
Depth-bounded Discrepancy SearchToby Walsh�APES Group, Department of Computer ScienceUniversity of Strathclyde, Glasgow G1 1XL. Scotlandtw@cs.strath.ac.ukAbstractMany search trees are impractically large to ex-plore exhaustively. Recently, techniques likelimited discrepancy search have been proposedfor improving the chance of �nding a goal in alimited amount of search. Depth-bounded dis-crepancy search o�ers such a hope. The motiv-ation behind depth-bounded discrepancy searchis that branching heuristics are more likely to bewrong at the top of the tree than at the bottom.We therefore combine one of the best features oflimited discrepancy search { the ability to undoearly mistakes { with the completeness of iter-ative deepening search. We show theoreticallyand experimentally that this novel combinationoutperforms existing techniques.1 IntroductionOn backtracking, depth-�rst search explores decisionsmade against the branching heuristic (or \discrepan-cies"), starting with decisions made deep in the searchtree. However, branching heuristics are more likely tobe wrong at the top of the tree than at the bottom.We would like therefore to direct search to discrepanciesagainst the heuristic high in the tree { precisely the op-posite of depth-�rst search. To achieve this aim, depth-bounded discrepancy search (or Dds) combines togetherlimited discrepancy search [Harvey and Ginsberg, 1995]and iterative deepening search [Korf, 1985]. Dds ap-pears to perform better than both limited discrepancysearch, Lds and the improved version, Ilds [Korf, 1996].Unlike Ilds, Dds does not need an upper limit on themaximumdepth of the tree (that is, the maximumnum-ber of branching points down any branch). This will bean advantage in many domains as we often only have aloose limit on the maximumdepth because of constraintpropagation and pruning.2 DiscrepanciesA discrepancy is any decision point in a search tree wherewe go against the heuristic. For convenience, we assumethat left branches follow the heuristic. Any other branch�The author is supported by EPSRC award GR/K/65706.I wish to thank members of the APES group for their help.

breaks the heuristic and is a discrepancy. For conveni-ence, we call this a right branch. Limited discrepancysearch (Lds) explores the leaf nodes in increasing orderof the number of discrepancies taken to reach them. Onthe ith iteration, Lds visits all leaf nodes with up toi discrepancies. The motivation is that our branchingheuristic has hopefully made only a few mistakes, andLds allows a small number of mistakes to be correctedat little cost. By comparison, depth-�rst search (Dfs)has to explore a signi�cant fraction of the tree before itundoes an early mistake. Korf has proposed an improved
0th iteration 1st iteration 2nd iteration

3rd iteration 4th iterationFigure 1: Ilds on a binary tree of depth 4.version of Lds called Ilds that uses (an upper limit on)the maximum depth of the tree. On the ith iteration,Ilds visits leaf nodes at the depth limit with exactly idiscrepancies. This avoids re-visiting leaf nodes at thedepth limit with fewer discrepancies. When the tree isnot balanced or the limit on the maximumdepth is loose,Ilds re-visits all those leaf nodes above the limit.Both Lds and Ilds treat all discrepancies alike, irre-spective of their depth. However, heuristics tend to beless informed and make more mistakes at the top of thesearch tree. For instance, the Karmarkar-Karp heuristicfor number partitioning [Korf, 1996] makes a �xed (andpossibly incorrect) decision at the root of the tree. Nearto the bottom of the tree, when there are 4 or less num-bers left to partition, the heuristic always makes the op-timal choice. Given a limited amount of search, it maypay to explore discrepancies at the top of the tree be-fore those at the bottom. This is the motivation behinddepth-bounded discrepancy search.



3 Depth-bounded discrepancy searchDepth-bounded discrepancy search (Dds) biases searchto discrepancies high in the tree by means of an iterat-ively increasing depth bound. Discrepancies below thisbound are prohibited. On the 0th iteration, Dds ex-plores the leftmost branch. On the i+1th iteration, Ddsexplores those branches on which discrepancies occur ata depth of i or less. As with Ilds, we are careful notto re-visit leaf nodes visited on earlier iterations. This issurprisingly easy to enforce. At depth i on the i + 1thiteration, we take only right branches since left brancheswould take us to leaf nodes visited on an earlier itera-tion. At lesser depths, we can take both left and rightbranches. And at greater depths, we always follow theheuristic left. Search is terminated when the increasingbound is greater than the depth of the deepest leaf node.As the i + 1th iteration of Dds on a balanced tree withbranching factor b explores O(bi) branches, the cost ofeach iteration grows by approximately a constant factor.
3rd iteration 4th iteration

0th iteration 1st iteration 2nd iterationFigure 2: Dds on a binary tree of depth 4.As an example, consider a binary tree of depth 4. Onthe 0th iteration, we branch left with the heuristic andvisit the leftmost leaf node. On the 1st iteration, webranch right at the root and then follow the heuristic left.On the 2nd iteration, we branch either way at the root,just right at depth 1, and left thereafter. Branching leftat depth 1 re-visits leaf nodes visited on earlier iterations.On the 3rd iteration, we branch either way at the rootand depth 1, just right at depth 2, then left thereafter.On the 4th and �nal iteration, we branch either way upto and including depth 2, and just right at depth 3. Thistakes us to the remaining leaf nodes and completes thesearch of the tree. Note that we did not re-visit anyleaf nodes. The following pseudo-code describes Ddsfor binary trees. Note that, unlike Ilds, the maximumdepth does not need to be given as it is computed duringsearch as the second argument returned by Probe.function Ddsk = 0repeathgoal; depthi = Probe(root,k)k = k + 1until goal or k > depthreturn goal

function Probe(node,k)if leaf(node) then return hgoal-p(node), 0iif k = 0 thenhgoal; depthi = Probe(left(node),0)return hgoal; 1 + depthiif k = 1 thenhgoal; depthi = Probe(right(node),0)return hgoal; 1 + depthiif k > 1 thenhgoal1; depth1i = Probe(left(node),k� 1)if goal1 then return hgoal1; 1 + depth1i elsehgoal2; depth2i = Probe(right(node),k � 1)return hgoal2; 1 +max(depth1; depth2)iDds visits all the leaf nodes of a search tree, but neverre-visits leaf nodes at the maximum depth. To provethis, consider the depth j of the deepest right branchon the path to any leaf node at the maximum depth.Only the jth iteration of Dds will visit this leaf node.Dds re-visits leaf nodes above the maximumdepth of thetree when the depth bound k exceeds the depth of theshallowest leaf node. This typically occurs late in searchwhen much of the tree has been explored. Indeed, assearch is usually limited to the �rst few iterations, weoften do not re-visit any leaf nodes. Ilds also re-visitsleaf nodes that occur above (the upper limit on) themaximum depth of the tree. However, Ilds can re-visitleaf nodes from the �rst iteration onwards. For example,if the leftmost leaf node is above the maximumdepth ofthe tree, it is re-visited on every iteration.Given a limited amount of search, Dds explores morediscrepancies at the top of search tree than Lds or Ilds.At the end of the �rst iteration of Ilds on a binary treeof height d, we have explored branches with at mostone discrepancy. By comparison, Dds is already on ap-proximately its log2(d)-th iteration, exploring brancheswith up to log2(d) discrepancies. And at the end of thesecond iteration of Ilds, we have explored branches withat most two discrepancies. Dds is now on approximatelyits 2 log2(d)-th iteration, exploring branches with up to2 log2(d) discrepancies.Dds is a close cousin of iterative-deepening search[Korf, 1985]. There are, however, two signi�cant dif-ferences. First, when the depth bound is reached, we donot immediately backtrack but follow the heuristic to aleaf node. Second, by always going right immediatelyabove the depth bound, we avoid re-visiting any nodesat the depth bound.4 Asymptotic complexityFor simplicity, we consider just balanced binary trees ofdepth d. The analysis would generalize with little dif-�culty to trees with larger branching rates. Korf hasshown that in searching the tree completely, Lds vis-its O(d+22 2d) leaf nodes [Korf, 1996]. By comparison,Dds, Dfs and Ilds all visit the 2d leaf nodes just once.Ilds and Dds are less e�cient than Dfs as they re-visitinterior nodes multiple times. However, they have a sim-ilar overhead. Dfs visits 2d+1�1 nodes in searching thetree exhaustively. By comparison, Ilds visits approxim-



ately 2d+2 nodes [Korf, 1996], as does Dds. Let Dds(d)be the number of nodes visited by Dds in searching atree of depth d completely. On the 0th iteration, Ddsexplores the d nodes below the root ending at the leafnode on the leftmost branch. On the ith iteration, Ddsexplores completely a subtree of depth i�1. In addition,Dds branches right at the 2i�1 nodes at depth i�1, andthen left down the (d � i) nodes to a leaf node. Thus,for d large,Dds(d) � d+ dXi=1(2i + 2i�1(1 + d� i))= d+ dXi=1 2i�1(3 + d)� dXi=1 i2i�1= d+ (2d � 1)(3 + d)� 2d (d� 1)� 1= 4 2d � 4� 2d+2Expanding only right nodes at the depth bound con-tributes signi�cantly to this result. On the last and mostexpensive iteration, the depth bound reaches the bottomof the tree, yet Dds explores just the 2d�1 out of the 2dleaf nodes that have not yet been visited. Without thise�ciency, Dds would explore approximately 2d+3 nodes.5 A Small ImprovementBy increasing the space complexity of Dds, we canavoid most of the interior node overhead. For instance,we could search to the depth bound using breadth-�rstsearch instead of iterative-deepening as present. We canthen start successive iterations from the frontier at thedepth bound, saving the need to re-visit all the interiornodes above the depth boumd. The only overhead nowis that of re-visiting the approximately 2d interior nodesthat lie along the left paths followed beneath the depthbound. The dominating cost is that of breadth-�rstsearch which visits approximately 2d+1 nodes. Unfortu-nately, this improvement increases the space complexityat the kth iteration fromO(k) to O(2k). Provided searchis limited to the �rst few iterations, this may be accept-able and o�er improvements in runtimes. We can achievelesser savings but at linear cost in the space complexityusing recursive best-�rst search with the depth as thecost function [Korf, 1993]. This will perform breadth-�rst search using space that is only of size O(k) butwill re-visit some interior nodes. We might also considersearching up to depth bound using Ilds. Such a strategywould not explore the tree completely. For example, itwould not explore the branch which goes left at the root,right at depth 1, and left thereafter. For completeness,we would need to search to the depth bound using Lds.But this search strategy would re-visit many more nodesthan necessary.6 A Simple Theoretical ModelTo analyse iterative broadening and limited discrepancysearch theoretically, Harvey and Ginsberg introduce a

simple model of heuristic search with a �xed probabil-ity of a branching mistake [Ginsberg and Harvey, 1992;Harvey and Ginsberg, 1995]. Nodes in a search tree arelabelled \good" and \bad". A good node has a goal be-neath it. A bad node does not. The mistake probability,m is the probability that a randomly selected child of agood node is bad. This is assumed to be constant acrossthe search tree. See [Harvey, 1995] for some experimentaljusti�cation of this assumption.The heuristic probability, p is the probability that at agood node, the heuristic choses a good child �rst. If theheuristic choses a bad child, then since the node is good,the other child must be good. If the heuristic makeschoices at random then p = 1�m. If the heuristic doesbetter than random then p > 1�m. And if the heuristicalways makes the wrong choice, p = 1 � 2m. Figure 3,adapted slightly from Figure 3.3 in [Harvey, 1995], listswhat can happen when we branch at a good node, andgives the probabilities with which each situation occurs.
bad good

good

good bad

good

goodgood

good

prob=1-2m prob=p+2m-1 prob=1-pFigure 3: Branching at a good node. As the situationsare disjoint and exhaustive, the probabilities sum to 1.In order to simplify the analysis, Harvey and Ginsbergassume that p is constant throughout the search tree,though they note that it tends to increase with depthin practice. At the top of the tree, heuristics are lessinformed and have to guess more than towards the bot-tom of the tree. This simplifying assumption will biasresults against Dds. Harvey and Ginsberg also restricttheir analysis to the �rst iteration of Lds. The com-binatorics involved in computing exactly the probabilityof success of later iterations are very complex and havedefeated analysis. To study later iterations, we simplyestimate probabilities by searching an ensemble of treesconstructed to have a �xed depth and a given heuristicand mistake probability. Since search will be limited tothe �rst few iterations of the algorithms, the nodes inthe trees can be generated lazily on demand. Trees withbillions of nodes can easily be analysed by this method.As in Figure 4 of [Harvey and Ginsberg, 1995], Figure4 gives the probability of �nding a goal when searchingtrees of height 30 with a mistake probability of 0.2 com-puted from an ensemble of 100,000 trees. Such trees haveapproximately a billion leaf nodes, of which just overa million are goals. With about 1 in 1000 leaf nodesbeing goals, such problems are relatively easy. Nev-ertheless, the probability of success for Dfs rises onlyslightly above pd, the probability that the �rst branchends in a goal. As in [Harvey and Ginsberg, 1995], Dfsis given the highest heuristic probability in this and all



subsequent experiments but still performs poorly. Ilds,which is omitted from the graphs for clarity, performsvery similarly to Lds. On these small and easy problems,Dds o�ers a small advantage over Lds at each value ofp. The discontinuities in the gradients of the graphs forDds correspond to increases in the depth bound. Theydo not seem to disappear with even larger samples.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of probes

"DDS p=0.95"
"LDS p=0.95"
"DDS p=0.9"
"LDS p=0.9"

"DFS p=0.95"

Figure 4: Probability of success on trees of height 30 andmistake probability, m = 0:2.We next consider more di�cult search problems. As inFigure 5 of [Harvey and Ginsberg, 1995], Figure 5 givesthe probability of �nding a goal when searching trees ofheight 100 with a mistake probability of 0.1 computedfrom an ensemble of 10,000 trees. Such trees have ap-proximately 1030 leaf nodes, of which about 1 in 38,000are goals. This graph covers the 0th, 1st and part of the2nd iteration of Lds. Previously, Harvey and Ginsbergrestricted their theoretical analysis to the 1st iterationof Lds as it is intractable to compute the probabilit-ies exactly for later iterations. As predicted in [Harveyand Ginsberg, 1995], at the start of the 2nd iteration,the probability of success for Lds \rise[s] steadily onceagain" as we explore fresh paths at the top of the searchtree. However, Dds appears to be more e�ective at ex-ploring these paths and o�ers performance advantagesover Lds at every value of heuristic probability.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of probes

"DDS p=0.975"
"LDS p=0.975"
"DDS p=0.95"
"LDS p=0.95"

"DFS p=0.975"Figure 5: Probability of success on trees of height 100and mistake probability, m = 0:1.

Finally, we vary the heuristic probability with depth.In Figure 6, p varies linearly from 1 � m at depth 0(i.e. random choice) to 1 at depth d (i.e. always cor-rect). This may provide a better model for the behaviorof heuristics in practice. Dds appears to o�er greaterperformance advantages over Lds in such situations.
0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of probes

"DDS"
"LDS"
"DFS"

Figure 6: Probability of success on trees of height 100andm = 0:1 with heuristic probability, p varying linearlyfrom 1 � m (random choice) at the root to 1 (correctchoice) at leaf nodes. At depth i, p = (1�m)+ im=100.7 Early mistakesWe attribute the success of Dds to the ease with whichit can undo early mistakes. Such mistakes can be verycostly for Dfs. For instance, Crawford and Baker identi-�ed early mistakes as the cause of poor performance for aDavis-Putnam procedure using Dfs on Sadeh's schedul-ing benchmarks [Crawford and Baker, 1994]. On someproblems, a solution was found almost immediately. Onother problems, an initial bad guess would lead to search-ing a subtree with the order of 270 nodes. Recent phasetransition experiments have also identi�ed early mistakesas a cause of occasional exceptionally hard problems (orehps) in under-constrained regions. For example, Gentand Walsh found ehps in soluble propositional satis�ab-ility problems [Gent and Walsh, 1994]. They report thatehps often occur after an early mistake when the heur-istic branches into an insoluble and di�cult subprob-lem. Similarly, Smith and Grant found ehps in solubleconstraint satisfaction problems with sparse constraintgraphs [Smith and Grant, 1995]. Again they report thatthey often occur after an early branching mistake intoan insoluble and di�cult subproblem.Dds may undo early mistake at much less cost thanDfs. To test this hypothesis, we generated satis�ableproblems from the constant probability model using thesame parameters as [Gent and Walsh, 1994]. Each prob-lem has 200 variables and a ratio of clauses to variablesof 2.6. Literals are included in a clause with probab-ility 3/400, giving a mean clause length of approxim-ately 3. Unit and empty clauses are discarded as theytend to make problems easier. This problem class istypically much easier than the random 3-Sat model



but generates a greater frequency of ehps [Gent andWalsh, 1994]. To solve these problems, we use the Davis-Putnam procedure, branching on the �rst literal in theshortest clause. Table 1 demonstrates that Dds reducesthe severity of ehps compared to Dfs. Other methodsto tackle ehps include sophisticated backtracking pro-cedures like conict-directed backjumping [Smith andGrant, 1995] and learning techniques like dependency-directed backtracking [Bayardo and Schrag, 1996] whichidentify quickly the insoluble subproblems after an earlymistake. Dds Dfsmean 7.54 > 49; 00050% 1 190% 5 299% 87 1999.9% 859 761,09599.99% 7,581 > 200; 000; 000Table 1: Mean and percentiles in branches explored bythe Davis-Putnam procedure on 10,000 satis�able prob-lems from the constant probability model with 200 vari-ables. At the time of submission, Dfs had searched over200,000,000 branches on 2 problems without success. Wehope to report the �nal result at the conference.8 Adding bounded backtrackingWhilst early mistakes are not necessarily costly for Dds,mistakes deep in the tree will be very costly. Boundedbacktrack search (Bbs) allows quick recovery from mis-takes deep in the tree for little additional cost [Harvey,1995]. A backtrack bound of depth l adds at most afactor of 2l to the search cost. For small l, this is likely tobe cheaper than the cost of additional iterations of Dds.An alternative view is to consider bounded backtrackingas strengthening the branching heuristic to avoid choiceswhich fail using a �xed lookahead.Dds combines very naturally with Bbs to give the al-gorithm Dds-Bbs. Dds explores early mistakes madeat the top of the tree whilst Bbs identi�es failures rap-idly at the bottom of the tree. The two search strategiestherefore join together without overlap. Harvey has alsocombined Lds with Bbs to give Lds-Bbs. See the Ap-pendix for details and for a correction of a small error inthe speci�cations of the algorithmgiven in [Harvey, 1995;Harvey and Ginsberg, 1995]. On the ith iteration, Lds-Bbs re-visits all those leaf nodes with less than i dis-crepancies. One improvement is to combine Ilds withBbs so that the discrepancy search does not re-visit leafnodes. However, even with such a modi�cation, boundedbacktracking still re-visits leaf nodes visited on earlier it-erations. By comparison, the bounded backtracking inDds-Bbs only visits leaf nodes with a greater discrep-ancy count that have not yet been visited. The followingpseudo-code describes Dds-Bbs for binary trees.

function Dds-Bbs(l)k = 0repeathgoal; depthi = Probe(root,k,l)k = k + 1until goal or k + l > depthreturn goalfunction Probe(node,k,l)if leaf(node) then return hgoal-p(node),0iif k = 0 thenhgoal1; depth1i = Probe(left(node),0,l)if goal1 or depth1 � l then return hgoal1 ; 1 + depth1ielse hgoal2; depth2i = Probe(right(node),0,l)return hgoal2; 1 +max(depth1; depth2))iif k = 1 thenhgoal; depthi = Probe(right(node),0,l)return hgoal; 1 + depthiif k > 1 thenhgoal1; depth1i = Probe(left(node),k� 1,l)if goal1 then return hgoal1; 1 + depth1i elsehgoal2; depth2i = Probe(right(node),k � 1,l)return hgoal2; 1 +max(depth1; depth2)i9 ExperimentsA phase transition is often seen when we vary theconstrainedness of randomly generated problems andthey go from being under-constrained and soluble toover-constrained and insoluble [Cheeseman et al., 1991].Discrepancy search strategies like Dds, Lds and Ildsare designed for under-constrained and soluble prob-lems, where we expect to explore just a small fractionof the search tree. Harvey and Ginsberg report thatsuch problems are common in areas like planning andscheduling [Harvey and Ginsberg, 1995]. Discrepancysearch strategies o�er no advantage on insoluble prob-lems where the tree must be traversed completely. In-deed, for a balanced binary tree, our asymptotic results,along with those of [Korf, 1996], show that we explore ap-proximately double the number of nodes of Dfs. Whenthe tree is unbalanced, as a result of constraint propaga-tion and pruning, the overhead can be even greater. Wetherefore restricted the experiments in this section tosoluble and under-constrained problems, on which dis-crepancy search strategies can o�er advantages.As in [Harvey, 1995], we use the random 3-Sat model.A phase transition occurs for this model at a clause tovariable ratio, L=N of approximately 4.3 [Mitchell et al.,1992]. We generated 10,000 satis�able problems from thesoluble region with L=N = 3:5 and from 50 to 250 vari-ables. Each problem is solved using the Davis-Putnamprocedure, branching as before on the �rst literal in theshortest clause. Results are given in Table 2. As expec-ted, on such under-constrained and soluble problems,Dds and Ilds are superior to Dfs, with Dds o�eringan advantage over Ilds especially on larger and harderproblems. By comparison, on \critically constrained"problems at L=N = 4:3, Dfs gave the best performance,with little to chose between Ilds and Dds.



Dfs Ilds DdsN mean 99.9% mean 99.9% mean 99.9%50 14.40 262 10.81 450 10.65 520100 116.36 3,844 28.33 822 24.87 710150 641.50 29,224 57.37 1,425 48.85 1,011200 3,795.54 201,863 114.37 3,621 99.07 2,403250 21,816.87 1,422,539 239.49 10,104 198.30 6,081Table 2: Branches explored by the Davis-Putnam pro-cedure on 10,000 satis�able random 3-Sat problems atL=N = 3:5. Best results in each row are underlined.10 Related workLds was proposed by Harvey and Ginsberg in [Harvey,1995; Harvey and Ginsberg, 1995]. They showed that itoutperformed existing strategies like Dfs and iterativesampling on large, under-constrained scheduling prob-lems. Ilds, Korf's improved version of Lds appearedin [Korf, 1996]. Ari Jonsson (personal communicationreported on page 94 of [Harvey, 1995]) has proposeda related search strategy to Dds in which we performiterative-deepening search followed by bounded back-tracking from nodes at the depth bound. Like Lds, sucha strategy re-visits leaf nodes multiple times. For ex-ample, the leftmost leaf node is visited on every iterationof the search. By comparison, Dds visits only half thenodes at the depth bound, and never re-visits any leafnode at the maximum search depth.11 ConclusionsFor many problems, the search tree is too large to explorecompletely. As a consequence, we often want to increasethe chance of �nding a solution in a limited amount ofsearch. We have shown both theoretically and experi-mentally that depth-bounded discrepancy search is ane�ective means of exploring large and under-constrainedsearch trees. By focusing on branching decisions at thetop of the search tree, where heuristics are most likelyto be wrong, depth-bounded discrepancy search outper-forms depth-�rst and limited discrepancy search.References[Bayardo and Schrag, 1996] R. Bayardo and R. Schrag.Using CSP look-back techniques to solve exceptionallyhard SAT instances. In Proceedings of CP-96, 1996.[Cheeseman et al., 1991] P. Cheeseman, B. Kanefsky,and W.M. Taylor. Where the really hard problemsare. In Proceedings of the 12th IJCAI, pages 331{337,1991.[Crawford and Baker, 1994] J.M. Crawford and A.B.Baker. Experimental Results on the Application ofSatis�ability Algorithms to Scheduling Problems. InProceedings of the 12th AAAI, 1092{1097, 1994.[Gent and Walsh, 1994] I.P. Gent and T. Walsh. Easyproblems are sometimes hard. Arti�cial Intelligence,335{345, 1994.

[Ginsberg and Harvey, 1992] M. L. Ginsberg and W. D.Harvey. Iterative broadening. Arti�cial Intelligence,55(2-3):367{383, 1992.[Harvey and Ginsberg, 1995] W. D. Harvey and M. L.Ginsberg. Limited discrepancy search. In Proceedingsof 14th IJCAI, 1995.[Harvey, 1995] W. D. Harvey. Nonsystematic Backtrack-ing Search. PhD thesis, Stanford University, 1995.[Korf, 1985] R. Korf. Depth-�rst iterative deepening: anoptimal admissible tree search. Arti�cial Intelligence,27(1):97{109, 1985.[Korf, 1993] R. Korf. Linear-space best-�rst search. Ar-ti�cial Intelligence, 62(1):43{78, 1993.[Korf, 1996] R. Korf. Improved limited discrepancysearch. In Proceedings of 13th AAAI. 1996.[Mitchell et al., 1992] D. Mitchell, B. Selman, andH. Levesque. Hard and Easy Distributions of SATProblems. In Proceedings of 10th AAAI, 459{465,1992.[Smith and Grant, 1995] B.M. Smith and S. Grant.Sparse Constraint Graphs and Exceptionally HardProblems. In Proceedings of 14th IJCAI, 1995.AppendixLds-Bbs is speci�ed by the following pseudo-code:function Lds-Bbs(l)for k = 0 to max depthhgoal; heighti = Probe(root,k,l)if goal 6= NIL return goalreturn NILfunction Probe(node,k,l)if goal-p(node) then return hnode;0is = children(node)if k > 0 then s = reverse(s)i = 0, count = 0, maxheight = 0for child in sif k = 0 and count � 1 then breakif k > 0 and i = 0 then k0 = k � 1 else k0 = khgoal; heighti = Probe(child; k0; l)maxheight = max(maxheight; 1 + height)if goal 6=NIL then return hgoal; 0ii = i + 1if height � l then count = count+ 1return h NIL, maxheightiThere is a small error in the speci�cations that appearin [Harvey, 1995; Harvey and Ginsberg, 1995] as the 7thline of Probe was \if k � 0 and i = 0 then k0 = k � 1else k0 = k". This error allows k0 can be set to �1. Thisprevents bounded backtracking from terminating in theprevious line when the bound, l is reached. As a con-sequence, many more nodes are searched than intended.For example, the 0th iteration explores completely thesubtree to the left of the root, irrespective of the back-tracking bound, b.


