
Finding Diverse and Similar Solutions in Constraint Programming

Emmanuel Hebrard
NICTA and UNSW
Sydney, Australia

e.hebrard@nicta.com.au

Brahim Hnich
University College Cork

Ireland
brahim@4c.ucc.ie

Barry O’Sullivan
University College Cork

Ireland
b.osullivan@4c.ucc.ie

Toby Walsh
NICTA and UNSW
Sydney, Australia

tw@cse.unsw.edu.au

Abstract

It is useful in a wide range of situations to find solutions
which are diverse (or similar) to each other. We therefore
define a number of different classes of diversity and simi-
larity problems. For example, what is the most diverse set
of solutions of a constraint satisfaction problem with a given
cardinality? We first determine the computational complexity
of these problems. We then propose a number of practical so-
lution methods, some of which use global constraints for en-
forcing diversity (or similarity) between solutions. Empirical
evaluation on a number of problems show promising results.

Introduction
Computational complexity deals with a variety of differ-
ent problems including decision problems (e.g. “Is there a
solution?”), function problems (e.g. “Return a solution”),
and counting problems (e.g. “How many solutions exist?”).
However, much less has been said about problems where we
wish to find asetof solutions that arediverseor similar to
each other. For brevity, we shall call thesediversityandsim-
ilarity problems. Existing work in this area mostly focuses
on finding pairs of solutions that satisfy some distance con-
straint (Bailleux & Marquis 1999; Crescenzi & Rossi 2002;
Angelsmark & Thapper 2004). However, there is a wider
variety of problems that one may wish to consider.

In product configuration, similarity and diversity prob-
lems arise as preferences are elicited and suggestions are
presented to the user. Suppose you want to buy a car. There
are various constraints on what you want and what is avail-
able for sale. For example, you cannot buy a cheap Ferrari
nor a convertible with a sunroof. You begin by asking for
a set of solutions as diverse as possible. You then pick the
most preferred car from this set. However, as not all the
details are quite right, you ask to see a set of solutions as
similar as possible to this car.

As a second example, suppose you are scheduling staff in
a hospital. Unfortunately, the problem is very dynamic and
uncertain. People are sure to phone in ill, and unforseen op-
erations to be required. To ensure that the schedule is robust
to such changes and can be repaired with minor disruption,
you might look for a schedule which has many similar solu-
tions nearby. Supermodels are based on this idea (Ginsberg,

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Parkes, & Roy 1998). Finally, suppose you are trying to ac-
quire constraints interactively. You ask the user to look at
solutions and propose additional constraints to rule out in-
feasible or undesirable solutions. To speed up this process,
it may help if each solution is as different as possible from
previously seen solutions.

In this paper, we introduce several new problems classes,
each focused on a similarity or diversity problem associated
with a NP-hard problems like constraint satisfaction. We
distinguish betweenofflinediversity and similarity problems
(where we compute the whole set of solutions at once) and
their online counter-part (where we compute solutions in-
crementally). We determine the computational complexity
of these problems, and propose practical solution methods.
Finally, we present some promising experimental results.

Formal background
A binary relationR over strings is polynomial-time decid-
able iff there is a deterministic Turing machine deciding
the language{x; y | (x, y) ∈ R} in polynomial time (Pa-
padimitriou 1994). A binary relationR is polynomially bal-
anced iff (x, y) ∈ R implies |y| < |x|k for somek. A
languageL belongs to NP iff there is a polynomial-time
decidable and polynomially balanced relationR such that
L = {x | (x, y) ∈ R}. We letSol(x) = {y | (x, y) ∈ R}.
We assume that we have some symmetric, reflexive, total
and polynomially bounded distance function,δ, between
strings. For example, ifL is SAT, this might be the Ham-
ming distance between truth assignments. Note, however,
that most of our complexity results will hold for any func-
tion that is polynomially bounded. Finally, we use 0 to de-
noteFALSE and 1 to denoteTRUE.

Offline diversity and similarity
We define two decision problems at the core of diver-
sity and similarity problems. These ask if there is a sub-
set of solutions of sizek at least (or at most)d distance
apart. For brevity, we definemax(δ, S) = max

y,z∈S
δ(y, z) and

min(δ, S) = min
y,z∈S

δ(y, z).

dDISTANTkSET (resp.dCLOSEkSET)
Instance. Given a polynomial-time decidable and
polynomially balanced relationR, a distance function

δ and some stringx.
Question. Does there existS with S ⊆ Sol(x),
|S| = k andmin(δ, S) ≥ d (resp.max(δ, S) ≤ d).

We might also consider the average distance between so-
lutions instead of the minimum or maximum. As we have
two parameters,d andk, we can choose to fix one and op-
timize the other. That is, we can fix the size of the set of
solutions and maximize their diversity (similarity). Alterna-
tively, we can fix the diversity (similarity) and maximize the
size of the set of solutions returned. Alternatively, we could
look for a Pareto optimal set or combined andk into a single
metric.

MAX DIVERSEkSET (resp.MAX SIMILAR kSET)
Instance. Given a polynomial-time decidable and
polynomially balanced relationR, a distance function
δ and some stringx.
Question. Find S with S ⊆ Sol(x), |S| = k, and
for all S′ with S′ ⊆ Sol(x), |S′| = k, min(δ, S) ≥
min(δ, S′) (resp.max(δ, S) ≤ max(δ, S′)).

MAXdDISTANTSET (resp.MAXdCLOSESET)
Instance. Given a polynomial-time decidable and
polynomially balanced relationR, a distance function
δ and some stringx.
Question. Find S with S ⊆ Sol(x), min(δ, S) ≥
d (resp. max(δ, S) ≤ d), and for all S′ with
min(δ, S′) ≥ d (resp.max(δ, S′) ≤ d), |S| ≥ |S′|.
For example, in the product configuration problem, we

might want to see the 10 most diverse solutions. This is an
instance of theMAX DIVERSEkSET problem. On the other
hand, we might want to see all solutions at most 2 features
different to our current best solution. This is an instance of
theMAXdCLOSESET problem.

Online diversity and similarity
In some situations, we may be computing solutions one by
one. For example, suppose we show the user several possi-
ble cars to buy but none of them are appealing. We would
now like to find a car for sale which is as diverse from these
as possible. This suggests the following two online prob-
lems in which we find a solution most distant (close) to
a set of solutions. For brevity, we definemax(δ, S, y) =
max
z∈S

δ(y, z) andmin(δ, S, y) = min
z∈S

δ(y, z).

MOSTDISTANT (resp.MOSTCLOSE)
Instance. Given a polynomial-time decidable and
polynomially balanced relationR, a distance function
δ, some stringx and a subsetS of strings.
Question.Findy with y ∈ Sol(x)−S, such that for all
y′ with y′ ∈ Sol(x)−S, max(δ, S, y) ≥ max(δ, S, y′)
(resp.min(δ, S, y) ≤ min(δ, S, y′)).

We might also be interested in finding not one but a set
of solutions distant from each other and from a given set.
Alternatively, we might be interested in finding a larger set
of solutions than the ones we currently have with a given
diversity or similarity.

Computational complexity
For some of these problem classes, specifically those for
which the CSP is an input (e.g.dDISTANT/CLOSEkSET),
the size of the output (a set of solutions) may not be poly-
nomially bounded by the size of the input. Therefore we
will always make the assumption thatk is polynomial in the
size of the input. With such an assumption,dDISTANTkSET
and dCLOSEkSET are in NP. SincedDISTANTkSET and
dCLOSEkSET decide membership inR whenk = 1, both
problems are trivially NP-complete.

We now show that bothMAX DIVERSEkSET and
MAX SIMILAR kSET are FPNP [log n]-complete. This is the
class of all languages decided by a polynomial-time oracle
which on input of sizen asks a total number ofO(log n) NP
queries (Papadimitriou 1994).

Theorem 1 MAX DIVERSEkSET and MAX SIMILAR kSET
are FPNP [log n]-complete.

Proof. MAX DIVERSEkSET (resp. MAX SIMILAR kSET)
∈ FPNP [log n]: The distance function is polynomial in
the size of the input,n. Using binary search, we call
dDISTANTkSET (resp.dCLOSEkSET) to determine the ex-
act value ofd. This requires only logarithmically many
adaptive NP queries.
Completeness: We sketch a reduction fromMAX CLIQUE

SIZE which is FPNP [log n]-complete (Papadimitriou 1994).
Given a graphG = 〈V,E〉, with set of nodesV and set of
edgesE, MAX CLIQUE SIZE determines the size of the the
largest clique inG. We define a CSP as follows. We intro-
duce a Boolean variableBi, called agraph-node variable
for each nodei in V . For eacha, b ∈ V , if 〈a, b〉 /∈ E, we
enforce thatBa andBb cannot both be1. We add an addi-
tional dn

2 e+ 1 Boolean variables, calleddistance variables,
and enforce that they are0 iff every graph-node variable is
0. This CSP always admits the solution with0 assigned to
all Boolean variables. So thatMAX DIVERSEkSET finds the
clique of maximum size, we define the distance between two
solutions,δ(sa, sb), as the Hamming distance defined over
all Boolean variables. Thus,MAX DIVERSEkSET(P) with
k = 2 will always have one of the solutions assigning0
to each Boolean variable and the other solution assigning
1 to those graph-node variables representing nodes in the
largest clique possible, and0 to all the additional distance
variables, since these two solutions are maximally diverse
wrt Hamming Distance. Suppose this is not the case, i.e.,
both solutions assign some node variables to0 and some
others to1. Since all extra variables are set to1, the maxi-
mum achievable distance isn. Moreover, if the clique with
largest cardinality hasm nodes, two such solutions cannot
be more than2m assignments apart. However, the solution
with maximum clique and the solution with all variables as-
signed to0 aredn

2 e + 1 + m assignments apart, which is
strictly greater thanmin(n, 2m). Hence, we have an answer
to MAX CLIQUE SIZE(G).

The reduction for MAX SIMILAR kSET is analogous.
However, we need to define the distance between a pair of
solutions,sa andsb asn + dn

2 + 1e − δ(sa, sb) if sa 6= sb,
and 0 otherwise, whereδ is the Hamming distance. 2

MAXdDISTANTSET and MAXdCLOSESET may require
exponential time just to write out their answers (since the
answer set may itself be exponentially large for certain
queries). We therefore assumed (resp.n− d) to be at most
O(log n). Furthermore, we assumeδ to be the Hamming
distance. These assumptions are sufficient to ensure that the
answer set is polynomially bounded andMAXdCLOSESET

(resp.MAXdDISTANTSET) is FPNP [log n]-complete.

Theorem 2 MAXdCLOSESET and MAXdDISTANTSET
are FPNP [log n]-complete.

Proof. MAXdCLOSESET (resp.MAXdDISTANTSET) is in
FPNP [log n]: With the assumptions ond andδ, the cardinal-
ity of the set of solutions returned is polynomially bounded.
By binary search onk, using adCLOSEkSET oracle, we
can find the largest possibled-close set. Thus, we only
need a logarithmic number of calls to an NP oracle to an-
swer both questions. We omit the details of the proof for
MAXdDISTANTSET since it is similar (n − d is bounded
instead ofd).
Completeness: We sketch a reduction fromMAX CLIQUE
SIZE whereG = 〈V, E〉 denotes a graph with a set ofn
nodesV and set of edgesE. We now define a CSP as
follows. We introducen2 + 1 variables. The first vari-
able X0 takes its value in the set{1, 2, . . . , n}, and the
other variables are partitioned inn groups ofn variables,
Xi ∈ {0, 1, . . . , n}. We introduce the following constraints:

∀j, X(j−1).n+X0 = 0 & 〈X0, j〉 ∈ E ⇒ X(X0−1).n+j = 0,

∀j 6= X0, k, (k 6= X0 ∨ 6 ∃〈k, j〉 ∈ E) ⇒ X(k−1).n+j = X0.

The entire solution is entailed by the valuei assigned toX0,
i.e. theith variable of every group must be assigned to0, the
jth variable of theith group is assigned to0 iff 〈i, j〉 ∈ E
and toi otherwise. Finally, all other variables are set toi.
It is therefore easy to see that we have exactly one solu-
tion per node in the graph. Letδ(sa, sb) be the Hamming
distance between the solutionssa andsb. Let i (resp. j),
be the value assigned toX0 in sa (resp. sb), we show that
δ(sa, sb) = 2 iff 〈i, j〉 ∈ E. Suppose first that〈i, j〉 ∈ E
and consider the variableX(i−1).n+j . In sa this variable
is set to0 as 〈i, j〉 ∈ E, moreover, it is assigned to0 in
sb, as are alljth variables of each group. We can repeat
this reasoning forX(j−1).n+i, henceδ(sa, sb) ≥ 2. Now
consider any other variableXk. Either Xk = i in sa, or
Xk = j in sb, however, no variable is set toj in sa nor
is assigned toi in sb. We thus haveδ(sa, sb) = 2. Sup-
pose now that〈i, j〉 6∈ E. The last step in our reasoning is
still valid, whilst now we haveX(i−1).n+j = i in sa and
X(j−1).n+i = j in sb. Therefore,δ(sa, sb) = 0. We first
showed that a set of solutions of the CSP map to a set of
nodes ofG, then we showed that if the distance thresholdd
is set to2, then this set of nodes is a clique. Since the set
with maximum cardinality will be returned, we obtain the
solution toMAX CLIQUE SIZE(G) from MAXdCLOSESET.
The reduction forMAXdDISTANTSET is analogous. How-
ever, here we define the distance between a pair of solutions,
sa andsb asn2 + 1− δ(sa, sb), if sa 6= sb, and 0 otherwise
to give a reflexive distance measure. 2

Finally, we show that the online diversity problemMOST-
DISTANT and similarity problemMOSTCLOSE are both
FPNP [log n]-complete.

Theorem 3 MOSTDISTANT and MOSTCLOSE are
FPNP [log n]-complete.

Proof. MOSTDISTANT (resp. MOSTCLOSE) ∈
FPNP [log n]: We need to have an algorithm that calls at most
a logarithmic number of NP queries. Consider the deci-
sion version ofMOSTDISTANT, where the solution has to
have at leastk discrepancies with a given set of vectors,V.
This problem is in NP, the witness being the solution, since
checking the number of discrepancies is polynomial. By bi-
nary search, we need at mostO(log n) calls to this oracle to
determine the most distant solution.
Completeness: We sketch a reduction fromMAX CLIQUE
SIZE.We define a CSP in the same way as in the complete-
ness proof of Theorem 1 but only use the graph node vari-
ables. We let vectorv ∈ V be a string of 0s of lengthn =
|V |. In order thatMOSTDISTANT finds the clique of max-
imum size, we define the distance between two solutions,
δ(sa, sb) as the Hamming distance. We have an answer to
MAX CLIQUE SIZE(G) iff MOSTDISTANT(P, {v}). The
reduction forMOSTCLOSE is analogous, except we define
the distance between solutionssa andsb asn − δ(Sa, Sb),
if sa 6= sb, and 0 otherwise to give a reflexive distance
measure. We have an answer toMAX CLIQUE SIZE(G) iff
MOSTCLOSE(P, {v}). 2

Solution Methods
We have developed a number of complete and heuristic al-
gorithms for solving similarity and diversity problems.

Complete Methods based on Reformulation
Given a CSP, we can solve similarity and diversity problems
using a reformulation approach. Specifically, we build a new
CSP as follows. We createk copies of the CSP, each copy
with a different set of variable names. We addk(k−1)/2 ex-
tra variables to represent the Hamming distancedj

i between
each pair of vectors of variables. We letmin be the min-
imum of thedj

i ’s and max be the maximum of thedj
i ’s.

Starting with this basic model, we now describe how to ex-
tend it for each of the following problems:

dDISTANTkSET/dCLOSEkSET: We also enforce thatmin
(resp.max) is at least (resp. at most)d.

MAX DIVERSEkSET/MAX SIMILAR kSET: We introduce
an objective function that maximizes (resp. minimizes)
min (resp.max).

MOSTDISTANT/MOSTCLOSE: We setk to |V | + 1 where
V is the input set of solutions and assign|V | sets of vari-
ables to the given solutions inV . We also introduce an
objective function that maximizes (resp. minimizes)min
(resp.max).

We then solve the reformulated problem using
off-the-shelf constraint programming solvers. For
MAXdDISTANTSET (resp. MAXdCLOSESET, we find

all solutions and construct a graph whose nodes are the
solutions. There is an edge between two nodes iff the
pairwise Hamming distance is at leastd (resp. at mostd).
We then find a maximum clique in the resulting graph. For
problems with many solutions, the constructed graph may
be prohibitively large.

Complete Method for MOSTDISTANT/MOSTCLOSE

We will show in the next section that the problemsMOST-
DISTANT/MOSTCLOSE can be used to approximate all the
others. Therefore, we introduce here an efficient com-
plete algorithm forMOSTDISTANT/MOSTCLOSE based on
global diversity/similarity constraints. We define and study
four such global constraints that use Hamming distance. Let
d be an integer,V = {v1, . . . , vk} be a set of vectors of size
n, andvj [i] be theith element ofvj . We define the following
global constraints.

SimilarΣ(X1, . . . , Xn, V, d) ⇔
i=n,j=kX
i=1,j=1

(Xi 6= vj [i]) ≤ d

DiverseΣ(X1, . . . , Xn, V, d) ⇔
i=n,j=kX
i=1,j=1

(Xi 6= vj [i]) ≥ d

Similarmax(X1, . . . , Xn, V, d) ⇔ maxj=k
j=1

i=nX
i=1

(Xi 6= vj [i]) ≤ d

Diversemin(X1, . . . , Xn, V, d) ⇔ minj=k
j=1

i=nX
i=1

(Xi 6= vj [i]) ≥ d

For reasons of space, we only consider here the diver-
sity constraints. The results are analogous for the similarity
ones. We propose a Branch & Bound algorithm forMOST-
DISTANT that uses these global constraints as follows. We
first post a globalDiverse constraint withd = 1. For ev-
ery solutions that is found during search, we setd to the
Hamming distance betweenV ands plus one, and continue
searching. When the algorithm eventually proves unsatisfia-
bility, the last solution found is optimal. We expect propaga-
tion on theDiverse constraint to prune parts of the search
space.

DiverseΣ: A constraint like the globalDiverseΣ con-
straint isgeneralized arc consistent(GAC), if every value
for every variable can be extended to a tuple satisfying the
constraint. Consider first the case where there is only one
vectorV as argument ofDiverseΣ. As long as the num-
ber of variablesXi still containingV [i] in their domain is
greater thand, the constraint is GAC. If this number is less
thand, then we fail. Finally, when there are exactlyd such
variables, we can removeV [i] from D(Xi) for all i.

The situation is more subtle when we look for assign-
ments close to several vectors at once. For instance, consider
the following two vectors:

V1 = 〈0, 0, . . . , 0〉, V2 = 〈1, 1, . . . , 1〉
Even if all the domains contain the values0 and1, the max-
imum distance toV1 andV2 is n, as any solution has to dis-
agree with eitherV1 or V2 on every variable. Moreover, if

we addV3 = 〈0, 1, 0, 1 . . . , 0, 1〉 to this example, then set-
ting a variable with even index to1 implies that the distance
grows by1, whereas it grows by2 if we set it to0, and by3
if we use any other value. Suppose that all variables take
their values in{0, 1, 2}. The assignment with maximum
Hamming distance sets to2 every variable. The distance
between this assignment andV1, V2, V3 is 3n. Now suppose
thatd = 3n− 1, then for anyi, Xi = 0 andXi = 1 are arc
inconsistent, whilstXi = 2 is GAC.

We now give an algorithm for enforcing GAC on
DiverseΣ(X1, . . . , Xn, V1, . . . , Vk, d):

Algorithm 1 DiverseΣ(X1, . . . , Xn, V1, . . . , Vk, d)
Dist← 0;

1 foreachXi do
foreachvj ∈ D(Xi) do

Occ[i][j] ← |{l | Vl[i] = vj}|;
Dist← Dist +k −min(Occ[i]);

if Dist < d then Fail;

Best[i] ← min(Occ[i]);

2 foreachXi do
3 D(Xi) ← {vj |vj ∈ D(Xi) ∧ d ≤ (Dist+Best[i]−Occ[i][j])};

Theorem 4 Algorithm 1 maintains GAC on
DiverseΣ(X1, . . . , Xn, V1, . . . , Vk, d) and runs in
O(n(d + k)) whered is the maximum domain size.

Proof. Soundness:suppose thatvj ∈ D(Xi) after propaga-
tion. We construct an assignment satisfying the constraint,
and involvingXi = vj as follows: For each variableXl

other thanXi we assign this variable to the valuevm such
that Occ[l][m] is minimum, that is, equal toBest[l]. We
therefore have

∑x=n,y=k
x=1,y=1 (Xx 6= vy[x]) = Dist−Best[i]+

k−Occ[i][j] for this assignment, however, line 3 ensures that
this value is greater thand. HenceXi = j is GAC.

Completeness:Suppose thatvj 6∈ D(Xi) after propaga-
tion. Then we haveDist − Best[i] + k − Occ[i][j] < d,
whereDist is the sum ofBest[l] for all l ∈ [1..n]. It there-
fore means that the assignment where every variable butXi

takes the value occurring the least inV1, . . . , Vk, is not a
support (a valid extension) forXi = j. Moreover any other
assignment would have a greater distance toV1, . . . , Vk, and
would therefore not be a support. HenceXi = j is not GAC.

Worst case time complexity:The loop 1 has complex-
ity O(nd + kd). The values inOcc[i][j] can be computed
in two passes. The first pass setOcc[i][j] to 0 for every
valuej of every variablej (O(nd)). The second pass incre-
mentsOcc[i][j] by one for each vectorVl such thatVl[i] = j
(O(nk)). The second loop (2) is inO(nd). 2

Diversemin: Unfortunately, when we use the minimum
(resp. maximum) distance, maintaining GAC on a global
Diverse (Similar) constraint becomes intractable. We
therefore should look to enforce a lesser level of consistency.

Theorem 5 GAC is NP-hard to propagate onDiversemin.

Proof. We reduce 3SAT to the problem of find-
ing a consistent assignment forDiversemin. Given a

Boolean formula inn variables (xi, for all i ∈ [1..n])
and m clauses (ci, for all i ∈ [1..m]), we construct
the Diversemin(X1, . . . , Xn, V1, . . . , Vm, d) constraint in
which Xi = {i,¬i} for all i ∈ [1..n] and eachVj for all
j ∈ [1..m] represents one of them clauses. If the clausecl

is {xi,¬xj , xk} thenVl[i] = i, Vl[j] = ¬j andVl[k] = k.
All other values are set ton + 1. If d = n− 2, then the con-
structedDiversemin constraint has a satisfying assignment
iff the 3SAT formula has a model. The solution we find cor-
responds to an assignment of the variables. Moreover, the
dummy values “consume” exactlyn− 3 differences. There-
fore the solution has to share at least one element with each
clause, and thus satisfies it. Notice that in this case the so-
lution we find corresponds to a model where all literal are
negated. 2

Heuristic Approaches
Methods based on reformulation may give prohibitively
large CSPs. We therefore propose an approximation scheme
that is based on the Branch & Bound algorithm forMOST-
DISTANT/MOSTCLOSE, that approximates the others. Vari-
ants of the following greedy heuristic can approximate
dCLOSEkSET and MAXdCloseSet problem by using the
Branch & Bound algorithm forMOSTCLOSE.

Algorithm 2 greedy
Data : P = (X, D, C), K, d

Result : V
find a solutionv;

V ← {v};

while |V | < K & minx,y∈V δ(x, y) > d do
1 find most diverse solutionu to previous solutionsV ′;

V ← V ∪ {u};

Finding a solution that maximizes similarity to previ-
ous solutions (Line 1) corresponds to solvingMOSTDIS-
TANT. Observe that if we keep only the first test for the
“while” loop, then we approximateMAX DIVERSEkSET.
Similarly, if we keep only the second test, we approximate
MAXdDistantSet. This method easily applies to diversity.

Experiments
We ran experiments using the Renault Megane Configura-
tion benchmark (Amilhastre, Fargier, & Marguis 2002), a
large real-world configuration problem. The variables rep-
resent various options such as engine type, interior options,
etc. The problem consists of 101 variables, domain size
varies from 1 to 43, and there are 113 table constraints, many
of them non-binary. The number of solutions to the prob-
lem is over1.4 × 1012. We report the results obtained us-
ing the greedy algorithm and a Branch & Bound procedure
taking advantage of theDiverseΣ constraint. We solved
MAX DIVERSEkSet fork set to 3, motivated by work in rec-
ommender systems that argues that the optimal sized set
to present to a user contains 3 elements (Shimazu 2001).
The same variable ordering heuristic (H 1 dom/deg x in
(Bessìere, Chmeiss, & Saı̈s 2001)) was used for all in-
stances. The values that were used the least in the previous

solutions are chosen first. We also ran the same experiment
without a specific value ordering. We also report results by
simply shuffling the values in the domains and starting a new
search without using a value ordering.

 0

 10

 20

 30

 40

 50

 60

 0.001 0.01 0.1 1 10 100

dis
ta

nc
e

cputime

greedy (1th sol)
greedy (2nd sol)
greedy+vo (1th sol)
greedy+vo (2nd sol)
shuffle (1th sol)
shuffle (2nd sol)

Figure 1: SolvingMAX DIVERSE3SET for the Renault Megane
configuration benchmark.

The results for the Renault benchmark are given in Fig-
ure 1. The distance between solutions, averaged over all
instances, is plotted on the y-axis, against the cpu-time re-
quired to obtain it. To obtain different instances, upon which
to base an average, we simply shuffled the values. For each
method (i.e., greedy with value ordering, greedy without
value ordering, and shuffling), the same initial solution is
found, then the first curve corresponds to the first diverse
solution from it, and the second curve to the next diverse
solution (from both previous solutions).

We also ran some experiments on random binary CSPs, to
observe how performance changes with the constrainedness
of the problem. Results are given in Figure 2. All instances
have 100 variables, domain size is 10, and 275 binary con-
straints. We generated 500 instances with tightness equal
to 0.5 and 0.52 (0.52 is the phase transition), and 1500 in-
stances with tightness equal to 0.53, as few of them were
satisfiable.

The results on random CSPs show that our approximation
method is more efficient as the constrainedness of the prob-
lem increases. For loosely constrained problems the sim-
ply shuffling method can be competitive since many possi-
ble diverse solutions exist. We also observe that choosing
the value that is used the least in previous solutions tends to
improve greatly performance on loosely constrained prob-
lems, but when the tightness of the constraints increases this
value heuristic can slow the algorithm down as it chooses
“successful” values last.

Overall, the optimization method without value order-
ing is more efficient on more tightly constrained problems.
However, the same method with value ordering is consis-
tently the best choice. Indeed, on easier problems the heuris-
tic finds a distant solution quickly, whilst on harder prob-
lems the the Branch & Bound procedure combined with the
DiverseΣ constraint can find far more distant solutions than
the shuffling approach.

The Renault Megane configuration problem is loosely
constrained and thus admits a large number of solutions. It is
not surprising therefore that the best method uses the value
ordering heuristic. We are able to find 2 diverse solutions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001 0.01 0.1 1 10 100

di
st

an
ce

cputime

greedy (1th sol)
greedy (2nd sol)
greedy+vo (1th sol)
greedy+vo (2nd sol)
shuffle (1th sol)
shuffle (2nd sol)

 0

 10

 20

 30

 40

 50

 60

 70

 0.001 0.01 0.1 1 10 100

di
st

an
ce

cputime

greedy (1th sol)
greedy (2nd sol)
greedy+vo (1th sol)
greedy+vo (2nd sol)
shuffle (1th sol)
shuffle (2nd sol)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.001 0.01 0.1 1 10 100

di
st

an
ce

cputime

greedy (1th sol)
greedy (2nd sol)
greedy+vo (1th sol)
greedy+vo (2nd sol)
shuffle (1th sol)
shuffle (2nd sol)

Figure 2: SolvingMAX DIVERSE3SET for random CSPs (100 variables, 10 values, 275 constraints). Tightness is 0.5/0.52/0.53,respectively.

such that half of the variables are assigned differently within
3 seconds, or 3 such solutions within 15 seconds.

Related work
A number of researchers have studied the complexity of
finding anothersolution to a problem. For example, given
a graph and a Hamiltonian cycle with this graph, it is NP-
complete to decide if the graph contains another Hamilto-
nian cycle. However, constraints are not typically placed
on the relationship between the two solutions. One excep-
tion is work in constraint satisfaction where we ensure that
the Hamming distance between the two solutions is max-
imized (Angelsmark & Thapper 2004; Crescenzi & Rossi
2002) or that the solutions are within some distance of each
other (Bailleux & Marquis 1999). The problem classes in-
troduced here subsume these problems.

Diversity and similarity are also important concepts in
case-based reasoning and recommender systems (Bridge &
Ferguson 2002; Shimazu 2001; Smyth & McClave 2001).
Typically, we want chose a diverse set of cases from the
case-base, but retrieve cases based on similarity. Also more
recent work in decision support systems has focused on the
use of diversity for finding diverse sets of good solutions as
well as the optimum one (Løkketangen & Woodruff 2005).

Conclusions
Motivated by a number of real-world applications that re-
quire solutions that are either diverse or similar, we have pro-
posed a range of similarity and diversity problems. We have
presented a detailed analysis of their computational com-
plexity (see Table 1), and developed a number of algorithms
and global constraints for solving them. Our experimental

Table 1: A summary of the complexity results.
complexity class

dDISTANTkSET NP-complete
dCLOSEkSET NP-complete
MAX DIVERSEkSET FPNP [log n]-complete
MAX SIMILAR kSET FPNP [log n]-complete
MAXdDISTANTSET FPNP [log n]-complete
MAXdCLOSESET FPNP [log n]-complete
MOSTDISTANT FPNP [log n]-complete
MOSTCLOSE FPNP [log n]-complete

results on some real-world problems are very encouraging.
In future work, we will study problems that combine both
similarity and diversity. Specifically, given a solution (or set
of solutions), we may wish to find a set of solutions that are
as similar as possible to the given one(s), but are as mutually
diverse as possible.

Acknowledgements. Hebrard and Walsh are supported by
the National ICT Australia, which is funded through the
Australian Government’sBacking Australia’s Abilityini-
tiative, in part through the Australian Research Council.
Hnich is supported by Science Foundation Ireland (Grant
00/PI.1/C075). O’Sullivan is supported by Enterprise Ire-
land (Grant SC/02/289).

References
Amilhastre, J.; Fargier, H.; and Marguis, P. 2002. Con-
sistency restoration and explanations in dynamic CSPs –
application to configuration.AIJ 135:199–234.
Angelsmark, O., and Thapper, J. 2004. Algorithms for the
maximum hamming distance problem. InProceedings of
CSCLP-04, 128–141.
Bailleux, O., and Marquis, P. 1999.DISTANCE-SAT:
Complexity and algorithms. InAAAI/IAAI, 642–647.
Bessìere, C.; Chmeiss, A.; and Saı̈s, L. 2001.
Neighborhood-based variable ordering heuristics for the
constraint satisfaction problem. InProceedings of CP-
2001, 565–569.
Bridge, D., and Ferguson, A. 2002. Diverse product recom-
mendations using an expressive language for case retrieval.
In Procs. of EC-CBR, 43–57.
Crescenzi, P., and Rossi, G. 2002. On the hamming dis-
tance of constraint satisfaction problems.TCS288:85–100.
Ginsberg, M. L.; Parkes, A. J.; and Roy, A. 1998. Super-
models and robustness. InAAAI/IAAI, 334–339.
Løkketangen, A., and Woodruff, D. L. 2005. A distance
function to support optimized selection decisions.Decision
Support Systems39(3):345–354.
Papadimitriou, C. 1994. Computational Complexity.
Addison-Wesley.
Shimazu, H. 2001. Expertclerk: Navigating shoppers’ buy-
ing process with the combination of asking and proposing.
In Proceedings of IJCAI-2001, 1443–1448.
Smyth, B., and McClave, P. 2001. Similarity vs diversity.
In Procs of IC-CBR, 347–361.

