. If the support is unit (say Y = v), then there is noneed for an extra variable, and the support-variable is the orresponding booleanvariable (Y v).k-AC lause : Let CS be a onstraint, T = fX1; : : :Xkg � S be a set of k vari-ables, I = [v1 2 D(X1); : : : vk 2 D(Xk)℄ an instantiation of T and fs1; : : : ; smgthe supports of I on S�T , then we add the k-AC lause : :X1v1_ : : :_:Xkvk_s1 _ s2 : : : _ sm.This lause is equivalent to I ! (s1 _ s2 _ : : : _ sm) whih means : as long as Iholds then at least one of its support must hold. Therefore when all the supports

of I are falsi�ed I is itself falsi�ed i.e, the k-AC lause is redued to the on�itlause of length k forbidding I .In �gure 3, we show the four possible k-AC enodings for a ternary onstraint.Note that, in the partiular ases where the set of support variables is a singletonor the empty set, in other words, a�k = 1 or a�k = 0, the onjuntions standingfor the supports are unit and we do not need to add extra variables.
X Y Za a ba b bb a ab a b)enoding

0-AC enoding 3-AC enodingT ! (S1 _ S2 _ S3 _ S4)^ ((Xa ^ Y a ^ Za)! F)^(Xa ^ Y a ^ Zb)$ S1^ ((Xa ^ Y b ^ Za)! F)^(Xa ^ Y b ^ Zb)$ S2^ ((Xb ^ Y b ^ Za)! F)^(Xb ^ Y a ^ Za)$ S3^ ((Xb ^ Y b ^ Zb)! F)(Xb ^ Y a ^ Zb)$ S42-AC enoding 1-AC enoding((Xa ^ Y a)! Zb)^ (Xa! (S1 _ S2)^((Xa ^ Y b)! Zb)^ (Xb! (S3 _ S1)^((Xb ^ Y a)! (Zb _ Za))^ (Y a! (S4 _ S5 _ S6))^((Xb ^ Y b)! F)^ (Y b! S4)^((Xa ^ Za)! F)^ (Za! S7)^((Xa ^ Zb) ! (Y a _ Y b))^ (Zb! (S7 _ S8 _ S9))^((Xb ^ Za) ! Y a)^ ((Y a ^ Zb)$ S1)^((Xb ^ Zb) ! Y a)^ ((Y b ^ Zb)$ S2)^((Y a ^ Za)! Xb)^ ((Y a ^ Za)$ S3)^((Y a ^ Zb)! (Xa _Xb))^ ((Xa ^ Zb) $ S4)^((Y b ^ Za)! F)^ ((Xb ^ Za)$ S5)^((Y b ^ Zb)! Xa) ((Xb ^ Zb)$ S6)^((Xb ^ Y a)$ S7)^((Xa ^ Y a)$ S8)^((Xa ^ Y b)$ S9)Table 1. First table: a ternary onstraint involving the variables X, Y, Z, the allowedtuples are given. Seond table: four possible k-AC enodings of this onstraint, T =True and F = False.The k-AC lauses are a generalisation of support lauses in two di�erent ways.First they apture a larger family of onsistenies, relational k-ar-onsisteny(setion 3) and (i; j)-onsisteny (setion 4). Seond they work for any onstraintarity. Note that support lauses are 1-AC lauses for binary onstraints, andon�it lauses are a-AC lauses for onstraints of arity a. For instane, let CXY Zbe a onstraint on the variables X , Y and Z. If I = fX = u; Y = v; Z = wg is anallowed tuple, then the orresponding 3-AC lause is (Xu ^ Y v ^ Zw) ! Trueand is useless. If I is a nogood, then we have (Xu ^ Y v ^ Zw) ! False, whihis a on�it lause (:Xu_:Y v _:Zw). Diret and support enodings are thenpartiular ases of k-AC enoding.Reall that in a CSP, a nogood is a forbidden set of assignments, :(X1 =v1 ^ : : : ^Xi = vi). And that a Boolean variable orrespond to an assignment,the atom Xivi represents Xi = vi. For the theorems and proofs below, the wordvariable will refer to a CSP variable, assignment to a Boolean variable of theenoding and support to a onjuntion of assignments in the onlusion of ak-AC lause. An interpretation I is a funtion that assoiates a value in f0; 1gto the atoms of a set of lauses B. I is a model (I(B) = True), i� all the lausesin B are satis�ed by I .

Theorem 1 (Corretness and ompleteness of the k-AC Enoding.) Iis a model of the set with the at-least-one, at-most-one, and k-AC lauses,i� the assignment suh that a variable X take a value v i� I(Xv) = T is asolution of the original onstraint network.Proof: Suppose that all the assignments of a nogood N are satis�ed.N = :(X1v1 ^X2v2 ^ : : :Xnvn)Let C be the k-AC lause whih premiss P is a subset of this nogoodC = (X1v1 ^X2v2 ^ : : : Xkvk)! (s1 _ s2 _ : : : sm); sj = (Xk+1jk+1 ^ : : :Xnjn)and let S be the rest of this nogood, S = N�P . This premiss is satis�ed and thenthe onlusion must be satis�ed. Now reall that at-least and at-most lausesensure that one and only one assignment per (CSP) variable is satis�ed. All thesupports in C refer to the same variables but are by de�nition di�erent fromS by at least one assignment, (say Xivi is the assignment in the nogood, andXiji is the assignment in the support). Sine, for this variable, Xivi is satis�ed,therefore Xiji is not, and then the whole onlusion is not satis�ed.Let S be a solution of the original onstraint network, and let I be theassignment in whih I(Xiv) = T i�, in S, the value v is given to the variable Xi.S gives one and only one value to eah variable, the at-most-one and at-least-one lauses are thus satis�ed. Without loss of generality, let C be a k-AC lausewhih premiss P is an assignment on a set R and onlusion are supports on aset T . If S is a solution then S[R [T ℄ is onsistent and then S[T ℄ is a supportof S[R℄. Either P 6= S[R℄ and then C is satis�ed sine the premiss is falsi�ed, orS = S[R℄ and then S[T ℄ is one of its support and belongs to C's onlusion. Cis then satis�ed sine both premiss and onlusion are satis�ed. 2Unit propagation on the k-AC Clauses orresponds exatly to enforing re-lational k-ar-onsisteny. Relational ar-onsisteny [8℄ extends the onept ofloal onsisteny, whih usually onerns variables, to onstraints. A onstraintis relationally ar-onsistent if any instantiation whih is allowed on a subsetof its variables extends to a onsistent instantiation on the whole. Relationalk-ar-onsisteny is the restrition of the de�nition above to sets of variables ofardinality k.De�nition 1 (Relational k-ar-onsisteny.). Let R = (X ;D; C) be a on-straint network, CS a onstraint over the set of variables S � X . CS is re-lationally k-ar-onsistent i� 8A � S suh that jAj = k and 8I a onsistentinstantiation on A, I an be extented to a onsistent instantiation on S in rela-tion to CS . This means : if CS [A℄ is the projetion of the relation CS on A andI is onsistent on A, therefore I 2 CS [A℄.A onstraint network is relationally k-ar-onsistent i� all its onstraints arerelationally k-ar-onsistent.A k-AC lause is an impliation whih premiss is a onjuntion that stands forthe k-instantiation I , and onlusion is a disjuntion of supports s1_s2_: : :_sm.

The k-AC lause for I is H = I ! s1_s2_ : : :_sm. Relational k-ar-onsistenyensures that eah onsistent instantiation of k variables of a onstraint an beextented to all the variables of that onstraint. In other words, if an instantiationdoesn't satisfy this assertion, it is removed from the orresponding onstraint, i.e,this tuple is now expliitly forbidden. In the ase of the k-AC lauses, when allthe supports (whih are linked to the onjuntion of assignments they representby equivalene lauses), are falsi�ed, then the premiss must be falsi�ed and thisis exatly the nogood orresponding to the k-instantiation,H = :I . To prove theequivalene between unit propagation on those enodings, and relational k-aronsisteny on the original problem we �rst reall some de�nitions given in [1℄and slightly modi�ed for our purpose.A CSP is said to be empty if at least one of its variables has an empty domainor at least one of its onstraints is empty, i.e, forbids all assignments.We denote sat2sp(P) the transformation of a SAT-enoded CSP into aCSP onsisting of a variable Xi with a domain D(Xi) = [v1; : : : ; vd℄ for eah at-least-one lause Xiv1 _ : : : _Xivd in P , and a onstraint forbidding the nogoodN = (X1 = v1 ^ : : : ^ Xk = vk) for eah on�it lause (:X1v1 _ : : : _ :Xkvk)(or support lause redued to a on�it lause by unit propagation).First we show that the relational k-ar onsistent losure of a CSP P , writ-ten r-k-AC(P) is empty i� the k-AC enoding of P has an empty image undersat2sp, that is, sat2sp(k-sat(P)) is empty. We ignore the isuue of disov-ering the emptyness. This is trivial, both in the original problem and in the en-oding, when the empty onstraint arity is 1, whereas it is not for other arities,though it remains polynomial. Usually, this will be quikly disovered, providingthat the empty onstraint is small and that the branhing heuristi hooses �rstthe variables of this onstraint.Seond we prove that, assuming the same branhing hoies, this equivaleneis maintained at eah node of the searh tree by unit propagation in the enod-ing. As a orollary, unit propagation on k-AC enoding prunes the searh treeequivalently to relational k-ra onsisteny on the original problem.Lemma 1 (P) is empty after enforing relational k-ar onsistenyi� sat2sp(k-sat(P)) is empty.Proof: The relational k-ar onsistent losure of P ontains all the nogoodsof length k forbidding k-instantiations that don't have any support on the restof the onstraint they belong to. By de�nition, the k-AC lause for suh aninstantiation is the on�it lause of length k orresponding to the nogood. Thelater therefore belongs to sat2sp(k-sat(P)). Moreover, all nogoods of lengthk are added to the relational k-ar onsistent losure if and only if they are notsupported. Therefore, for any nogood N of length k, N 2 r-k-AC(P) i� N 2sat2sp(k-sat(P))Beside, if P is emptied by relational k-ar onsisteny, then the empty on-straint arity is always k, sine only nogoods of size k are added during theproess. 2

The proof of Lemmas 1 is based on the fat that the supports of an instanti-ation are equivalent in the enoding and in the orginal problem. Unit propaga-tion ensures that this is the ase as well during searh. We onsider a relation-ally k-ar onsistent CSP P , an assignment X = v and the indued subprob-lem assign(X = v;P). In the SAT enoding this orresponds to assign(Xv =T ,k-sat(P)). We prove that an instantiation looses a support beause of an as-signment in the CSP if and only if the k-AC lause of this instantiation loosesthe same support in the enoding by unit propagation of the truth assignment.Lemma 2 If an instantiation J , support of another instantiation I in P is nota support anymore in assign(X = v;P) for relational k-ar onsisteny, thenthe support-variable sJ of the orresponding k-AC lause is set to False afterunit propagation.Proof:Without loss of generallity, let I be an instantiation on a set T of k variablesof a onstraint CS . Let J be a support of I for CS in P , suh that J is not asupport of I in assign(X = v;P).Impliitly, after the assignment X = v, all other values in D(X) are removed.If J is not a support, it means that 9X 2 T�S, suh that J [X ℄ has been removedfrom its domain (J [X ℄ 6= v).In the enoding, the assignment Xv = T , propagated to the at-most-onelauses yelds the assignments Xw = F for all w 6= v. Let sJ be the propositionstanding for the support J , then the equivalene lause (:sJ _ J [X ℄) gives theunit lause :sJ , whih is propagated to the k-AC lause. Consequently, thesupport-variable sJ is set to False (it is not a �support� in the enoding either).At any point of the resolution, a support-variable sJ belongs to the onlusionof a k-AC lause (is not assigned to False) i� its orresponding support J holdsin the onstraint network. 2Lemmas 1 establishes that if the supports are the same in the original and inthe enoded problem, then the problem is empty i� the reformulation is empty.Lemma 2 shows that this is the ase during searh.Theorem 2 Performing full unit propagation on at-least-one, at-most-one andk-AC lauses during searh is equivalent to maintain relational k-ar-onsistenyon the original problem.From this follows a strit equivalene between the searh trees of an algo-rithm that maintains relational k-ar onsisteny in the original problem, andan algorithm that enfores unit propagation on the reformulation.3.1 Complexity of k-AC EnodingWe assume that n is the number of variables, d is the size of the domains, e isthe number of onstraints and a denotes their arity. We an ignore the at-mostand at-least lauses : there are n at-least lauses eah ontaining d literals, and

nd2 at-most lauses, whih are binary. This O(nd2) spae omplexity is in allases lower than the worst spae omplexity of the k-AC lauses. We thereforefous on the size of the k-AC lauses themselves.The total number of k-AC lauses is bounded by e(ak)dk . We need to over allthe onstraints (e). For eah onstraint, we onsider all the subsets of k variablesof that onstraint ((ak)). And for eah subset, we onsider all the instantiations(dk). The total number of literals for eah k-AC lause is bounded by k+(3(a�k) + 2)(da�k � 1). The premiss ontains k literals, and the onlusion at mostda�k � 1. Furthermore, if a � k > 1, there are also (da�k � 1)(3(a � k) + 1)additional literals from the equivaleny lauses: Eah one gives 1 lause of sizea�k+1 and a�k lauses of size 2. The spae omplexity is then O(edk) lausesof O(d(a�k)) literals, whih is still O(eda) for any arbitrary onstraint and any k.Note that the spae omplexity of the reformulation and of the original problemare the same. Sine unit propagation an be established in linear time, the timeomplexity is also in O(eda), whih is optimal worst ase time omplexity.4 (i; j)-Consistenies in SAT.In addition to relational k-ar-onsisteny, k-AC lauses allow us to enforeanother very ommon family of loal onsistenies (spei�ally, (i; j)-onsisteny[9℄) by adding the joins of ertain onstraints and performing the k-AC enodingon this augmented problem.De�nition 2 ((i; j)-Consisteny.). A binary CSP is (i; j)-onsistent i� 8Ei; Ejtwo sets of i and j distint variables, any onsistent assignment on Ei is a subsetof a onsistent assignment on Ei [Ej .This family inludes many well known onsistenies.� Ar Consisteny (AC) orresponds to (1,1)-onsisteny.� Path Consisteny (PC) orresponds to (2,1)-onsisteny.� Path Inverse Consisteny (PIC) orresponds to (1,2)-onsisteny.If on binary networks, ar onsisteny is often the best hoie, higher level of�ltering may sometimes be useful. For instane, path onsisteny is used in tem-poral reasoning. However, implementing algorithms to maintain other onsis-teny, and moreover, ombining this with improvements like (on�it direted)bakjumping and learning requires a lot of work. With our approah, just bysetting two parameters, (k and the size of the subsets to onsider) and applyinga SAT solver to the resulting enoding, we an solve the problem with the hosenonsisteny and all the other features of the SAT solver.De�nition 3 (Join of Constraints.). Let CS1; CS2 be two onstraints, thejoin CS1 1 CS2 is the relation on S1 [S2 ontaining all tuples t suh thatt[S1℄ 2 CS1 and t[S2℄ 2 CS2.Theorem 3 Enforing (i; j)-onsisteny is equivalent to enforing relational i-ar-onsisteny on the join of all onstraints involved in a set of i+ j variables,for eah of them.

Proof: Let Ei be a set of i variables, If I , a onsistent instantiation on Ei,is (i; j)-inonsistent, then there exists a set Ej of j variables suh that 8IJ aonsistent instantiation on Ei [Ej ; IJ [Ei℄ 6= I . Let C be the onstraint induedby the join of all the onstraints involved in Ei[Ej . C is the set of all the allowed,i.e, onsistent, instantiations on Ei [Ej , but I is onsistent and I =2 C[Ei℄,therefore C is relationally i-ar-inonsistent (see def 1). Conlusion : if I is (i; j)-inonsistent, then for any set E of i+ j variables ontaining the variables of I ,the onstraint obtained by joining all onstraints whih sopes are subsets of Eis relationally i-ar-inonsistent. 2The spae omplexity results of setion 3 also apply here, but the number ofonstraints is equal to the number of subsets of i+ j verties in the onstraintgraph, i.e, O(ni+j), and a = i+ j. Therefore the worst ase spae omplexity isO(ni+jdi+j), and so is the worst ase time omplexity. This is again optimal.5 Mixed EnodingThere is a lear relation between the tightness of a onstraint and the perfor-mane of DP on that onstraint enoded with the diret or a k-AC enoding.Consider the binary not_equal onstraint. It an be enoded by d on�it lausesof size 2 with the diret enoding, whilst 2d lauses of size d are required in theAC-enoding even though AC propagation in not_equal doesn't ahieve muhpruning. On the other hand, onsider the binary equal onstraint. This is en-oded with (d�1)2 binary lauses in the diret enoding, while you need only 2dbinary lauses in the AC enoding, and you an expet a lot of AC propagation.The spae omplexity and the level of propagation is thus linked to the tightnessof the onstraint. One strategy therefore is to adapt the enoding to the on-straint's tightness, i.e, using the diret enoding when the onstraint is loose andthe AC enoding when it is tight. Moreover we an use, for eah onstraint, thek-AC lause with the best �adapted� k. The prinipal issue is to know a priorihow to pik k. The notion of m-looseness [14℄ give us a way to hoose amongthe di�erent k.De�nition 4 (m-looseness). A onstraint relation R of arity a is alled m-loose if, for any variable Xi onstrained by R and any instantiation I of theremaining a� 1 variables onstrained by R, there are at least m supports of I toXi that satisfy R.Theorem 4 (van Beek and Dehter[14℄) A onstraint network with domainsthat are of size at most d and relations that are m-loose is relationally (k,(d dd�me�1))-onsistent for all k.Proof: See [14℄. 2We an restrit this to relational (k,1)-onsisteny (that is relational k-ar-onsisteny) and then we have the relation d dd�me � 1 � 1 whih is reduedto : m � d2 . This means that, given a subset of variables, if all the relationsthat onstrain these variables are d2 -loose or more (every instantiations of this

subset minus one variable have at least d2 supports on this variable) then theseonstraints are relationally k-ar-onsistent for any k. Therefore enforing rela-tional k-ar-onsisteny will not give any pruning, at least initially. In addition,the diret enoding would be more ompat for suh onstraints. This suggeststo use support lauses whenever the number of supports is lower than d2 andon�it lauses otherwise. Moreover, for a given onstraint arity a, the hoie isnow extented to any k-AC lause with k between 1 and a. To make a hoie, weassoiate a treshold Tk on the number of supports above whih we hoose (k+1)-AC lauses rather than k-AC to enode a partiular instantiation. To omputethe mixed enoding of a given onstraint we use the following algorithm:First we onsider all the instantiations of size 1 (all the values of all thevariables), and for eah of them we ount the number of supports (of size a�1),if this number is less than T1 then we add the orresponding 1-AC lause. Ina seond step, we onsider all the instantiations of size 2 ontaining a non-yet-enoded instantiation of size 1, if the number of supports of this instantiation isless than T2 we enode it with a 2-AC lause, and so on for a steps.We propose Ta�1 = d2 whilst we don't have yet any sound value for Tk withk less than a� 1.Theorem 5 (Corretness and ompleteness of the mixed enoding.) Iis a model of the set ontaining the at-least-one, at-most-one, and any k-AClauses, aording to the rules above, i� I is a solution of the onstraint network.Proof: By de�nition, all the nogoods have at least one k-AC lause whihpremiss is one of its subsets, then theorem 1 (orretness) an be applied.Theorem 1 says that k-AC enoding is omplete for any k, therefore, k-AClauses are satis�ed by I , and so is any ombination of them. 25.1 ComplexityTheorem 6 The mixed enoding (k = [1; 2℄) requires less than 32d2 literals toenode a binary onstraint, This limit an be asymptotily reahed.Proof: Let us onsider the Boolean matrix of the onstraint. Let r (resp) bethe number of rows (resp olomns enoded with support lauses, 0 � r; � d.These lauses have eah less than d=2 literals, so we have (r+)d2 literals for thesupports lauses. There are (d � r)(d �) elements of the matrix wih are notovered by the support lauses. Besides, there are r(d�) and l(d� r) elementswhih are overed by only one support lause. On eah row/olomn ontainingthese elements, there are at most d2 0, so at most, half of them are 0. For eah0 we need a on�it lause of 2 literals, then, to enode these elements, we need(r +)d2 � r+ d2 literals. If > d2 , then this number of literals inrease when rderease, and if < d2 , then it inrease with r. This number is maximized whenr is max and l min or vie versa. The worst ase is then r = d and = 0, in thatase there are 32d2 literals.

Let C be a onstraint on variables with odd domains and relation matrixas given in the margin (that is a hekerboard of 0 and 1, plus a fullolumn of 0 and a full but one row of 1). The rows are all but one enodedwith support lauses, half of this lauses are of size b d2 and the other halfare of size d d2 e, the last row is enoded with a nogood. All the olomnsbut one are enoded with b d2 on�it lauses, the remaining one with aunary support lause. That is 3 + b d2 2 + b d2 � d d2 e + b d2 � 2 � (d � 1)literals, whih is asymptotily equal to 32d2 2.
1 0 1 . . . 0 00 1 0 . . . 1 01 0 1 . . . 0 0. 0. 00 1 0 . . . 1 01 1 1 . . . 1 06 Experimental ResultsWe have performed a set of experiments to ompare the di�erent enodings.Setion 6 and 6 give a onrete idea of the improvement, in term of pruning andpu time, in omparison with diret enoding. In setion 6 we also show thatmixed enodings are an even better way to enode heterogeneous or struturedproblems. And �nally, in setion 6 we ompare this approah with the state of theart in CSP. For all the random instanes, we used Bessiere and Frost's randomgenerator. The CSPs are de�ned by 5 parameters, the number of variables, thesize of the domains, the density (i.e, the number of onstraints), their arityand their tightness (i.e, the number of nogoods per onstraint). The four �rstparameters are �xed and the tightness is given on x axis, the y axis giving thepu time or the number of baktraks. We generally foused on results at thephase transition, when the number of satis�ables instanes is the losest to 50%.We used Berkmin SAT solver [11℄ on generated nf �les.k-AC Enodings. This experiment involves 1-AC, 2-AC and diret enoding onthe following lass of ternary networks, 30 variables, 10 values, 60 onstraints. 1-AC and 2-AC enodings need both 5 times less baktraks than diret enoding3at the phase transition. But only 2-AC enoding translate this greater �lteringinto a pu time redution (again a fator 5). We an explain this by the amountof propagations needed to perform the same �ltering in 1-AC enoding, beauseof the extra variables.(i,j)-Enodings. This experiment involves PIC enoding, AC enoding and di-ret enoding on two lasses of networks. A sparse lass, 150 variables, 15 values,350 binary onstraints, and a dense one, 70 variables, 10 values, 310 binary on-straints. Aording to the theory, PIC prunes even more the searh tree thanAC, (i.e, the baktraks are less numerous). However, on dense networks, wherethe gain in pruning is more evident, the amount of extra variables, as previouslyfor 1-AC enoding, slow down the resolution.Mixed Enoding. To emphasize the bene�ts of the mixed enoding on morestrutured problem, we used the Instrution Sheduling Problem, introdued in[15℄, The problem is to �nd a minimum length instrution shedule for a ba-si blok of instrutions (a straight-line sequene of ode with a single entry3 experiments with Cha� showed an even greater di�erene, about a fator 10 forbaktraks, and 15 for pu time.

 0.001

 0.01

 0.1

 1

 10

 100

 400 500 600 700 800 900

DIRECT
1-AC
2-AC

(a) pu time 1

 10

 100

 1000

 10000

 100000

 400 500 600 700 800 900

DIRECT
1-AC
2-AC

(b) number of baktraksFig. 1. Cpu time and number of baktraks of BerkMin on GAC (1-AC), 2-AC andDiret (3-AC) enoding.point) subjet to preedene, lateny, and resoure onstraints. Basi bloks arerepresented as DAG (Diret Ayli Graph). To model this problem, van Beekused one variable for eah instrution, its domain represents the possible po-sitions in the total order we have to �nd. The onstraints are: instrutioni <instrutionj + k for eah ar ij labelled with k in the DAG (instrutionj mustwait at least k yles after instrutioni), and an AllDi� onstraint on all thevariables. The domains are initiallized with a lower bound on the number ofyles required, and the instane is solved, if no solution is found they are in-remented and the instane is solved again. The �rst solution enountered isthe optimal solution. Eah point of the �gure 6 represents the runtime Berk-min needed to �nd the optimal solution on the mixed enoding (x axis) andAC enoding (y axis). (all instanes have the same parameters : 20 instrution,40 onstraints of lateny and a lateny between 1 and 3 inlusive). Figure 6ompares the mixed and diret enodings. The mixed enoding is almost alwaysbetter in pu-time, ompared to the diret or the AC enoding. The number ofbaktraks is nearly the same as in AC enoding, while the spae omplexity isgreatly redued (mostly beause of the alldi� onstraint).Comparison with the State of the Art in CSP. We also measured thee�ieny of this approah in omparison with the state of the art for CSPsolvers. We have done these omparisons on the following lasses:� (a) binary sparse : <180 variables, 15 values, 450 onstraints, 147 nogoods>.� (b) binary dense : <90 variables, 10 values, 400 onstraints, 38 nogoods>.� () ternary dense : <10 variables, 10 values, 100 onstraints, 208 nogoods>.� (d) ternary medium : <30 variables, 6 values, 75 onstraints, 109 nogoods>.� (e) ternary sparse : <50 variables, 10 values, 70 onstraints, 790 nogoods>.For binary lasses, 100 instanes were generated and solved by MAC4 , (MaintainAr Consisteny) with AC2001 algorithm [5℄, and the dynami variable ordering(dvo) H1_DD_x [2℄, whih outperforms the well known dom/deg heuristi. The4 For MAC the number of baktraks an be slightly overestimated, sine the valuegiven is in fat the number of visited nodes.

 0.01

 0.1

 1

 10

 100

 100 120 140 160 180 200

DIRECT
PIC
AC

(a) pu time, sparse networks 0.1

 1

 10

 100

 1000

 10000

 100000

 100 120 140 160 180 200

DIRECT
PIC
AC

(b) baktraks, sparse networks
 0.001

 0.01

 0.1

 1

 10

 100

 20 25 30 35 40 45 50 55 60 65 70

DIRECT
PIC
AC

() pu time, dense networks 1

 10

 100

 1000

 10000

 100000

 20 25 30 35 40 45 50 55 60 65 70

DIRECT
PIC
AC

(d) baktraks, dense networksFig. 2. Cpu time and number of baktraks of BerkMin on Diret, AC and PIC en-oding for two lasses of networks.same instanes were translated in SAT problems with AC and PIC enoding,and then solved by BerkMin561.For ternary lasses 100 instanes were also generated and solved by NFCx[3℄, where x is 0 or 5, using GAC2001 [5℄, and dom/deg dvo [4℄ without singletonpropagation [13℄. Here again, the same instanes were translated with 1-AC, 2-AC, 3-AC, mixed(1) and mixed(2) enodings, and solved by BerkMin561 5. Theresults of our approah take also into aount the translation duration, whihinlude the time spent on reading the sp �le and writing the nf. Note that thisduration is insigni�ant when the problem is really hard, and an be dramatilyredued by not reating a temporary �le6. The �rst observation is that theperformane of BerkMin on high �ltering k-AC enodings (all but diret) isbetter on sparse than on dense networks. There are at least two reasons for thatbehaviour : �rstly, for dense networks, at the ross-over point, the onstraintsare loose, and then there is not muh propagation. Moreover, reall that k-AClauses enode the supports, and they are more numerous when the onstraintsare loose. A 1-AC lause (and its equivalene lauses) for a ternary onstraint anhave between 1 and 3d2 literals, aording to the number of supports, that antherefore make a great di�erene for the SAT solver. However, The results belowshow that this approah an really handle large and hard problems. The best5 all Christian Bessiere's algorithms ran on a 1.6 GHz pentium, whereas BerkMin ranon a 1.8 GHz one, BerkMin's results are then orreted by a fator 1.8/1.6.6 most of this time is spent on i/o

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.0001 0.001 0.01 0.1 1 10 100 1000

CP
U

TI
M

E
M

IX
ED

CPU TIME AC(a) mixed vs AC 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

CP
U

TI
M

E
M

IX
ED

CPU TIME DIRECT(b) mixed vs diretFig. 3. 20 instrutions, 40 lateny onstraints, max lateny 3. pu time for BerkMinon Mixed enoding (y axis) and AC enoding or Diret enoding (x axis).lass (a) MAC2001 AC + BM PIC + BM#baktraks 55559 66749 62006total time 39.6 165 178translation N/A 1.37 1.2lass (b) MAC2001 AC + BM PIC + BM#baktraks 56718 136139 103173total time 17.0 354 373translation N/A 0.5 0.3(a) results of MAC2001 and BerkMinon AC and PIC enodings.
NFC 1-AC 2-AC 3-AC mix(1) mix(2)() time 0.1 6.5 5.5 2.1 5.5 5.4() trans N/A 0.87 1.8 1.8 1.9 2(d) time 0.37 3.26 0.84 1.14 0.84 0.86(d) trans N/A 0.37 0.42 .72 0.45 0.46(e) time 18.40 59.8 15.5 85.8 11.4 9.5(e) trans N/A 2.4 1.6 2.4 1.6 1.6(b) Results of NFC and BerkMin ondi�erent enodings on 3 lasses ofternary networks.Fig. 4. total time is pu time for MAC and BerkMin's pu time + translation duration,all in seonds.algorithm should probably always be to solve the original problem rather thanits reformulation, but when good algorithms are hard to make, reformulation isa good alternative. For example NFC is ertainly more distant from the �bestpossible algorithm� than MAC is, and then BerkMin on the right k-AC enodingis very lose, and sometimes better, than NFC. In the same way, there are veryfew good PIC [7℄ or �Maintain Relational K-Ar Consisteny � algorithms.7 ConlusionWe presented a new family of mappings of onstraint problems into satisfationproblems, and proved the optimality in spae and time omplexity of these en-odings. We also proved that performing full unit propagation on k-AC enodingis the same as enforing relational k-ar-onsisteny on the original problem, orused in a slightly di�erent way, (i,j)-onsisteny. We showed how to mix thedi�erent enodings to take advantage of their best individual features. And �-nally we demonstrated preliminary experimental results of the e�ieny of theintrodued enodings.From a onstraint programming perspetive, these new enodings are a veryeasy way to implement and test algorithms for enforing a wide range of �lter-ings, all in optimal worst ase time omplexity.7 Suh enodings also pro�t from7 this goal was also pursued in [16℄, though the approah was ompletly di�erent

the sophistiated branhing heuristis and other algorithmi features of the SATsolver (like non-hronologial baktraking and nogood learning). Given the re-ent rapid advanes in SAT solvers, they o�er an alternative way to solve hardproblem instanes. From the satis�ability perspetive, these enodings are usefulfor modelling, sine many real life problems are likely to have straightforwardrepresentations as CSPs whereas SAT models are often not as easy to make.Modelling is also far more understood for CSPs than for SAT. These enodingsallow the SAT researh ommunity to take advantage of CSP modelling results.AknowledgementsWe thank Ian P. Gent for helpful disussions about SAT enoding. We also thankEugene Goldberg for his giving us a slightly modi�ed version of Berkmin561. Thiswork was supported by Siene Foundation Ireland.Referenes1. F. Bahus, X. Chen, P. van Beek, and T. Walsh. Binary vs. non-binary onstraints.Arti�ial Intelligene, 140(1-2):1�37, 2002.2. C. Bessière, A. Chmeiss, and L. Saïs. Neighborhood-based variable ordering heuris-tis for the onstraint satisfation problem. In Proeedings CP'01, pages 565�569,2001. Short paper.3. C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward heking fornon-binary onstraint satisfation. Arti�ial Intelligene, 141:205�224, 2002.4. C. Bessière and J.C. Régin. MAC and ombined heuristis: two reasons to forsakeFC (and CBJ?) on hard problems. In Proeedings CP'96, pages 61�75, 1996.5. C. Bessière and J.C. Régin. Re�ning the basi onstraint propagation algorithm.In Proeedings IJCAI'01, pages 309�315, 2001.6. M. Davis, G. Logemann, and D. Loveland. A mahine program for theorem proving.Communiations of the ACM, 5:394�397, 1962.7. Romuald Debruyne. A property of path inverse onsisteny leading to an optimalPIC algorithm. In Proeedings ECAI'00, pages 88�92, 2000.8. R. Dehter and P. van Beek. Loal and global relational onsisteny. TheoretialComputer Siene, 173(1):283�308, 1997.9. E.C. Freuder. A su�ient ondition for baktrak-bounded searh. Journal of theACM, 32:755�761, 1985.10. I.P. Gent. Ar onsisteny in SAT. In Proeedings ECAI'02, 2002.11. E. Golberg and Y. Novikov. Berkmin: a fast and robust sat-solver. In ProeedingDATE'02, pages 142�149, 2002.12. S. Kasif. On the parallel omplexity of disrete relaxation in onstraint satisfationnetworks. Arti�ial Intelligene, 45:275�286, 1990.13. B.A. Nadel. Constraint satisfation algorithms. Computational Intelligene, 5:188�224, 1989.14. P. van Beek and R. Dehter. Constraint tightness and looseness versus loal andglobal onsisteny. Journal of the ACM, 44:549�566, 1997.15. Peter van Beek and Kent Wilken. Fast optimal instrution sheduling for single-issue proessors with arbitrary latenies. Leture Notes in Computer Siene,2239:625�639, 2001.16. G. Verfaillie, D. Martinez, and C. Bessière. A generi ustomizable framework forinverse loal onsisteny. In Proeeding AAAI'99, pages 169�174, 1999.17. T. Walsh. SAT v CSP. In Proeedings CP'00, pages 441�456, 2000.

