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Abstract. We study the problem of fairly allocating indivisible goods
among a set of agents. Our focus is on the existence of allocations that
give each agent their maximin fair share—the value they are guaranteed
if they divide the goods into as many bundles as there are agents, and
receive their lowest valued bundle. An MMS allocation is one where every
agent receives at least their maximin fair share. We examine the existence
of such allocations when agents have cost utilities. In this setting, each
item has an associated cost, and an agent’s valuation for an item is the
cost of the item if it is useful to them, and zero otherwise.

Our main results indicate that cost utilities are a promising restriction
for achieving MMS. We show that for the case of three agents with
cost utilities, an MMS allocation always exists. We also show that when
preferences are restricted slightly further—to what we call laminar set
approvals—we can guarantee MMS allocations for any number of agents.
Finally, we explore if it is possible to guarantee each agent their maximin
fair share while using a strategyproof mechanism.
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1 Introduction

How to fairly divide a set of indivisible resources is a problem that has been stud-
ied by computer scientists, economists, and mathematicians [10,11,25]. Because
of the fundamental nature of the problem, there is a large number of applica-
tions ranging from course allocations [26], to division of assets [19], and air traffic
management [27].

Among the fairness notions studied, two of the most commonly studied are
those of envy-freeness—how to ensure no agent envies another, and maximin fair
share—our focus in this paper. The notion of the maximin fair share was intro-
duced by Budish [12], and generalises the well known cut-and-choose protocol.
Conceptually, an agent’s maximin fair share is the value they can achieve by
partitioning the items into as many bundles as there are agents, and receiving
their least preferred bundle. The ideal outcome is of course an MMS allocation,
where every agent receives at least their maximin fair share.
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There has been a significant amount of work on MMS in the general additive
valuations setting. Unfortunately, results are often quite negative. In general,
MMS allocations cannot be guaranteed to exist, even in the case of three agents
[16,24]. Furthermore, for instances where MMS allocations do exist (for example,
when agents have identical valuations), computing an MMS allocation is NP-
hard. As a result, a large body of work has been focused on establishing the
existence of MMS allocations in more restricted settings [4,8,9,15]. In this paper,
we study the problem under a natural class of valuation functions–what we call
cost utilities—that allow us to provide fairness guarantees that are not achievable
for general additive valuations. Cost utilities describe the setting where each item
has an associated cost. An agent’s value for any item is the cost of the item if it
is useful to them, and zero otherwise. Our focus in this work is on the existence
of MMS allocations under cost utilities.

We are not the first to study this restriction in the context of fair division.
Bansal and Sviridenko [7] provided an approximation of egalitarian welfare max-
imisation under cost utilities, that was then improved upon by Asadpour et al.
[5] and Cheng and Mao [14]. Camacho et al. [13] and Akrami et al. [1] focus on
envy-freeness, and show that an EFX allocation always exists under cost util-
ities1. There are clear practical advantages to studying this particular class of
valuations. In many real-life settings, the price of items are known, and elicita-
tion of preferences boils down to asking an agent whether they want the item or
not—a task that can be accomplished easily.

Related Work. Given that MMS allocations cannot be guaranteed for general
additive valuations, the work done on MMS in fair division has focused on
two main approaches to circumvent this impossibility. The first—which is the
route we employ in this paper—is to consider a restriction on the valuations of
the agents. Examples of such restrictions under which MMS allocations always
exist include binary valuations [9], and ternary valuations [4]—where item values
belong to {0, 1, 2}, and Borda utilities [21]. Existence of MMS allocations also
holds for personalised bivalued valuations—where for each agent i, the value of
an item belongs to {1, pi} for pi ∈ N, and weakly lexicographical valuations—
where each agent values each good more than the combined value of all items
that are strictly less preferred [15].

The second approach is to examine how close we can get to MMS, meaning
how far each agent is from receiving their maximin fair share. An allocation is
said to be ρ-MMS, if each agent receives a ρ fraction of their MMS value. Garg
and Taki [17] show that for instances with more than five agents a

(
3
4 + 1

12n

)
-

MMS allocation always exists. On the more negative side, [16] show that there
exist instances such that no allocation is 39/40-MMS. For valuations that are
beyond additive, the picture is arguably gloomier. [18] show an existence of 1

3 -
MMS allocations and a PTAS for computing such allocations. They also show
1 Bansal and Sviridenko [7] call them restricted assignment valuations, while Camacho

et al. [13] call them generalised binary valuations. Akrami et al. [1] study them under
the name restricted additive valuations. We use the term “cost utilities” as we find
it conceptually the most appealing and descriptive.
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that for submodular valuations, there exist instances that do not admit any
3
4 -MMS allocation.

There have been several works focused on achieving both fairness along with
strategyproofness. Amanatidis et al. [2] show that when there are two agents and
m items there is no truthful mechanism that outputs an 1

�m/2� -MMS allocation.
On the positive side Halpern et al. [20] and Babaioff et al. [6] show that when
agents have binary valuations there is a polynomial time computable mechanism
that is strategyproof and outputs an MMS allocation along with several other
desirable properties.

Our Contribution. We know that for some restricted settings—bivalued and
ternary valuations—MMS allocations can always be found. Amanatidis et al.
[3] highlight an open problem regarding the existence of other classes of struc-
tured valuations for which an MMS allocation is guaranteed to exist. Our paper
answers this in the affirmative for a new class of valuation functions. We first
show that MMS allocations exist for three agents under cost utilities, in contrast
to the case of general additive utilities. We also show that when valuations are
restricted slightly further to laminar set approvals, MMS allocations are guar-
anteed to exist for any number of agents. Additionally, for the case of n agents
and n+2 items, we show there is a strategyproof polynomial time algorithm for
computing Pareto optimal MMS allocations.

Interestingly, to the best of our knowledge, our results on cost utilities are
first of its kind for which (other than identical valuations) the computation of
the maximin fair share value is NP-hard, while existence of MMS allocation
is still guaranteed. For previously known classes where an MMS allocation is
guaranteed, the computation of the maximin fair share value can be done in
polynomial time.

Paper Outline. In Sect. 2 we introduce the framework of fair division of indivis-
ible items, and present the central preference and fairness notions of the paper.
Section 3 is focused on when we can achieve MMS allocations for cost utili-
ties. Section 4 looks at a strategyproof mechanism for finding MMS allocations.
Section 5 concludes.

2 Preliminaries

Let N be a set of n agents, and M a set of m indivisible goods (or items). Our
goal is to divide M among the agents in N according to their preferences over
the items.

Preferences. Each agent i ∈ N has a valuation function vi : 2M → R≥0 that
determines how much they value any bundle of items. For all agents i, we assume
that vi is additive, so vi(S) =

∑
g∈S vi(g). For singleton bundles, we write vi(g)

in place of vi({g}) for simplicity. We write v = (v1, . . . , vn) to denote the vector
of all valuation functions for agents in N .
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Our focus in this paper is on a restricted domain of preferences—cost utilities.
For these preferences, it is easy to think of each agent as submitting an approval
set. Let Ai be the approval set of agent i. More formally, we say Ai = {g ∈ M |
vi(g) > 0}. We say agents have cost utilities if there exists a cost function c such
that vi(S) = c(S ∩ Ai) for all S ⊆ M and all agents i ∈ N . We require that the
cost function is additive, as well as non-negative.

Allocations and Mechanism. An allocation B = (B1, . . . , Bn) is an n-partition
of the set of items M , where Bi ⊆ M is the bundle assigned to agent i under
the allocation B. We write B|N ′ to denote the restriction of the allocation B
to only the bundles assigned to agents in N ′ ⊆ N . For a set of goods M , we
write Bn(M) to mean all possible allocations of the goods in M to n agents. An
instance I = (N,M,v) of a fair division problem is defined by a set of agents, a
set of goods, and the agents’ valuations over those goods.

Given an instance I, our goal is to find an allocation B that satisfies certain
normative properties. An allocation mechanism for n agents and m items is a
function f : V n → Bn(M), where V n is the set of possible valuation profiles—i.e.
vectors of n valuation functions.

Fairness and Efficiency. For an agent i ∈ N , their maximin fair share in an
instance I = (N,M,v) is defined as

MMSn
i (I) = max

B∈Bn(M)
min
j∈N

vi(Bj).

We sometimes write MMSn
i (M) when the instance is clear from context. When

the set of goods and the value of n is fixed, we will also sometimes write MMSi.
An MMS allocation B ∈ Bn(M) is an allocation such that vi(Bi) ≥ MMSi

for all agents i ∈ N .
We say an allocation B ∈ Bn(M) is Pareto efficient if there is no alloca-

tion B′ ∈ Bn(M) such that vi(B′
i) ≥ vi(Bi) for all i ∈ N and vi∗(B′

i∗) > vi∗(Bi∗)
for some i∗ ∈ N .

3 Maximin Fair Share Guarantees

In this section, we will look at two settings where cost utilities can aid in finding
cases where MMS allocations can be guaranteed to exist. Section 3.1 focuses on
cases with only three agents. Section 3.2 considers any number of agents but is
limited to laminar approval sets. This is a restriction that captures the idea of
items belonging to different categories.

3.1 MMS Allocations for Three Agents

For the case of three agents, restricting our scope to considering only cost utilities
yields positive results. As we have seen in the introduction, this is not the case
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for the more general case of additive preferences. Theorem 1 is therefore a very
welcome result.

In this section, we will sometimes speak about items approved exclusively by
two agents. We denote by Aij = (Ai∩Aj)\Ai∗—where i∗ ∈ N and i∗ �= i, j—the
set of items approved by agents i and j, and no third agent.

Before we state our main result in this section, we present the following two
lemmas that we need in order to prove Theorem 1. Our first lemma simply tells
us that adding items approved only by a single agent does not affect the existence
of an MMS allocation.

Lemma 1. If an MMS allocation exists for instance I = (N,M,v), then an
MMS allocation also exists for the instance I ′ = (N,M ∪ S,v), where S is a set
of items approved by a single agent i ∈ N , and S ∩ M = ∅.
Proof. Suppose we have an instance I = (N,M,v) where B is an MMS alloca-
tion. Suppose further that I ′ = (N,M ∪ S,v) is an instance where S is a set of
items approved by a single agent i ∈ N , and S ∩M = ∅. We show that B′ where
B′

j = Bj for all j �= i and B′
i = Bi ∪ S is an MMS allocation. Since for any j �= i

we have vj(Bj) ≥ MMSn
j , we only need to show that agent i gets her MMS fair

share.
Suppose for contradiction that we have vi(S) + MMSn

i (M) < MMSn
i (M ∪

S). Let W = (W1, . . . ,Wn) be an n-partition of (M ∪ S) such that vi(Wk) ≥
MMSn

i (M ∪ S) for 1 ≤ k ≤ n. Note that for any Wk in the partition we have
that Wk = (Wk ∩ M) ∪ (Wk ∩ S). Thus we have the following:

MMSn
i (M ∪ S) ≤ vi(Wk)

= vi(Wk ∩ M) + vi(Wk ∩ S)
≤ vi(Wk ∩ M) + vi(S)
< vi(Wk ∩ M) + MMSn

i (M ∪ S) − MMSn
i (M)

where the last inequality follows from our assumption that vi(S) < MMSn
i (M ∪

S) − MMSn
i (M). It follows that vi(Wk ∩ M) > MMSn

i (M). As k was chosen
arbitrarily, this implies existence of a partition of M into n sets (Wk ∩ M)k∈[n]

such that each set has value strictly larger than MMSn
i (M), a contradiction. ��

Our second lemma is a more technical one. In yet another simplification of
notation, we write μij = MMS2i (Aij) = MMS2j (Aij) to mean the maximin fair
share of agents i and j when dividing exactly the goods only the two of them
approve among themselves.

Lemma 2. Let N = {1, 2, 3}, and let S = (S1, S2, S3) be a 3-partition of A1

such that v1(Sr) ≥ MMS1 for all r ∈ {1, 2, 3}. Then there exist distinct k, � ∈
{1, 2, 3} such that

c(Sk ∩ A12) ≤ μ12, and
c(S� ∩ A13) ≤ μ13.
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Proof. Note that, by the definition of maximin fair share, there cannot be two
elements k1, k2 ∈ {1, 2, 3} such that c(Sk1 ∩A12) > μ12 and c(Sk2 ∩A12) > μ12—
this would imply that we could divide A12 into two bundles such that both
agents 1 and 2 are guaranteed strictly more than their maximin fair share.

Therefore, there must exist at least two distinct k, k′ ∈ {1, 2, 3} such that
both c(Sk ∩A12) ≤ μ12 and c(Sk′ ∩A12) ≤ μ12. The same argument tells us there
are distinct �, �′ ∈ {1, 2, 3} such that c(S� ∩ A13) ≤ μ13 and c(S�′ ∩ A13) ≤ μ13.
Applying a pigeonhole argument, we conclude there must be distinct k, � ∈
{1, 2, 3} such that c(Sk ∩ A12) ≤ μ12 and c(S� ∩ A13) ≤ μ13, as desired. ��

We are now ready to state the main result of this section.

Theorem 1. For three agents with cost utilities, there always exists a Pareto
efficient MMS allocation.

Proof. Given a set of agents N = {1, 2, 3}, let MMSi = MMS3i (M)—the maximin
fair share of agent i when dividing the items in M among the three agents. We
assume that for any item g ∈ M , we have that g is approved by at least two
agents. By Lemma 1, we know the claim will also hold for the remaining cases
where there are additional goods approved by a single agent.

Finally, we define the following three values:

q1 = MMS1 + μ23

q2 = MMS2 + μ13

q3 = MMS3 + μ12

Without loss of generality, we assume that q1 ≥ q2 and q1 ≥ q3. We can rewrite
this, and express it as follows:

MMS1 + μ23 − μ13 ≥ MMS2 (1)

MMS1 + μ23 − μ12 ≥ MMS3 (2)

Our method for finding an allocation that satisfies the maximin property and
is Pareto efficient, takes as basis a partition of the goods where each bundle
reaches the maximin fair share of agent 1. Let S = (S1, S2, S3) be a 3-partition
of A1 such that v1(Sr) ≥ MMS1 for all r ∈ {1, 2, 3}. Note that such a partition
always exists by definition of MMS1. By Lemma 2 we know there exist distinct
k, � ∈ {1, 2, 3} such that

c(Sk ∩ A12) ≤ μ12, (3)

c(S� ∩ A13) ≤ μ13. (4)

We can now describe the allocation B, which we claim is a Pareto efficient MMS
allocation.

We divide A23 into two disjoint sets T1 and T2 such that c(T1) ≥ μ23 and
c(T2) ≥ μ23. Note that such a partition exists by the definition of μ23. Let Sx

be the third bundle in S—i.e. x ∈ {1, 2, 3} \ {k, �}. We then allocate the goods
in M as follows:
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B1 = (S� \ A2) ∪ (Sk \ A3) ∪ Sx

B2 = (S� ∩ A2) ∪ T1

B3 = (Sk ∩ A3) ∪ T2

In words, agent 2 receives T1 and everything in S� that she wants, agent 3 receives
T2 and everything in Sk that she wants, and agent 1 receives the remaining items
in Sk and S� as well as the entire bundle Sx. Note that all items have been
allocated as A1 ∪ A23 = M , and no item is allocated to more than one agent
as Sx and A23 are disjoint. By definition, we have that v1(B1) ≥ MMS1—agent
1 clearly receives their maximin fair share as she receives one of the original
bundles, Sx, and then some. We now show that the same must hold for the
other two agents.

For agent 2, we need to show that v2(B2) ≥ MMS2. Note that we can express
the value of agent 2’s bundle using the cost function c as follows (where S� ∩A13

is the portion of S� that agent 2 values at 0).2

v2(B2) = v2(S� ∩ A2) + v2(T1)
= c(S� ∩ A2) + c(T1)
= c(S�) − c(S� ∩ A13) + c(T1)

Because of the way we’ve defined the partition S and A13, we know that c(S�) ≥
MMS1 and c(T1) ≥ μ23. Additionally, by Eq. 4, we know that c(S� ∩ A13) ≤ μ13.
From this, we can conclude the following, where the last inequality follows from
Eq. 1.

v2(B2) = c(S�) − c(S� ∩ A13) + c(T1)
≥ MMS1 − μ13 + μ23

≥ MMS2

Putting this all together, we have shown that v2(B2) ≥ MMS2, as desired. The
proof for agent 3 proceeds analogously, using Eqs. 2 and 3. Thus, we have shown
that B is an MMS allocation.

Finally, we see that no item has been allocated to an agent who values it at
0, meaning the allocation is indeed Pareto efficient. ��

Theorem 1 establishes a clear improvement when dealing with cost utilities
over general additive valuations.

3.2 MMS Allocations for Laminar Set Approvals

In this section we present our results for agents with laminar set approvals. This
restriction on the agents’ preferences has a very natural interpretation, in that it
2 This is possible because we know that any good in the set is either approved by

all three agents, or a subset of two. Agent 2 is a member of any subset of size two
except A13.



228 S. Botan et al.

describes the notion of items falling into categories and subcategories quite well.
We can think of agents as approving categories as a whole. For example, one
agent might want all vegetarian dishes, while another wants only the seafood. A
third agent might want the pasta-based vegetarian dishes, which would consti-
tute a subcategory of vegetarian.

We say agents with cost utilities have laminar set approvals if for a vec-
tor A = (A1, . . . , An) of approval sets, we have that for any i, j ∈ N , either
Ai ∩ Aj = Aj , Ai ∩ Aj = ∅, or Ai ∩ Aj = Ai. In words, for any two agents, one
approval set is either a subset of the other, or the sets are disjoint. Note that
in this paper, we only examine laminar set approvals within the context of cost
utilities.

We first present a technical lemma that we will apply inductively in the proof
of Theorem 2. Lemma 3 allows us to carry the existence of an MMS allocation
from cases where all agents submit the whole set M of goods as their approval, to
cases where fewer and fewer agents do so, until we reach a single agent approving
all goods.

Lemma 3. For n agents with cost utilities and laminar set approvals, and k ≥ 1,
if an MMS allocation exists for all instances where k+1 agents approve all items
in M , then an MMS allocation exists for any instance where k agents approve
all items.

Proof. Consider an instance I = (N,M,v) where there are k ≥ 1 agents whose
approval set equals M . We call this set of agents N ′. Let i ∈ N \ N ′ be an
agent such that Ai �⊂ Aj for all j ∈ N \ N ′ in the instance I. Note that such
an agent must exist, as agents have laminar set approvals. See Fig. 1 for a visual
representation. We will continue to use this figure throughout this proof.

Fig. 1. An illustration of the sets involved in the proof of Lemma 3. The largest set
is M—the set of goods. Note how the approval sets A1, . . . , Ak are equivalent to the
whole set of goods, and the same holds for Ai∗ and A′

i. The approval set Ai is “one
level below” the sets approving all items. The bundle B′

i∗—represented in blue—is the
bundle in the allocation B|N′∪{i} that is highest valued according to vi.

Our aim is to show that there exists an MMS allocation for the instance I.
To this end, we define a second instance I ′ = (N,M,v′) such that A′

i = M , and
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A′
j = Aj for all agents j �= i—i.e. the instance I ′ only differs from I in that

agent i now approves all items. Thus, we have k + 1 agents whose approval set
is M in the instance I ′.

Suppose B′ is an MMS allocation for I ′, such an allocation is guaranteed to
exist by the assumption of the lemma. We construct an MMS allocation B for our
initial instance by building on B′. We first define i∗ ∈ argmaxj∈N ′∪{i} vi(B′

j).
This is an agent who gets the highest value bundle in B|N ′∪{i} according to
vi—agent i’s valuation in the initial instance. Because the value n is fixed, we
will write MMSi(I) to mean MMSn

i (I). We consider two cases.
Case 1: Suppose vi(B′

i∗) ≥ MMSi(I). Then agent i values agent i∗’s bundle
at least as much as their maximin fair share in the initial instance. We define an
allocation B and claim that it is an MMS allocation for the instance I.

Bj =

⎧
⎪⎨

⎪⎩

B′
i∗ if j = i

B′
i if j = i∗

B′
j otherwise

First note that for any agent j �∈ {i, i∗}, their maximin fair share is the same
across both instances, and they receive the same bundle under B and B′. Thus,
they receive at least their maximin fair share in the allocation B.

We now show the same holds for i and i∗. For agent i, this follows by assump-
tion since vi(Bi) = vi(B′

i∗) ≥ MMSi(I). For agent i∗ then, we only need to con-
sider when i∗ �= i. In that case, as i∗ ∈ N ′, we have that Ai∗ = A′

i = M . Then
agent i∗ must also receive their maximin fair share in the allocation B, because
vi∗(Bi∗) = v′

i(B
′
i) ≥ MMSi(I ′) = MMSi∗(I). Note that this holds because the

agents have cost utilities, and both vi∗ and v′
i are equivalent to the cost func-

tion c since Ai∗ = A′
i = M . As B guarantees everyone at least their maximin

fair share, it is an MMS allocation for I.

Fig. 2. An illustration of the sets involved in Case 2 of the proof of Lemma 3. The
possible approval set of agent j in each case is represented in green.

Case 2: Suppose instead that vi(B′
i∗) < MMSi(I). In this case, agent i values

agent i∗’s bundle strictly less than their maximin fair share in the initial instance.
Recall that vi(B′

j) ≤ vi(B′
i∗) for all j ∈ N ′ ∪ {i}—agent i∗’s bundle is still the
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“best” one among those in B|N ′∪{i}. Given our initial assumption, we then have
that

vi(B′
j) < MMSi(I) for all j ∈ N ′ ∪ {i}. (5)

Before we proceed, we will need to define a third instance over only the goods
in Ai. Let I∗ = (N,Ai,v) be a restriction of the instance I to only the items
in Ai—meaning A∗

j = Aj ∩ Ai for all j ∈ N . Note that in I∗, there are at least
k+1 agents whose approval set is Ai—the initial k agents who approved all items
in I, and agent i. Let B′′ be an MMS allocation for I∗. We now proceed with
defining an allocation B by using both allocations B′ and B′′. In particular, we
define

Bj = (B′
j \ Ai) ∪ B′′

j for all j ∈ N.

Note that no item is allocated more than once because B′′
j ⊆ Ai for all j ∈ N .

We claim that B is an MMS allocation for the instance I. Because agents have
laminar set approvals, there are three possible cases for any agent j: either i)
Aj ⊆ Ai, or ii) Aj ∩Ai = ∅, or iii) Ai ⊂ Aj . See Fig. 2 for a visual representation.

i) Suppose Aj ⊆ Ai. Then agent j was only approving items in Ai and their
approval set remains the same in the restriction I∗, implying that their max-
imin fair share also remains the same in both instances. Additionally, we have
that vj(B′

j \ Ai) = 0 given that Aj ⊆ Ai, and so vj(Bj) = vj(B′′
j ). Since j

receives their maximin fair share in B′′, they also do so in B.
ii) Suppose instead Aj ∩ Ai = ∅. Because agent j does not approve any items in

Ai, we have that vj(B′
j) = vj(B′

j \Ai) and vj(B′′
j ) = 0. Then vj(Bj) = vj(B′

j),
and because A′

j = Aj their maximin fair share is the same in I and I ′. Thus
j receives their maximin fair share in B.

iii) Finally, suppose Ai ⊂ Aj . This is only possible if j ∈ N ′, meaning j is one of
the agents approving all items. We know that

vj(Bj) = vj(B′
j \ Ai) + vj(B′′

j )

= (B′
j) − vj(B′

j ∩ Ai) + vj(B′′
j )

= (B′
j) − vi(B′

j) + vj(B′′
j )

(6)

Where the last line follows from the fact that agents have cost utilities, meaning
vj(B′

j ∩ Ai) = vi(B′
j).

Recall that Eq. 5 tells us vi(B′
j) < MMSi(I). This fact, combined with Eq. 6

(and some reshuffling of the terms), tells us it must be the case that

vj(Bj) > vj(B′
j) − MMSi(I) + vj(B′′

j ). (7)

Since B′′ is an MMS allocation for I∗, it follows that vj(B′′
j ) ≥ MMSj(I∗).

Further, since Ai ⊂ Aj , and I∗ is an instance over only Ai, we have that
MMSj(I∗) = MMSi(I). Thus, vj(B′′

j ) ≥ MMSi(I).
We can then transform Eq. 7 as follows:

vj(Bj) > vj(B′
j) − MMSi(I) + MMSi(I),
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meaning it must be the case that vj(Bj) > vj(B′
j). Because we know agent j has

identical valuations in I and I ′, and B′ is an MMS allocation, we can conclude
that agent j receives at least their maximin fair share in B.
Thus we have shown for any agent j ∈ N that they receive their maximin fair
share in the allocation B, meaning it must be an MMS allocation. Since I was
an arbitrary instance where exactly k agents submit the approval set M , this
concludes the proof. ��

We can now (finally) present the main result of this section.

Theorem 2. For n agents with cost utilities and laminar set approvals, there
always exists an MMS allocation.

Proof. First, note that given agents with laminar set approvals, if no agent has
M as their approval set, then we can find a k-partition (N1, . . . , Nk) of agents
and pairwise disjoint subsets M1, . . . ,Mk of items such that agents in N� do not
approve any items in M \ M�, and there is an agent i ∈ N� such that Ai = M�.
It is clear—because the agents are partitioned such that each partition considers
a distinct set of items from M—that if we find an MMS allocation for each of
the k sub-cases, this gives us an MMS allocation in the global case. Therefore,
without loss of generality, we assume for any instance that at least one agent
submits M as their approval set.

Now suppose there are n agents with cost utilities who all submit M as
their approval set. Then an MMS allocation trivially exists. Applying Lemma 3
inductively, we see that for agents with cost utilities and laminar set approvals,
an MMS allocation always exists given that at least one agent submits M as
their approval set. ��
Remark 1. If an MMS allocation exists, then an MMS and PO allocation always
exists since after each Pareto improvement agent’s utility is weakly increasing.
Thus, Theorem 2 implies that under cost utilities and laminar set approvals,
MMS and PO allocation always exist.

4 Strategyproof MMS Allocations

In this section, we study the strategic guarantees possible under cost utilities.
We first show that for cost utilities, the Sequential Allocation mechanism is
strategyproof. Let us first define what we mean by strategyproofness.

An allocation mechanism f is manipulable if there is some agent i ∈ N such
that vi(f(v−i, v

′
i)i) > vi(f(v)i), where (v−i, v

′
i) is the valuation that results when

vi is replaced by v′
i. In other words, agent i can misrepresent their preferences by

submitting an untruthful valuation v′
i, thereby getting a more preferred outcome.

We say f is strategyproof if it is not manipulable by any agent.
We now define the Sequential Allocation mechanism from previous studies

[22,23]. We first define a picking sequence as a sequence of agents in N . Note that
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the sequence of agents can be of any length, and any agent might appear multiple
times in the sequence. We can think of Sequential Allocation as proceeding
sequentially (as the name indicates), through the ordering of agents. At each
step, the agent whose turn it is chooses the item with the highest cost that a) is
still available and b) is in their approval set. Note that we “force” agents to pick
their most wanted item, as reported in their approvals. If there are no remaining
items that an agent finds useful then we skip this agent and continue with the
next. The mechanism allows some items to remain unallocated only if they are
not approved by any agent.

In fact, Sequential Allocation is a family of mechanisms, each defined by the
picking sequence. As we will see, the properties of the mechanism also heavily
depend on the picking sequence in question. For example, it is well known that
Sequential Allocation is not strategyproof in general unless an agent’s picks are
all consecutive [23].

In the rest of this section, we will assume that the goods in M = {g1, . . . , gm}
are ordered from lowest cost to highest cost—i.e. c(gk) ≤ c(g�) for all k < �.

Proposition 1. For agents with cost utilities, there exists a picking sequence
such that Sequential Allocation is strategyproof and results in a Pareto efficient
allocation.3

Proof. We define a sequence S of agents of length n + 2, and a sequence T of
agents where every agent appears exactly once. Let S = 1, 2, . . . , n − 1, n, n, n,
and T = n, n−1, ..., 2, 1. Our picking sequence is S, followed by m copies of each
element in the sequence T . We can think of this as running through S, then
letting each agent in T choose all the items they want when it is their turn in
T . We now show that this gives us a strategyproof mechanism.

It is immediately clear that agent n has no incentive to manipulate. They
cannot move themselves up in the picking sequence, and once it is their turn,
they can essentially grab all the items they want.

For any other agent i ∈ N , let Xi be the items remaining immediately before
agent i received their first item, and let x be the item with highest cost in
Xi ∩ Ai. Then, agent i receives x. After this, all items in the approval sets of
agents i+1, i+2, ..., n are allocated before agent i receives all remaining items in
Ai. Thus, agent i receives the bundle x∪(Ai∩(Xi\(Ai+1∪Ai+2∪...∪An))). Note
that the preferences of agent i do not decide the set Xi. Hence, by misreporting,
agent i is unable to gain any additional items that they approve.

Note that the final allocation is Pareto optimal because items are only allo-
cated to agents that want them. As agents have cost utilities, all agents who
want an item will value it the same. This concludes the proof. ��

We now consider whether there are picking sequences that can give us an
MMS allocation along with truthfulness for a restricted number of items. Such

3 We prove Proposition 1 for a picking sequence used in the proof of Proposition 2,
but note that there are simpler picking sequences for which it holds.
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a restriction is needed because computation of an agent’s MMS value is NP-
hard for an arbitrary number of items, which implies that no picking sequence
is guaranteed to output an MMS allocation.4 We start with a lemma that will
be used to prove Proposition 2.

Lemma 4. For n agents and n+2 goods, let |Ai| ≥ n+k where k ∈ {0, 1, 2}. The
(n − k)-th most valuable item in Ai is guaranteed to give agent i their maximin
fair share.

Proof. Note that for any n-partition of the items in Ai, there is at most k bundles
that are not singletons, meaning at least (n−k) of the bundles have just a single
item. Any of these bundles will give agent i their maximin fair share. Of these
(n−k) singleton bundles, the highest possible value for the lowest valued bundle
is the cost of the (n − k)-th most valuable item in the agent’s approval set.

Proposition 2. For n agents with cost utilities, and n + 2 goods, there exists a
picking sequence such that Sequential Allocation is strategyproof, and returns a
Pareto efficient MMS allocation.

Proof. We first show that there is a picking sequence such that Sequential Allo-
cation returns an MMS allocation. If an agent approves fewer than n items, they
still receive their maximin fair share even when no items are allocated to them.
We therefore focus on agents who approve at least n items. We define the picking
sequence based on the cost of the items in M .

� If c(g4) > c(g2) + c(g3), our picking sequence is 1, 2, . . . , n − 1, n, n, n.
� Otherwise, our picking sequence is 1, 2, . . . , n − 1, n, n, n − 1.

Note that these differ only in who gets to pick the last item. The fact that
agents 1 through n − 2 are guaranteed their maximin fair share for both picking
sequences follows from Lemma 4. It remains to show that the same holds for
agent n−1 and agent n. If agent n−1 or agent n approve at most n items, then
we already know they are guaranteed their maximin fair share. If agent n − 1
approves n + 1 items, their (n − 1)-th most valuable item is still up for grabs,
and by Lemma 4 this will guarantee them their maximin fair share.

We now consider what happens when agent n approves n + k items—for
k ∈ {1, 2}), and when agent (n − 1) approves n + 2 items. We look at each
potential picking sequence separately.

Case 1: Suppose c(g4) > c(g2) + c(g3). If agent n approves n + k items, they
will receive at least k + 1 items, as they pick last and can pick up to three items
if they want, given the picking sequence 1, 2, . . . , n − 1, n, n, n. Clearly a bundle
of size k + 1 guarantees them their maximin fair share.

What remains is to check what happens when agent (n − 1) approves all
items in M , so suppose this to be the case. We first show that the maximin
fair share of agent n − 1 is min(c({g1, g2, g3}), c(g4)). Consider a partition B
of M into n bundles, where c(Bi) ≥ MMSn

n−1(M) for each i ∈ N . At least

4 This is under the assumption P �=NP.
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n − 2 of these bundles must contain a single item, and so we know that either i)
n − 2 bundles contain one item and two bundles contain two items, or ii) n − 1
bundles contain one item and one bundle contains three items. We know that
c(g4) > c(g2)+c(g3) by assumption, and the non-singleton bundles will be made
up of the four lowest value items—g1, . . . , g4. Then the best we can do is one
3-item bundle B = {g1, g2, g3} and all the remaining items in singleton bundles.
It follows that the maximin fair share of agent n−1 is min(c(B), c(g4)). When it
is agent n − 1’s turn to pick, in the worst case, the only remaining goods will be
g1, . . . , g4, in which case agent n−1 can pick item g4 to guarantee their maximin
fair share.

Case 2: Suppose instead that c(g4) ≤ c(g2) + c(g3). If agent n approves
n + 1 items, they will receive two items, guaranteeing them their maximin fair
share. If agent n approves all items in M , their maximin fair share in this
case is determined by the lowest value bundle between the two bundles of size
two, and the cheapest singleton. In particular, agent n’s maximin fair share is
min(c({c1, c4}), c({c2, c3}), c({g5})). With this picking sequence, agent n receives
two items and in the worst case, this will be the bundle B = {g2, g3}. Clearly
this guarantees agent n their maximin fair share.

Finally, we look at when agent (n − 1) approves n + 2 items. In
this case, we know that their maximin fair share is determined by
min(c({g1, g4}), c({g2, g3}), c({g5})), as was the case for agent n. As we did for
agent n we know that agent (n− 1) will receive two items, and in the worst case
this will be the bundle B = {g4, g1}, which gives the agent their maximin fair
share.

Strategyproofness and Pareto efficiency for the first case follows directly from
Proposition 1. We now prove strategyproofness and Pareto efficiency for the
second case, where c(g4) ≤ c(g2) + c(g3). In this case, our picking sequence is
1, 2, . . . , n − 1, n, n, n − 1.

For any agent i ∈ N , if i < n−1, it is clear that there is no way for the agent
to manipulate as they only get one pick. For agent n, because their picks are
right after each other, they also have no incentive to manipulate. Thus, we need
only consider agent n − 1. Let X be the items remaining immediately before
agent n − 1 received their first item, and let x be the item with highest cost in
X ∩An−1. Agent n− 1 will pick x by definition of the mechanism. Agent n then
receives their two highest valued remaining items if they exist (call these items
y and y′), and then finally agent n − 1 potentially receives the last item they
approve (call this item z).

First, consider the case where agent n−1 misreports that they approve some
item x′, and they receive x′ instead of x. Then, the bundle of agent n − 1 will
consist of x′ (which they value at 0), and potentially some other item z′ with
vn−1(z′) ≤ vn−1(x). Thus, agent n−1 is not better off in this case. Otherwise, if
agent n − 1 instead misreports that they do not approve item x, then they will
pick some other item x′′ instead, where c(x′′) ≤ c(x). If x′′ �= y and x′′ �= y′,
then we must have vn−1(x′′) ≤ vn−1(z), and so agent n − 1 is not better off.
Otherwise, if x′′ = y or x′′ = y′, then agent n−1 will have strictly fewer options
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for their final pick (compared to the case where they do not misreport), and so
they are still not any better off.

Therefore, the mechanism is strategyproof. It is clear that no agent is assigned
an item they do not want, and all items that are wanted by at least one agent
are assigned to someone. Thus the allocation is Pareto efficient. ��

We remark that Proposition 2 is tight in the sense that it no longer holds
when there are n agents and n + 3 items.

Proposition 3. For agents with cost utilities, there exists an instance with n =
2 agents and m = 5 goods such that no strategyproof mechanism can guarantee
a Pareto efficient MMS allocation.

Proof. Let n = 2, and M = {g2, g3, g4, g5, g6} such that c(gi) = i. We will show
that no allocation mechanism can satisfy strategyproofness while also guarantee-
ing a Pareto Efficient MMS allocation. Our aim is to start from an instance I1

and—by repeatedly applying the three axioms—reach a contradiction.
First, consider the instance I1, where both agents approve all items—this

corresponds to the top row of Table 1. Then, their maximin fair share is 10, and
the only way to reach an MMS allocation is to give g4 and g6 to one agent,
and g2, g3 and g5 to another. Suppose without loss of generality that {g2, g3, g5}
is allocated to agent 1, and {g4, g6} is allocated to agent 2. We will consider 5
further instances.

I2 differs only on agent 2’s approval set—they now only approve items g4,
g5, and g6. By strategyproofness, agent 2 must still receive a bundle she values
at 10. If this were a higher value the agent could manipulate from I1, and if it
were lower, they could manipulate from I2 to I1.

Instance I3 differs from instance I2 only on agent 1’s approval set—they now
only approve items g3, g4, g5, and g6. As agent 1 is the only one approving item
g3, they must be allocated this item by Pareto efficiency. The maximin value of
agent 1 in this instance is 9, so they must receive one of the following bundles:
{(g3, g6}, {g3, g4, g5}, {g3, g4, g6}, {g3, g5, g6}, or {g3, g4, g5, g6}. All but {g3, g6}
break strategyproofness, as agent 1 would have an incentive to manipulate from
I2 to I3.

Instance I4 differs from instance I3 only on agent 1’s approval set—they now
only approve item g6. Agent 1 must be allocated g6. If this were not the case,
they would have an incentive to manipulate from I4 to I3 as they do receive
item 6 in that instance.

Instance I5 differs from instance I4 only on agent 1’s approval set—they now
approve items g2, g3 and g6. As agent 1 is the only one approving items g2 and
g3, they must be allocated these items by Pareto efficiency. If agent 1 is not
also given g6, they would have an incentive to manipulate from I4 to I3 as their
bundle in that instance is valued at 6 (which is greater than 2 + 3, the value of
the bundle {g2, g3}). Note that this gives them a bundle valued at 11.

Finally, instance I6 differs from instance I5 only on agent 1’s approval set—
they now approve all items. If agent 1 is given a bundle valued lower than 11,
they would have an incentive to manipulate from I6 to I5. Note however that



236 S. Botan et al.

I6 = I2, and our axioms dictated in that instance that agent 1 must receive
utility of 10. This gives us our contradiction.

��

Table 1. Table showing the approval sets corresponding to each instance in the proof of
Proposition 3. For example, (23456)(456) denotes the instance where agent 1 approves
all items, and agent 2 approves items g4, g5, and g6. The second column describes
outcomes consistent with MMS, Pareto efficiency, and strategyproofness. Note that we
omit items not approved by either agents, as they can be allocated to anyone without
affecting any of the three axioms.

Instance Approval Sets Allocation

I1 (23456)(23456) (235)(46)

I2 (23456)(456) (235)(46)

I3 (3456)(456) (36)(45)

I4 (6)(456) (6)(45)

I5 (236)(456) (236)(45)

I6 (23456)(456) (at least 11) (at most 9)

5 Conclusion

Fair division of indivisible resources is a challenging yet important problem with
wide-ranging applications. In this paper, we have established that cost utilities
are a useful restriction to study, especially in the context of MMS allocations.
We have shown that there are several classes of instances where MMS allocations
always exist under cost utilities. We also show that cost utilities are helpful in
circumventing problems of strategic manipulation.

The topic of MMS allocations in general, and for cost utilities in particu-
lar, poses many challenging questions. One might consider various fair division
problems with constraints under cost utilities. A prime example is cardinality
constraints—or more generally, budget constraints—which are quite natural in
this setting.

Our work serves as a further indication that fair division under cost utilities
is a fruitful research direction.
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9. Bouveret, S., Lemâıtre, M.: Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Auton. Agents Multi-Agent Syst. 30(2), 259–290
(2016)

10. Brams, S.J., Taylor, A.D.: Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press (1996)

11. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of
Computational Social Choice. Cambridge University Press (2016)

12. Budish, E.: The combinatorial assignment problem: approximate competitive equi-
librium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

13. Camacho, F., Fonseca-Delgado, R., Pino Pérez, R., Tapia, G.: Generalized binary
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