
Transforming and Refining
Abstract Constraint Specifications

Alan M. Frisch1, Brahim Hnich2, Ian Miguel3,
Barbara M. Smith2, and Toby Walsh4

1 Dept. of Computer Science, University of York, UK
2 Cork Constraint Computation Centre, University College Cork, Ireland

3 School of Computer Science, University of St Andrews, UK
4 National ICT Australia and Dept. of CS & E, UNSW, Australia.

Abstract. To use constraint technology to solve a problem, the solu-
tions to the problem must first be characterised, or modelled, by a set
of constraints that they must satisfy. A significant part of the modelling
process can be characterised as refinement, the process of generating a
concrete model from an abstract specification of the problem. Expert
modellers also identify and perform transformations that can dramati-
cally reduce the effort needed to solve the problem by systematic search.
Through a case study of modelling a simplified version of the SONET
fibre-optic communication problem, this paper examines the processes
of refinement and transformation, and especially the interaction between
the two.

1 Introduction

Constraint programming is a successful technology for tackling a wide variety
of combinatorial problems. To use constraint technology to solve a problem, the
solutions to the problem must first be characterised, or modelled, by a set of
constraints on a set of decision variables that they must satisfy. A significant
part of the modelling process can be characterised as refinement, the process of
generating a concrete model from an abstract problem specification. Following
[16], and the convention in formal methods, by an abstract specification of a
constraint problem, we mean simply a representation in which the details (the
modelling decisions) have been abstracted away. Refinement adds these details to
produce the concrete model (the modelling decisions are made). There are usu-
ally many possible refinements of an abstract problem specification; identifying
the effective ones often requires considerable expertise.

Expert modellers also identify and perform transformations, which are some-
times complex, that can dramatically reduce the effort needed to solve the prob-
lem by systematic search (see, for example, [25]). We use the term transformation
to refer particularly to operations that change a model or specification but, unlike
refinement, do not alter the level of abstraction. Such transformations include
adding constraints that are implied by other constraints in the problem, adding

2

constraints that eliminate symmetrical solutions to the problem, removing re-
dundant constraints (i.e., those that yield no extra pruning but add overhead)
and replacing constraints with their logical equivalents.

Through a case study of modelling a simplified version of the SONET fibre-
optic communication problem [23], this paper examines the processes of refine-
ment and transformation, and especially the interaction between the two. Start-
ing with an abstract specification of the problem, we perform refinements and
transformations to produce seven alternative models. These models are concrete
in that they are similar to the kind that are supported by existing constraint
toolkits. We generate the models in an explicit and somewhat systematic way;
a sytematic manual exploration of the possible models has proved to be an im-
portant first step in our ongoing work towards formalising and automating the
modelling process [12].

This case study illustrates the fundamental observation that some transfor-
mations operate on a particular (concrete) model of a problem whereas others
are model independent. We refer to these two kinds of transformations as model
transformations and problem transformations. Though a problem transforma-
tion corresponds to some transformation on a particular model, an advantage of
transforming a problem specification is that the benefits of the transformation
are inherited by all models. Some transformations can also be performed more
easily at the more abstract level of the problem specification.

The case study also shows how a refinement operation can trigger a useful
transformation, thus saving the work of searching for it. In particular, we will
see a case where a refinement operation that introduces a matrix into a model
can easily recognise that the matrix has column symmetry.

Given the ability to generate alternative models, heuristics are needed to
guide refinement and transformation towards good models. Towards this goal,
we perform an empirical analysis of the generated models to begin to form gen-
eralisations about the expected utility of alternative modelling decisions.

2 Specifying the SONET Problem

For illustration, consider the SONET fibre-optic communications problem [22].

A communications network has client nodes and known levels of demand be-
tween pairs of nodes. Traffic can only be routed between two nodes if they are
installed, via an add-drop multiplexer (ADM), on the same SONET ring. Each
node may be installed on multiple rings and demand between two nodes may
be split over several rings. The maximum number of rings available is known.
Each ring has a capacity in terms of the volume of traffic and the number of
nodes that can be installed on it. Objective: minimise the number of ADMs.

It suffices here to consider a simplified version of the SONET problem, pre-
viously considered by Smith [23], in which it is known which node pairs must
communicate, but demand levels are ignored. Consider an instance of the SONET
problem with 5 nodes and 2 rings, where each ring is able to accommodate 4

3

1

2 3

4

3

5

2 3
1

4 5

Fig. 1. Demand pairs for and optimal solution of example Simplified SONET instance.

nodes. Figure 1 depicts both the demands between nodes and an optimal solution
using only 6 ADMs.

2.1 SA: An Abstract Problem Specification

This section presents an abstract specification of the Simplified SONET problem,
which, in subsequent sections, is refined and transformed to produce concrete
models. The problem must be specified at a level of abstraction above that at
which modelling decisions are made. We use Essence [12], an abstract constraint
language whose key feature is that, in addition to the usual atomic variables
(variables whose domains comprise atomic elements), it allows non-atomic vari-
ables. In doing so, it builds on the facilities available in constraint toolkits such
as Ilog Solver and Eclipse, which have supported set variables for several years,
ESRA [10], which supports relation variables, F [17], which supports function
variables, and NP-Spec [7], which supports a variety of variable types, includ-
ing partitions. However, Essence is unique in that it supports arbitrarily-nested
variable types, such as set of sets and set of set of tuples.

An instance of Simplified SONET is identified by four parameters: nnodes,
nrings the number of nodes and rings; c, the uniform node capacity per ring;
and D, the demand. D is a set of unordered node pairs, {n, n′} where n and
n′ are nodes that must communicate. The decision variable must represent an
assignment of nodes to rings; since a node can be assigned to multiple rings, we
treat this as a relation, which we call rings-nodes, between rings and nodes.

Figure 2 gives SA, an Essence specification of the Simplified SONET prob-
lem5. Here the nodes are represented by N , a range of natural numbers. The
rings are represented by R, a set comprising nrings unnamed elements. The pro-
vision of sets of unnamed objects is a unique and important feature of Essence.
It facilitates abstraction in specifications by not forcing the elements of a set
to be given arbitrary names that are never used. There is no need to name the
rings, since individual rings are not mentioned in the specification.

The objective, (1), is to minimise the number of ADMs, represented by the
cardinality of rings-nodes. The capacity constraint is imposed by (2) and the
communication constraint is imposed by (3). To clarify, the expression {n, n′} ∈
5 Space precludes a full description of Essence. See [12] for details. The simple spec-

ification given should be clear from the description.

4

D means that two distinct elements are drawn from D and, without loss of
generality, one is called n and the other is called n′. Note also that rings-
nodes(, n) is the projection of the rings-nodes relation onto n ∈ N , that is
{r|rings-nodes(r, n)}.

given nrings: integer, nnodes: integer, c: integer
where nrings ≥ 0, nnodes ≥ 0, c ≥ 0
letting N be integer (1..nnodes), R be new type (size nrings)
given D: set of set (size 2) of N
find rings-nodes: R × N
minimising |rings-nodes| (1)

such that ∀ r∈R. |rings-nodes(r,)}| ≤ c (2)

∀{n, n′}∈D. rings-nodes(, n) ∩ rings-nodes(, n′) '= ∅ (3)

Fig. 2. Specification of the simplified SONET problem.

3 Transforming the Abstract Problem Specification

This section presents transformations on the abstract specification of the Sim-
plified SONET problem, SA. We begin by deriving and adding two implied con-
straints to the specification.

The first imposes a lower bound on the number of ADMs required for each
node. We define the partner set of a node n to be {n′|{n, n′} ∈ D}, each element
of which must be related to at least one common ring with n by rings-nodes. Once
n is installed, the remaining capacity of a ring is c−1. Hence, the minimum num-
ber of installations of n required to satisfy the communication demand between it
and each member of its partner set is

⌈
|{n′|{n,n′}∈D}|

c−1

⌉
, to which we refer hence-

forth as ADMMinc(n). Observe that all the terms contained in ADMMinc(n) are
parameters; hence, for any given problem instance, it is constant. The implied
constraint follows:

∀n ∈ N.ADMMinc(n) ≤ |rings-nodes(, n)| (4)

The second implied constraint imposes a lower bound on the number of ‘open’
rings, i.e. those rings with at least one node installed. From (4), it is simple to
derive a minimum total number of ADMs. Division by the ring capacity c gives

the bound
⌈∑

n∈N
ADMMinc(n)

c

⌉
, to which we refer henceforth as RingMinc.

This is also a constant for any given instance. The implied constraint is:

RingMinc ≤ |{r ∈ R|rings-nodes(r,) %= ∅}| (5)

We now exploit dominances. Given an optimisation problem, a partial assign-
ment a dominates another a′ if the utility of the best extension of a is at least as

5

good as the best extension of a′. We exploit dominances by adding constraints
to preclude dominated partial assignments.

First, an assignment where a node n has more installations than the cardi-
nality k of its partner set is dominated by an assignment where n has at most k
installations:

∀n ∈ N.|{n′|{n, n′} ∈ D}| ≥ |rings-nodes(, n)| (6)

Henceforth, we refer to |{n′|{n, n′} ∈ D}| as ADMMax(n). It is also constant for
any given instance.

Second, an assignment where a node n is installed on a ring that contains
no elements of its partner set is dominated by an assignment where n is only
installed on rings containing at least one element of its partner set:

∀n∈N, r∈R.
rings-nodes(r, n)→|{n′∈N|{n, n′}∈D∧rings-nodes(r, n′)}|>0

(7)

Finally, an assignment where the sum of the installations on two non-empty
rings is less than or equal to c is dominated by an assignment where the contents
of the two rings are merged:

∀{r, r′} ⊆ R.(rings-nodes(r,) %= ∅) ∧ (rings-nodes(r′,) %= ∅) →
|rings-nodes(r,)| + |rings-nodes(r′,)| > c (8)

4 Refining the Simplified SONET Problem

Refining the transformed Simplified SONET specification principally involves
replacing the rings-nodes relation variable with a structured collection of atomic
variables and set variables. If the target language into which we are refining does
not support set variables, these could be refined into atomic variables; doing so
is not addressed in this paper. We consider three possibilities for refining an
arbitrary relation variable, R : A × B:

1. A two-dimensional 0/1 matrix, Rm, indexed by A × B, where Rm[a, b]=1
indicates R(a, b), when a ∈ A, b ∈ B.

2. A one-dimensional matrix of set variables, BtoAms indexed by A. For each
a ∈ A, BtoAms[a] is {b ∈ B|R(a, b)}.

3. A one-dimensional matrix of set variables, AtoBms indexed by B. For each
b ∈ B, AtoBms[b] is {a ∈ A|R(a, b)}.

In the following subsections, we use combinations of these three representa-
tions to refine SA to seven different CSP models, as summarised in Table 1. SB,
SC and SD each use one of the three, above-listed representations of a relation
variable; the other models each use multiple representations channelled together.
Two models, SB and SH , closely resemble basic models created by experts in
Operations Research [22] and Constraint Programming [23].

6

Model Characteristics

SA Sets and Relations
SB Matrix
SC Ring Set Variables
SD Node Set Variables
SE Matrix + Ring Set Variables
SF Matrix + Node Set Variables
SG Ring Set + Node Set Variables
SH Matrix + Ring Set Variables + Node Set Variables

Table 1. Simplified SONET: Specification and models.

4.1 SB: A Matrix Model

Using rule (1), the rings-nodes relation is refined into a two-dimensional matrix
of 0/1 variables, rings-nodesm, where rings-nodesm[r, n] denotes the element in
column r and row n. The matrix needs to be indexed by N and R. Since N is
the set {1, . . . , nnodes} it can serve as an index. However, R is an unnamed set,
so it cannot serve as an index. We therefore refine R to the set {1, . . . , nrings}.

In the Essence statement of the problem there is no way to refer to partic-
ular rings, from which it follows that the rings are constrained identically. By
naming the rings in SB we introduced into the model symmetry among rings. In
particular, if an assignment is a solution to a Simplified SONET instance, then
it is still a solution after we exchange all the nodes installed on any two rings.
For example, if installing nodes {1, 2} and {3, 4} on rings 1 and 2, respectively,
is a solution, then so is installing nodes {3, 4} and {1, 2} on nodes 1 and 2,
respectively. Intuitively, the rings are interchangeable. In SB the rings are the
values of the column index of rings-nodesm, so the columns of an assignment can
be interchanged without affecting whether the assignment is a solution. This is
called column symmetry and, in the general case, index symmetry [9].

This discussion illustrates an important observation: refinement can (and
often does) introduce symmetry into the model it generates—and it does so in a
systematic way that can be characterised formally. Indeed, the formal refinement
rules presented by Frisch et. al. [12] identify the symmetries that they introduce.
The significance of this is that we can avoid the (potentially expensive) process
of trying to detect these symmetries in each generated model.

Once symmetries are identified, there are several alternative methods that
can be used to break them, and thus reduce solution time. One class of methods,
called dynamic symmetry breaking (e.g. SBDS [15]), are the symmetry-aware
search methods. These search methods take a description of the symmetries and
use it to dynamically prune symmetric parts of the search space. Alternatively,
the model can be transformed by adding symmetry-breaking constraints that
prune some symmetrical assignments from the search space. This is the approach
we take here, the advantage of which will become apparent later.

Column symmetry can be dealt with effectively by treating each column as a
vector and constraining the columns to be in non-increasing lexicographic order

7

as the column index increases [9]. Thus, to SB we add the symmetry breaking
constraint:

∀ 1 ≤ r < nrings. rings-nodesm[r,] ≥lex rings-nodesm[r + 1,] (9)

where rings-nodesm[r,] is column r of rings-nodesm, and ≥lex denotes lexico-
graphically greater than or equal to, enforceable by the GACLex algorithm [11].

The nodes N in the Simplified SONET problem are not, in general, inter-
changeable because they have different demands, as specified by D. However, in
certain instances some, or all, of the nodes have identical demands. If a set of
nodes has identical demands then the corresponding rows are interchangeable. In
Figure 1 n1 and n2 have identical demands, so the first two rows of an assignment
to rings-nodesm can be interchanged without affecting whether the assignment
is a solution. Given such a set of interchangeable rows, the symmetry can be
broken by constraining them to be in non-increasing lexicographic order as the
row index increases. This has been shown to be consistent with the lexicographic
ordering constraints that we imposed on the columns [9]. If there are multiple
sets of interchangeable rows, each such set can be handled in this way.

The previous paragraph shows how certain symmetries in a model of a par-
ticular instance can be handled by adding symmetry-breaking constraints to the
model. Our main focus is on building models of problems not instances, so we do
not discuss this in detail. However, to handle instance-specific symmetries in a
model of a problem, preconditions must be placed on the methods used to break
symmetry. As a problem is instantiated into an instance, the preconditions are
tested and symmetry is broken among the objects that are symmetrical in the
instance.

Now that we have discussed the refinement of rings-nodes to a matrix, and
the symmetries involved, we continue by refining the constraints and objective
function. This requires replacing constraints on rings-nodes with constraints on
rings-nodesm. Each column r of rings-nodesm corresponds to the characteristic
function for the set of nodes installed on ring r (i.e. rings-nodes(r,)), and
similarly for each row n, so refining (1) and (2) is straightforward:

Minimise(
∑

r∈R

∑

n∈N

rings-nodesm[r, n]) (10)

∀r ∈ R.
∑

n∈N

rings-nodesm[r, n] ≤ c (11)

The demand constraint requires the intersection of subsets of N to be non-
empty. When using characteristic functions, (3) is easily represented via scalar
products, which are the cardinality of the intersection:

∀{n, n′}∈D.scalar-product(rings-nodesm[, n], rings-nodesm[, n′]) %= 0(12)

where rings-nodesm[, n] denotes the nth row of the rings-nodesm matrix. SB

is a basic version of that used in [22]. Indeed, matrix models in general are a
common pattern in constraint programming [8].

8

As noted above, each row (or column) of rings-nodesm is equivalent to the
characteristic function for the projection of rings-nodes onto an element of N
(or R). A bound on the cardinality of such a projection is easily enforced using
a summation on a row or column. Hence (4) and (7) are refined to:

∀n ∈ N.ADMMinc(n) ≤
∑

r∈R

rings-nodesm[r, n] (13)

∀ n∈N, r∈R.rings-nodesm[r, n] = 1 →
∑

n′|{n,n′}∈D

rings-nodesm[r, n′] > 0 (14)

Constraint (5) places a lower bound on the number of open rings. A ring, r
is open if it has at least one ADM installed on it, which in this model means
that column r of rings-nodesm has a non-zero sum. So, constraint (5) could be
implemented by introducing a 0/1 variable for each ring to indicate if it is open.
This is cumbersome to impose and it is a weak constraint because it does not
force any particular ring to be open.

A much better way of dealing with constraint (5) is obtained by noticing
that symmetry-breaking constraint (9) implies that all the open rings are less
than6 the unopen rings. Thus we can impose the constraint that each of the first
RingMinc columns of ringnodesm has a non-zero sum:

∀ 1 ≤ r ≤ RingMinc.
∑

n∈N

ringnodesm[r, n] %= 0 (15)

Observe that this constraint, which is much stronger than merely saying that
at least RingMinc rings are open, can be imposed only because of the symmetry-
breaking constraint. In general, the choice between alternative symmetry-breaking
constraints should consider the inferred constraints they enable [13]. Also note
that this is often a significant advantage to using symmetry-breaking constraints
over dynamic symmetry-breaking methods.

Finally, (8) is refined into model SB straightforwardly, as follows:

∀{r, r′} ⊆ R.∑
n∈N rings-nodesm[r, n] > 0 ∧

∑
n∈N rings-nodesm[r′, n] > 0

→
∑

n∈N (rings-nodesm[r, n] + rings-nodesm[r′, n]) > c

(16)

4.2 SC: A Set Variable (Rings) Model

Using rule (2), the rings-nodes relation is refined into a one-dimensional matrix
of set variables, nodesOnRingms, indexed by R such that nodesOnRingms[r] con-
tains the set of nodes installed on r. As in the previous sub-section, to serve as
an index R is refined to the set {1, .., nrings}.

The objective and ring capacity constraint are easily stated:

Minimise(
∑

r∈R

|nodesOnRingms[r]|) (17)

∀r ∈ R.|nodesOnRingms[r]| ≤ c (18)
6 Since each ring is identified by an integer, some rings are “less than” others

9

The demand constraint is more difficult to specify. It constrains at least one
of the set variables to contain particular pairs of nodes:

∀{n, n′} ∈ D.
∑

r∈R

(n∈nodesOnRingms[r] ∧ n′∈nodesOnRingms[r]) > 0 (19)

In the above we have reified each conjunction to a 0/1 value and used summation
to express the disjunction.

The symmetry among the indices of nodesOnRingms can be broken cheaply
(but only partially) by ordering the cardinalities of the sets:

∀1 ≤ r < nrings. |nodesOnRingms[r]| ≥ |nodesOnRingms[r + 1]| (20)

Having broken the symmetry in this way, the implied constraint on the minimum
number of open rings can be refined simply by disallowing the first RingMinc

elements of nodesOnRingms from being empty:

∀1 ≤ r ≤ RingMinc.|nodesOnRing[r]| %= 0 (21)

The remaining implied constraint (4) on the minimum number of installa-
tions for any node is more awkward since it requires that we check each of the
individual rings. Again we use a summation of reified element constraints:

∀n ∈ N.
∑

r∈R

n ∈ nodesOnRingms[r] ≥ ADMMinc(n) (22)

The ADMMax constraint to exploit dominance (6) can be stated similarly.
Of the remaining constraints to exploit dominance, nodesOnRingms facili-

tates the expression of the content merging constraint (8) most easily:

∀{r, r′} ⊆ R.|nodesOnRingms[r]| > 0 ∧ |nodesOnRingms[r′]| > 0 →
|nodesOnRingms[r]| + |nodesOnRingms[r′]| > c (23)

Finally, we refine the constraint that specifies a node should only be installed
on a ring that contains at least one element of its partner set (7):

∀n ∈ N, r ∈ R.n ∈ nodesOnRing[r] →
∑

n′|{n,n′}∈D

(n′∈nodesOnRing[r])>0 (24)

4.3 SD: A Set Variable (Nodes) Model

Using rule (3), the rings-nodes relation is refined into a one-dimensional matrix
of set variables ringsWithNodesms, indexed by N such that ringsWithNodesms[n]
contains the set of rings on which n is installed. Since R is an unnamed set it
cannot provide the domain elements for the set variables. Once again, therefore,
it is refined to the set {1, .., nrings}.

Given ringsWithNodems, the objective is refined as follows:

Minimise(
∑

n∈N

|ringsWithNodems[n]|) (25)

10

The demand constraints are also easily stated:

∀{n, n′} ∈ D.|ringsWithNodems[n] ∩ ringsWithNodems[n′]| ≥ 1 (26)

However, since the ring capacity constraints involve all the node constraints we
again make use of reification:

∀r ∈ R.
∑

n∈N

r ∈ ringsWithNodems[n] > 0 (27)

The symmetry among the values of ringsWithNodems can be broken partially
by insisting that the first node, n, with a non-empty partner set is installed on
the first ring:

1 ∈ ringsWithNodems[n] (28)

Hence, the implied constraint on the minimum number of open rings (5) is refined
by ensuring that the first RingMinc rings appear in at least one of the sets in
ringsWithNodems:

∀1 ≤ r ≤ RingMinc.
∑

n∈N

r ∈ ringsWithNode[n] %= 0 (29)

The implied constraint on the minimum number of installations per node (4)
is easily stated on the node set variables:

∀n ∈ N.ADMMinc(n) ≤
∑

n∈N

|ringsWithNodems[n]| (30)

Again, the ADMMax constraint (6) is specified similarly.
The remaining constraints to exploit dominances, i.e. that a node should only

be installed on a ring that contains at least one element of its partner set (7)
and the content merging constraint (8), are refined as follows:

∀n ∈ N, r ∈ R.r ∈ ringsWithNode[n] →
∑

n′|{n,n′}∈D

(r∈ringsWithNode[n′])>0 (31)

∀{r, r′}⊆R.(
∑

n∈N

r∈ringsWithNode[n]>0)∧(
∑

n∈N

r′∈ringsWithNode[n]>0)

→
∑

n∈N

(r ∈ ringsWithNode[n] + r′ ∈ ringsWithNode[n]) > c (32)

4.4 SE: A Matrix and Set Variable (Rings) Model

To maintain consistency between rings-nodesm and nodesOnRingms, the follow-
ing channelling constraint is used:

∀r ∈ R. n ∈ nodesOnRingms[r] ↔ rings-nodesm[r, n] = 1 (33)

The objective can be stated on either rings-nodesm (10) or nodesOnRingms

(17). We will explore both alternatives. Symmetry breaking is performed on

11

rings-nodesm as in model SB (9), since this scheme breaks all symmetry whereas
the ordering on the cardinalities used in model SC (20) does not. Also from
model SB we take the demand constraint (12), the ADMMin (13) and ADMMax
constraints, and the constraint that specifies that a node should only be installed
on a ring with at least one of its partners (14). From model SC we take the ring
capacity constraints (18), the constraint on the minimum number of open rings
(21), and the content merging constraint (23).

4.5 SF : A Matrix and Set Variable (Nodes) Model

To maintain consistency between rings-nodesm and ringsWithNodems, the fol-
lowing channelling constraint is used:

∀n ∈ N. r ∈ ringsWithNodems[n] ↔ rings-nodesm[r, n] = 1 (34)

The objective can be stated on either rings-nodesm (10) or ringsWithNodems

(25). Again, we will explore both alternatives. As in models, SB and SE , we
perform complete symmetry breaking via rings-nodesm (9). From model SB we
take the ring capacity constraint (11), the constraint on the minimum number
of open rings (15), the constraint that a node should only be installed on a ring
containing at least one of its partners (14), and the content merging constraint
(16). From model SD we take the demand constraint (26), and the ADMMin
(30) and ADMMax constraints.

4.6 SG: A Dual Set Variable Model

To maintain consistency between nodesOnRingms and ringsWithNodems, the
following channelling constraint is used:

∀n ∈ N, r ∈ R.n ∈ nodesOnRingms[r] ↔ r ∈ ringsWithNodems[n] (35)

The objective can be stated on either nodesOnRingms (17) or ringsWithNodems

(25). Again, we will explore both alternatives. Symmetry breaking is performed
on nodesOnRingms, as in model SC (20). Also from model SC we take the ring
capacity constraint (18), the constraint on the minimum number of open rings
(21), the constraint that specifies that a node should only be installed on a ring
with at least one of its partners (24), and the content merging constraint (23).
From model SD we take the demand constraint (26), and the ADMMin (30) and
ADMMax constraints.

4.7 SH: A Matrix and Set Variable (both Rings and Nodes) Model

Although only two channelling constraints are sufficient to maintain consistency
among the 0/1 matrix and the two matrices of set variables, we use the three
channelling constraints from models SE (33), SF (34) and SG (35). The objective
can be stated easily on any of the three models. We will explore all three alter-
natives. Symmetry is broken completely on rings-nodesms as described in model

12

SB (9). Also from model SB we take the constraint that a node should only be
installed on a ring containing at least one of its partners (24). From model SC we
take the ring capacity constraint (18), the minimum number of open rings (21),
and the content merging constraint (23). From model SD we take the demand
constraint (26), and the ADMMin (30) and ADMMax constraints.

5 Model Selection

As we have shown in introducing each of the models SB to SH , constraints
may be more or less difficult to express, depending on the variables included in
the model. However, which model is best in solving time, given some standard
constraint solver, is hard to determine. In some cases, it is possible to show
that one model is stronger than another, irrespective of certain aspects of the
solution procedure. Recently, for example, alternative models of permutation
and injection problems have been studied in the context of a range of constraint
propagation algorithms [18]. In many cases, however, empirical tests are needed
to develop guidelines for making informed model choices. In this section, we
contribute to this goal of pattern elicitation by performing an empirical analysis
of our models of the Simplified SONET problem. Despite the small scale of this
study, the trends are strong and immediately apparent.

There are a number of issues to consider in designing our experiment. First,
introducing new variables can introduce a choice of search variables. For in-
stance, in model SE , we can search either on the matrix variables rings-nodesm

or on the ring set variables nodesOnRingms. Second, having chosen the search
variables, we need to decide the order in which to assign the variables (either
statically or dynamically). It is well known that the choice of variable ordering
can dramatically affect the search effort required to solve a CSP. However, we
can only compare the performance of the models presented to a limited extent.
For instance, we could compare models SB, SE and SF using the matrix vari-
ables as search variables and the same variable ordering in each case. This would
show whether being able to express some of the constraints more easily using
set variables has any effect on performance. The results would not, however,
necessarily reflect the best known performance for these models, still less what
the best performance for each model might be with the ideal ordering heuristic.

Each of our models is described by a triple 〈BasicModel, BranchingStrategy,
ObjectiveExpression〉. BasicModel ∈ {B, C, D, E, F, G, H} corresponds to the
models SB - SH . We considered BranchingStrategy ∈ {M, N, R} where M
stands for using the matrix variables as search variables, N for using the node
set variables, and R for the using the ring set variables. Finally, we considered
ObjectiveExpression ∈ {M, N, R}, where M stands for expressing the objec-
tive function using the matrix variables (10), N stands for using the node set
variables (17), and R for the ring set variables (25). We tested the 24 consistent
combinations of these three choices on 10 instances (from [23]) using a 750Mhz
128Mb Pentium III and Ilog Solver 5.3 (Windows version).

13

Model s2ring1 s2ring2 s2ring3 s2ring4 s2ring5 s2ring6 s2ring7 s2ring8 s2ring9 s2ring10
〈B, M, M〉 25411 27063 20032 7938 24097 9625 8460 10001 41849 9428
〈C, R, R〉 >514K >514K >468K >492K >518K >495K 441K >512K >506K >513K
〈D, N, N〉 12744 374983 63892 16771 48955 400641 25311 78181 239662 15680
〈E, M, R〉 7971 5421 4765 1583 8601 2491 1394 2597 15912 3761
〈E, R, R〉 68395 199656 87765 36343 134385 140771 15301 103778 225852 41991
〈F, M, N〉 112 165 73 21 356 193 39 188 1136 70
〈F, N, N〉 1407 17303 3804 2525 2758 27920 2702 6218 4329 1387
〈G, R, N〉 378K >675K >636K >634K >663K >614K 256K >688K >668K >461K
〈G, N, N〉 20629 >546K 67994 56995 98936 >642K 51673 78982 229565 41031
〈H, M, N〉 112 165 73 21 356 193 39 188 1136 70
〈H, R, N〉 12876 217440 23569 20472 84782 87275 10559 145915 52622 7572
〈H, N, N〉 1407 17303 3804 2525 2758 27920 2702 6218 4329 1387

Table 2. Experimental results on 10 instances of Simplified SONET (choices).

Model s2ring1 s2ring2 s2ring3 s2ring4 s2ring5 s2ring6 s2ring7 s2ring8 s2ring9 s2ring10
〈B, M, M〉 2.49 2.78 2.29 0.86 2.41 1.03 0.97 1.08 4.2 1.05
〈C, R, R〉 >160 >160 >160 >160 >160 >160 132.44 >160 >160 >160
〈D, N, N〉 6.7 158.37 32.44 7.64 24.32 160.02 13.5 33.26 115.96 8
〈E, M, R〉 1.22 0.88 0.79 0.26 1.44 0.42 0.25 0.47 2.7 0.65
〈E, R, R〉 14.76 39.43 18.74 7.47 27.05 29.11 3.22 18.95 44.76 9.47
〈F, M, N〉 0.03 0.04 0.03 0.02 0.08 0.04 0.02 0.04 0.19 0.03
〈F, N, N〉 0.25 2.29 0.6 0.39 0.43 3.45 0.44 0.82 0.71 0.24
〈G, R, N〉 92.13 >160 >160 >160 >160 >160 60.95 >160 >160 >160
〈G, N, N〉 6.47 >160 22.37 15.86 24.34 >160 15.3 18.03 79.66 11.75
〈H, M, N〉 0.05 0.07 0.05 0.03 0.13 0.07 0.03 0.07 0.38 0.04
〈H, R, N〉 3.06 46.86 5.81 4.29 16.43 18.6 2.33 27.54 11.87 1.94
〈H, N, N〉 0.47 4.32 1.23 0.75 0.73 6.2 0.87 1.45 1.37 0.41

Table 3. Experimental results on 10 instances of Simplified SONET (time).

Tables 2 and 3 present the number of choice points and time taken within a
160 seconds time limit. For brevity, given a subset of models that are identical
apart from the objective function, we only show the results for the model with
the most effective expression of the objective. For instance, we do not show the
results for model 〈E, M, M〉, since 〈E, M, R〉 is consistently more effective.

This filter immediately reveals a general observation: in these tests it was
always more effective to express the objective via the cardinality of the set vari-
ables. This is because of an interaction with the RingMin constraint (5) in the
case of the ring set variables, and with the ADMMin constraint (4) in the case
of the node set variables. Consider rings-nodesm for a small instance:

ring1 ring2 ring3

node1 0/1 0/1 0/1
node2 0/1 0/1 0/1
node3 0/1 0/1 0/1

Assume that all nodes need to be installed at least once, and that all three
rings must be open. These constraints can be imposed as sums on the rows and
columns of rings-nodesm. Propagating these constraints results in no domain
pruning initially. Consider the search for a solution with less than 3 installations.

14

Since all elements of rings-nodesm can still be set to 0, search is necessary to
determine that this is not possible.

Consider now expressing the RingMin constraint and the objective on the
nodesOnRingms matrix. The lower bound on the cardinality of each ring is one.
Hence, the sum of the cardinalities is at least 3 and the search fails immediately.
Expressing the ADMMin constraint and the objective on ringsWithNodems gives
a similar result. The key observation is that the bounds directly tighten the
domain of a variable (the hidden cardinality variable associated with each set
variable). Since these same variables are used to express the objective, any tight-
ening of the bounds has a direct effect on the bound on the objective. This is
not the case for the sum constraints on rings-nodesm. Since the ADMMin con-
straint gives a tighter bound on the cardinality variables than RingMin, this also
explains why expressing the objective on ringsWithNodems is the most effective
choice in these experiments.

A second observation is that it is most effective to branch on rings-nodesm.
This is probably due to the fact that assigning a single 0/1 variable is less
of a commitment than assigning a whole set at once. Hence, the culprit at a
dead end is more readily apparent. These two observations together explain the
performance of 〈F, M, N〉 as the best model. Model 〈H, M, N〉 explores the same
search tree, but incurs an overhead for maintaining nodesOnRingms.

6 Related Work in Modelling and Transformation

Several recent efforts focus on automating refinement. Hnich [17] shows how to
automatically refine specifications in F and Frisch et. al. [12] show how to refine
specifications in Essence. Both of these refinement systems generate a set of
alternative models, including models with multiple, channelled representations,
but neither provides a mechanism for choosing among the alternatives. The
initial implementation of Relational ESRA, which is under development, will
refine specifications to a single constraint model in which relation variables are
always refined to 0/1 matrices (as in SB) [10].

Our work is also motivated by experience with the CGrass (Constraint
Generation And Symmetry-breaking [14]) system. CGrass automatically trans-
forms constraint models of problem instances in order to make them easier to
solve. However, since CGrass transforms individual instances, much effort is
repeated if one wants to solve multiple instances of a problem. Furthermore,
the instance specifications that CGrass transforms are non-schematic; instead
of using universal quantifiers to implicitly state a set of constraints, the set is
explicitly stated. For some problem instances this results in very large specifica-
tions, which, in turn, require many applications of the transforation rules. This
is why we focus on schematic problem specifications in this paper.

There are several other methods to aid in constraint modelling, which we
briefly survey. Laurière [19] introduced a modelling language called ALICE to
formally state a problem. The language is characterised by the use of sets, set op-
erators, Cartesian product of sets, vectors, matrices, graphs and paths, constants,

15

and functions. The language NP-SPEC is a logic-based executable specification
language [7, 6], which allows the user to specify problems by using metapredicates
(subset, partition, permutation, and intfunc). REFINE is a functional language
for specifying global search problems for a program synthesizer [24]. The RE-
FINE language augments a functional programming language with three type
constructors, namely set, sequence, and map, as well as their operations.

Tsang et al. had two projects related to ours. The adaptive constraint sat-
isfaction project [1–3] aimed at systematically mapping problems, in a dynamic
manner, to algorithms and heuristics. The computer-aided constraint program-
ming project [4, 21] aimed at building a system that encapsulates the entire
process of applying CP technology to problems.

7 Conclusions

We have considered the transformation of constraint satisfaction problems and
shown that we can and should transform problems at various levels of abstrac-
tion. Refinement is a process of progressively moving to more concrete models;
mechanisms for dealing with some common modelling problems, such as sym-
metry, can be embedded into refinement rules.

The Simplified SONET problem illustrates how integrating transformation
and refinement could work in general: an abstract problem specification in the
Essence language was transformed by adding implied and other constraints.
The result was refined into seven alternative models. In addition, we showed
how the refinement process could trigger further useful transformations: in this
case, breaking the symmetries that it introduces into the model.

Our immediate goal is to formalise fully the transformations we use. Fur-
thermore, we wish to combine theoretical analysis with the lessons learnt from
empirical analyses, like the one performed on the Simplified SONET problem
herein, to evaluate models statically, and therefore be more selective about the
models produced during refinement.

Acknowledgements We thank Sherali and Smith for providing sample instances. Brahim Hnich
is supported by Science Foundation Ireland. Ian Miguel is supported by a UK-Royal Academy of
Engineering/EPSRC Research Fellowship. This work was done while the fourth author was employed
at the University of Huddersfield.

References

1. A. Abbas and E.P.K. Tsang. Toward a general language for the specification of con-
straint satisfaction problems. Proc. Constraint Programming, Artificial Intelligence
and Operations Research (CP-AI-OR) Wshop, 2001.

2. J.E. Borrett. Formulation selection for constraint satisfaction problem: a heuristic
approach. PhD Thesis, Dept. of Computer Science, University of Essex, UK, 1998.

3. J.E. Borrett and E.P.K. Tsang. A context for constraint satisfaction problem for-
mulation selection. Constraints, 6(4):299-327, 2001.

4. R. Bradwell, J. Ford, P. Mills, E.P.K. Tsang, and R. Williams. An overview of the
CACP project: modelling and solving constraint satisfaction/optimisation problems
with minimal expert intervention. Proc. Wshop on Analysis and Visualization of
Constraint Programs & Solvers, 2000.

16

5. A. Bundy. A Science of Reasoning. J-L. Lassez and G, Plotkin, editors, Computa-
tional Logic: Essays in Honor of Alan Robinson, 178–198, 1991.

6. M. Cadoli and A. Schaerf. Compiling program specifications into SAT. Proc.
ESOP’01. LNCS 2028. Springer-Verlag, 2001.

7. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An executable speci-
fication language for solving all problems in NP. Proc. PADL’99, pp. 16–30. LNCS
1551. Springer-Verlag, 1999.

8. P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Matrix Modelling:
Exploiting Common Patterns in Constraint Programming Proc. Int. Wshop on
Reformulating CSPs, 2002.

9. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking Row and Column Symmetries in Matrix Models. Proc. 8th Int. Conf. on
Principles & Practice of CP LNCS 2470, 2002.

10. P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational language for
modelling combinatorial problems. LOPSTR’03: Revised Selected Papers, LNCS
3018, 2004.

11. A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Global Constraints for
Lexicographic Orderings. Proc. 8th Int. Conf. on Principles & Practice of CP LNCS
2470, 2002.

12. A.M. Frisch, C. Jefferson, B. Mart́ınez-Hernández, I. Miguel. The Rules of Con-
straint Modelling. Proc. 19th Int. Joint Conf. on AI, 2005.

13. A.M. Frisch, C. Jefferson, I. Miguel. Symmetry Breaking as a Prelude to Implied
Constraints: A Constraint Modelling Pattern. Proc. 16th Euro. Conf. on AI, 171-
175, 2004.

14. A.M. Frisch, I. Miguel, and T. Walsh. Cgrass: A System for Transforming Con-
straint Satisfaction Problems. Proc. Joint Wshop of the ERCIM/CologNet Area on
CP & CLP, LNCS 2627, 23–26, 2002.

15. I. P. Gent and B. M. Smith. Symmetry Breaking During Search in Constraint
Programming. Proc. European Conf. on AI, 599–603, 2000.

16. F. Giunchiglia, T. Walsh. A Theory of Abstraction. Artificial Intelligence 56(2–3),
323-390, 1992

17. B. Hnich. Function Variables for Constraint Programming. PhD Thesis, University
of Uppsala, 2003.

18. B. Hnich, B.M. Smith and T. Walsh. Models of Permutation and Injection Prob-
lems. Journal of Artificial Intelligence Research, 21, 2004.

19. J-L. Lauriere. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10(1):29-127, 1978.

20. A.K. Mackworth. Constraint Satisfaction Problems. Encyclopedia of AI, 285–293,
1992.

21. P. Mills, E.P.K. Tsang, R. Williams, J. Ford, and J. Borrett. EaCL 1.5: An Easy
abstract Constraint optimisation Programming Language, TR CSM-324, University
of Essex, 1999.

22. H.D. Sherali and J.C. Smith. Improving Discrete Model Representations via Sym-
metry Considerations. Management Science 47, 1396–1407, 2001.

23. B. M. Smith Symmetry and Search in a Network Design Problem. Proc. 2nd
Int. Conf. on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR), LNCS 3524, 336-350, 2005.

24. D.R. Smith. The structure and design of global search algorithms. TR
KES.U.87.12, Kestrel Institute, 1988.

25. B. M. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb Ruler Problem.
Proc. IJCAI-99 Wshop on Non-Binary Constraints. Int. Joint Conf. on AI, 1999.

