
On The Complexity and Completeness of Static
Constraints for Breaking Row and Column Symmetry?

George Katsirelos1, Nina Narodytska2, and Toby Walsh2

1 CRIL-CNRS, Lens, France, email: gkatsi@gmail.com
2 NICTA and University of NSW, Sydney, Australia, email:

{nina.narodytska,toby.walsh}@nicta.com.au

Abstract. We consider a common type of symmetry where we have a matrix
of decision variables with interchangeable rows and columns. A simple and ef-
ficient method to deal with such row and column symmetry is to post symmetry
breaking constraints like DOUBLELEX and SNAKELEX. We provide a number
of positive and negative results on posting such symmetry breaking constraints.
On the positive side, we prove that we can compute in polynomial time a unique
representative of an equivalence class in a matrix model with row and column
symmetry if the number of rows (or of columns) is bounded and in a number
of other special cases. On the negative side, we show that whilst DOUBLELEX

and SNAKELEX are often effective in practice, they can leave a large number
of symmetric solutions in the worst case. In addition, we prove that propagating
DOUBLELEX completely is NP-hard. Finally we consider how to break row, col-
umn and value symmetry, correcting a result in the literature about the safeness of
combining different symmetry breaking constraints. We end with the first exper-
imental study on how much symmetry is left by DOUBLELEX and SNAKELEX

on some benchmark problems.

1 Introduction

One challenge in constraint programming is to develop effective search methods to deal
with common modelling patterns. One such pattern is row and column symmetry [1]:
many problems can be modelled by a matrix of decision variables [2] where the rows
and columns of the matrix are fully or partially interchangeable. Such symmetry is a
source of combinatorial complexity. It is therefore important to develop techniques to
deal with this type of symmetry. We study here simple constraints that can be posted
to break row and column symmetries, and analyse their effectiveness both theoretically
and experimentally. We prove that we can compute in polynomial time the lexicograph-
ically smallest representative of an equivalence class in a matrix model with row and
column symmetry if the number of rows (or of columns) is bounded and thus remove all
symmetric solutions. We are therefore able for the first time to see how much symmetry
is left by these commonly used symmetry breaking constraints.

? Supported by ANR UNLOC project, ANR 08-BLAN-0289-01 and the Australian Govern-
ment’s Department of Broadband, Communications and the Digital Economy and the ARC.



2 Formal background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a do-
main of values, and a set of constraints specifying allowed values for subsets of vari-
ables. When solving a CSP, we often use propagation algorithms to prune the search
space by enforcing properties like domain consistency. A constraint is domain con-
sistent (DC) iff when a variable in the scope of a constraint is assigned any value
in its domain, there exist compatible values in the domains of all the other variables
in the scope of the constraint. A CSP is domain consistent iff every constraint is do-
main consistent. An important feature of many CSPs is symmetry. Symmetries can
act on variables or values (or both). A variable symmetry is a bijection σ on the vari-
able indices that preserves solutions. That is, if {Xi = ai | i ∈ [1, n]} is a solution
then {Xσ(i) = ai | i ∈ [1, n]} is also. A value symmetry is a bijection θ on the val-
ues that preserves solutions. That is, if {Xi = ai | i ∈ [1, n]} is a solution then
{Xi = θ(ai) | i ∈ [1, n]} is also. A simple but effective method to deal with sym-
metry is to add symmetry breaking constraints which eliminate symmetric solutions.
For example, Crawford et al. proposed the general lex-leader method that posts lexico-
graphical ordering constraints to eliminate all but the lexicographically least solution in
each symmetry class [3]. Many problems are naturally modelled by a matrix of decision
variables with variable symmetry in which the rows and/or columns are interchangeable
[1]. We say that a CSP containing a matrix of decision variables has row symmetry iff
given a solution, any permutation of the rows is also a solution. Similarly, it has column
symmetry iff given a solution, any permutation of the columns is also a solution.

Running example: The Equidistant Frequency Permutation Array (EFPA) problem
is a challenging problem in coding theory. The goal is to find a set of v code words, each
of length qλ such that each word contains λ copies of the symbols 1 to q, and each pair
of code words is Hamming distance d apart. For example, for v = 4, λ = 2, q = 3,
d = 4, one solution is:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

(a)

This problem has applications in communication theory, and is related to other combi-
natorial problems like finding orthogonal Latin squares. Huczynska et al. [4] consider
a model for this problem with a v by qλ array of variables with domains 1 to q. This
model has row and column symmetry since we can permute the rows and columns and
still have a solution.

3 Breaking row and column symmetry

To break all row symmetry we can post lexicographical ordering constraints on the
rows. Similarly, to break all column symmetry we can post lexicographical ordering
constraints on the columns. When we have both row and column symmetry, we can
post a DOUBLELEX constraint that lexicographically orders both the rows and columns



[1]. This does not eliminate all symmetry since it may not break symmetries which
permute both rows and columns. Nevertheless, it is often effective in practice.

Running example: Consider again solution (a). If we order the rows of (a) lexico-
graphically, we get a solution with lexicographically ordered rows and columns:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

order
⇒

rows

0 0 1 1 2 2
0 1 0 2 1 2
0 2 1 2 0 1
0 2 2 1 1 0

(b)

Similarly if we order the columns of (a) lexicographically, we get a different solution in
which both rows and columns are again ordered lexicographically:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

order
⇒

cols

0 0 1 1 2 2
0 1 0 2 1 2
0 1 2 0 2 1
0 2 2 1 1 0

(c)

All three solutions are thus in the same row and column symmetry class. However,
both (b) and (c) satisfy the DOUBLELEX constraint. Therefore DOUBLELEX can leave
multiple solutions in each symmetry class.

The lex-leader method breaks all symmetry by ensuring that any solution is the lex-
icographically smallest in its symmetry class [3]. This requires linearly ordering the
matrix. Lexicographically ordering the rows and columns is consistent with a lineariza-
tion that takes the matrix in row-wise order (i.e. appending rows in order). We therefore
consider a complete symmetry breaking constraint ROWWISELEXLEADER which en-
sures that the row-wise linearization of the matrix is lexicographically smaller than all
its row or column permutations, or compositions of row and column permutations.

Running example: Consider the symmetric solutions (a) to (c). If we linearize
these solutions row-wise, the first two are lexicographically larger than the third. Hence,
the first two solutions are eliminated by the ROWWISELEXLEADER constraint.

ROWWISELEXLEADER breaks all row and column symmetries. Unfortunately, post-
ing such a constraint is problematic since it is NP-hard to check if a complete assign-
ment satisfies ROWWISELEXLEADER [5, 6]. We now give our first major result. We
prove that if we can bound the number of rows (or columns), then there is a polynomial
time method to break all row and column symmetry. For example, in the EFPA problem,
the number of columns might equal the fixed word size of our computer.

Theorem 1 For a n by m matrix, we can check if a complete assignment satisfies a
ROWWISELEXLEADER constraint in O(n!nm logm) time.

Proof: Consider the matrix modelXi,j . We exploit the fact that with no row symmetry
and just column symmetry, lexicographically ordering the columns gives the lex-leader
assignment. Let Yi,j = Xσ(i),j be a row permutation of Xi,j . To obtain Zi,j , the
smallest column permutation of Yi,j we lexicographically sort the m columns of Yi,j in
O(nm log(m)) time. Finally, we check that [X1,1, . . . , X1,m, . . . , Xn,1, . . . , Xn,m] ≤lex

[Z1,1, . . . , Z1,m, . . . , Zn,1, . . . , Zn,m], where ≤lex is the lexicographic comparison of



two vectors. This ensures that Xi,j is lexicographically smaller than or equal to any
column permutation of this row permutation. If we do this for each of the n!− 1 non-
identity row permutations, then Xi,j is lexicographically smaller than or equal to any
row permutation. This means that we have the lex-leader assignment. This can be done
in time O(n!nm logm), which for bounded n is polynomial. 2

This result easily generalizes to when rows and columns are partially interchange-
able. In the experimental section, we show that this gives an effective method to break
all row and column symmetry.

4 Double Lex

When the number of both rows and columns is large, breaking all row and column
symmetry is computationally challenging. In this situation, we can post a DOUBLELEX
constraint [1]. However, as we saw in the running example, this may not break all
symmetry. In fact, it can leave n! symmetric solutions in an 2n× 2n matrix model.

Theorem 2 There exists a class of 2n by 2n 0/1 matrix models on which DOUBLELEX
leaves n! symmetric solutions, for all n ≥ 2.

Proof: Consider a 2n by 2n matrix model with the constraints that the matrix contains
3n non-zero entries, and each row and column contains between one and two non-zero
entries. This model has row and column symmetry since row and column permuta-
tions leave the constraints unchanged. There exists a class of symmetric solutions to the
problem that satisfy a DOUBLELEX constraint of the form:

0 IR

IR P

Where 0 is a n by n matrix of zeroes, IR is the reflection of the identity matrix, and P
is any permutation matrix (a matrix with one non-zero entry on each row and column).
For example, as there are exactly two possible permutation matrices of order 2, there
are two symmetric 4 by 4 solutions with lexicographically ordered rows and columns:

0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 1

and

0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 0

In general, there are n! row and column symmetries of P . Hence, DOUBLELEX leaves
n! symmetric solutions. 2

Having decided to break row and column symmetry with DOUBLELEX, how do
we propagate it? One option is to decompose it into two LEXCHAIN constraints, one
on the rows and the other on the columns. A LEXCHAIN constraint ensures that a se-
quence of vectors are lexicographically ordered. Enforcing domain consistency on each
LEXCHAIN constraint takes polynomial time [7]. However, this decomposition hinders



propagation. For example, in the matrix of decision variables with domains:

0/1 0/1 1
0/1 0 1
1 1 1

LEXCHAIN constraints on the rows and columns ensure the second row is lexico-
graphically larger than the first row and lexicographically smaller than the third, and
the second column is lexicographically larger than the first column and lexicographi-
cally smaller than the third. Both such LEXCHAIN constraints are DC. However, the
corresponding DOUBLELEX constraint is not since there is no solution in which the
top left variable is set to 1. We might therefore consider a specialized propagator for
the DOUBLELEX constraint. Unfortunately, whilst checking a DOUBLELEX constraint
takes polynomial time, enforcing DC on this constraint is NP-hard. Thus, even when
posting just DOUBLELEX to break row and column symmetry, there are computational
limits on our ability to prune symmetric branches from the search tree.

Theorem 3 Enforcing DC on the DOUBLELEX constraint is NP-hard.

Proof: (Outline) We reduce an instance of 1-in-3SAT on positive clauses to a partially
instantiated instance of the DOUBLELEX constraint with 0/1 variables. The constructed
DOUBLELEX constraint has a solution iff the 1-in-3 SAT formula is satisfiable. Hence,
it is NP-hard to enforce DC on the DOUBLELEX constraint [5], even with a bounded
number of values. The full proof appears in [8]. 2

5 Special cases

We consider two special cases where we can check a constraint that breaks all row and
column symmetry in polynomial time. In both cases, we show that we can do even
better than check the constraint in polynomial time. We prove that in these cases we
can enforce DC on a constraint that breaks all row and column symmetry in polynomial
time. This provides a counterpoint to our result that enforcing DC on DOUBLELEX is
NP-hard in general.

5.1 All-different matrices

An all-different matrix is a matrix model in which every value is different. It was
shown in [1] that when an all-different matrix has row and column symmetry, then
ROWWISELEXLEADER is equivalent to ensuring that the top left entry is the smallest
value, and the first row and column are ordered. Let ORDER1STROWCOL be such a
symmetry breaking constraint.

Theorem 4 DC can be enforced on ORDER1STROWCOL in polynomial time.

Proof: Consider the n by m matrix model Xi,j . We post O(nm) constraints: X1,1 <
. . . < Xn,1, X1,1 < . . . < X1,m, X1,1 < X1+i,1+j for 1 ≤ i < n and 1 ≤ j < m.
The constraint graph of this decomposition is acyclic. Therefore enforcing DC on the



decomposition achieves DC on ORDER1STROWCOL. Each constraint in the decompo-
sition can be made DC in constant time (assuming we can change bounds in constant
time). Hence, DC can be enforced on ORDER1STROWCOL in O(nm) time. 2

Note that, when applied to an all-different matrix with row and column symmetry,
the general method for breaking symmetry in all-different problems proposed in [9] will
post binary inequalities logically equivalent to ORDER1STROWCOL.

5.2 Matrix models of functions

A matrix model of a function is one in which all entries are 0/1 and each row sum is 1. If
a matrix model of a function has row and column symmetry then ROWWISELEXLEADER
ensures the rows and columns are lexicographically ordered, the row sums are 1, and
the sums of the columns are in decreasing order, as was shown in [10, 11, 1]. We de-
note this symmetry breaking constraint as DOUBLELEXCOLSUM. Enforcing DC on
DOUBLELEXCOLSUM takes polynomial time, in contrast to partial row and column
interchangeability in matrix models of functions, which is NP-hard [12].

Theorem 5 DC can be enforced on DOUBLELEXCOLSUM in polynomial time.

Proof: We will show that DOUBLELEXCOLSUM can be encoded with a set of REGULAR
constraints. Consider the n by m matrix model Xi,j . For each row i we introduce an
extra variable Yi and a REGULAR constraint on [Xi,1, . . . , Xi,m,#, Yi] where # is a
delimiter between Xi,m and Yi. Each REGULAR constraint ensures that exactly one po-
sition in the ith row is set to 1 and the variable Yi stores this position. The automaton’s
states are represented by the 3-tuple 〈s, d, p〉 where s is the row sum, d is the current
position and p records the position of the 1 on this row. This automaton has 4m states
and a constant number of transitions from each state, so the total number of transi-
tions isO(m). The complexity of propagating this constraint isO(m2). We also post a
REGULAR constraint over Y1, . . . , Yn to ensure that they form a decreasing sequence of
numbers and the number of occurrences of each value is decreasing. The first condition
ensures that rows and columns are lexicographically ordered and the second condition
ensures that the sums of the columns are decreasing. The states of this automaton are
3-tuples 〈v, s, r〉 where v is the last value, s is the number of occurrences of this value,
and r is the number of occurrences of the previous value. This automaton has O(n2m)
states, while the number of transition from each state is bounded. Therefore propagat-
ing this constraint requires time O(n3m). This decomposition is logically equivalent
to the DOUBLELEXCOLSUM constraint, therefore it is sound. Completeness follows
from the fact that the decomposition has a Berge acyclic constraint graph. Therefore,
enforcing DC on each REGULAR constraint enforces DC on DOUBLELEXCOLSUM in
O(m2n+ n3m) time. 2

6 Value symmetry

Problems with row and column symmetry also often contain value symmetries. For
example, the EFPA problem has row, column and value symmetry. We therefore turn to
the problem of breaking row, column and value symmetry.



Running example: Consider again the solution (a). If we interchange the values 1
and 2, we get a symmetric solution:

0 2 1 2 0 1
0 2 2 1 1 0
0 1 0 2 1 2
0 0 1 1 2 2

⇒
(1 2)

0 1 2 1 0 2
0 1 1 2 2 0
0 2 0 1 2 1
0 0 2 2 1 1

(d)

In fact, all values in this CSP are interchangeable.
How do we break value symmetry in addition to breaking row and column symme-

try? For example, Huczynska et al. write about their first model of the EFPA problem:

“To break some of the symmetry, we apply lexicographic ordering (lex-ordering)
constraints to the rows and columns . . . These two constraint sets do not explic-
itly order the symbols. It would be possible to order the symbols by using value
symmetry breaking constraints. However we leave this for future work.” (page
53 of [4])

We turn to this future work of breaking row, column and value symmetry.

6.1 Double Lex

We first note that the interaction of the problem and DOUBLELEX constraints can in
some circumstances break all value symmetry. For instance, in our (and Huczynska
et al.’s) model of the EFPA problem, all value symmetry is already eliminated. This
appears to have been missed by [4].

Running example: Consider any solution of the EFPA problem which satisfies
DOUBLELEX (e.g. (b) or (c)). By ordering columns lexicographically, DOUBLELEX
ensures that the first row is ordered. In addition, the problem constraints ensure λ copies
of the symbols 1 to q to appear in the first row. Hence, the first row is forced to be:

λ︷ ︸︸ ︷
1 . . . 1

λ︷ ︸︸ ︷
2 . . . 2 . . .

λ︷ ︸︸ ︷
q . . . q

All value symmetry is broken as we cannot permute the occurrences of any of the values.

6.2 Puget’s method

In general, value symmetries may remain after we have broken row and column symme-
try. How can we eliminate these value symmetries? Puget has given a general method
for breaking any number of value symmetries in polynomial time [13]. Given a sur-
jection problem in which all values occur at least once,3 he introduces variables Zj to
represent the index of the first occurrence of each value:

Xi = j ⇒ Zj ≤ i
Zj = i⇒ Xi = j

3 Any problem can be turned into a surjection problem by the addition of suitable new variables.



Value symmetry on the Xi is transformed into variable symmetry on the Zj . This vari-
able symmetry is especially easy to break as the Zj take all different values. We simply
need to post appropriate ordering constraints on the Zj . Consider, for example, the in-
version symmetry which maps 1 onto m, 2 onto m − 1, etc. Puget’s method breaks
this symmetry with the single ordering constraint: Z1 < Zm. Unfortunately Puget’s
method for breaking value symmetry is not compatible in general with breaking row
and column symmetry using ROWWISELEXLEADER. This corrects Theorem 6 and
Corollary 7 in [13] which claim that, provided we use the same ordering of variables in
each method, it is compatible to post lex-leader constraints to break variable symmetry
and Puget’s constraints to break value symmetry. There is no ordering of variables in
Puget’s method which is compatible with breaking row and column symmetry using the
lex-leader method (or any method like DOUBLELEX based on it).

Theorem 6 There exist problems on which posting ROWWISELEXLEADER and ap-
plying Puget’s method for breaking value symmetry remove all solutions in a symmetry
class irrespective of the ordering on variables used by Puget’s method.

Proof: Consider a 3 by 3 matrix model with constraints that all values between 0 and
8 occur, and that the average of the non-zero values along every row and column are
all different from each other. This problem has row and column symmetry since we
can permute any pair of rows or columns without changing the average of the non-zero
values. In addition, it has a value symmetry that maps i onto 9− i for i > 0. This maps
an average of a onto 9−a. If the averages were all-different before they remain so after.
Consider the following two solutions:

0 2 3
4 8 5
7 6 1

and
0 2 3
4 1 5
7 6 8

Both matrices satisfy ROWWISELEXLEADER as the smallest entry occurs in the top
left corner and both the first row and column are ordered. They are therefore both the
lex leader members of their symmetry class.

Puget’s method for breaking value symmetry will simply ensure that the first oc-
currence of 1 in some ordering of the matrix is before that of 8 in the same ordering.
However, comparing the two solutions, it cannot be the case that the middle square
is both before and after the bottom right square in the given ordering used by Puget’s
method. Hence, whichever ordering of variables is used by Puget’s method, one of these
solutions will be eliminated. All solutions in this symmetry class are thus eliminated. 2

We can pinpoint the mistake in Puget’s proof which allows him to conclude incor-
rectly that his method for value symmetry can be safely combined with variable sym-
metry breaking methods like DOUBLELEX. Puget introduces a matrix of 0/1 variables
Yij ⇐⇒ Xi = j and observes that variable symmetries σ on variables Xi corre-
spond to row symmetries on the matrix Yij , while value symmetries θ of the variables
Xi correspond to column symmetries of the matrix. Using the lex-leader method on a
column-wise linearisation of the matrix, he derives the value symmetry breaking con-
straints on the Z variables. Finally, he claims that we can derive the variable symmetry
breaking constraints on the X variables with the same method (equation (13) of [13]).



However, this requires a row-wise linearisation of the matrix. Unfortunately, combining
symmetry breaking constraints based on row and column-wise linearisations can, as in
our example, eliminate all solutions in a symmetry class.

In fact, we can give an even stronger counter-example to Theorem 6 in [13] which
shows that it is incompatible to post together variable and value symmetry breaking
constraints irrespective of the orderings of variables used by both the variable and the
value symmetry breaking method.

Theorem 7 There exist problems on which posting lex-leader constraints to break vari-
able symmetries and applying Puget’s method to break value symmetries remove all
solutions in a symmetry class irrespective of the orderings on variables used by both
methods.

Proof: Consider variablesX1 toX4 taking values 1 to 4, an all-different constraint over
X1 toX4 and a constraint that the neighbouring differences are either all equal or are not
an arithmetic sequence. These constraints permit solutions like X1, . . . , X4 = 1, 2, 3, 4
(neighbouring differences are all equal) and X1, . . . , X4 = 2, 1, 4, 3 (neighbouring dif-
ferences are not an arithmetic sequence). They rule out assignments like X1, . . . , X4 =
3, 2, 4, 1 (neighbouring differences form the arithmetic sequence 1, 2, 3). This problem
has a variable symmetry σ which reflects a solution, swappingX1 withX4, andX2 with
X3, and a value symmetry θ that inverts a solution, swapping 1 with 4, and 2 with 3.
Consider X1, . . . , X4 = 2, 4, 1, 3 and X1, . . . , X4 = 3, 1, 4, 2. These two assignments
form a symmetry class of solutions.

Suppose we break variable symmetry with a lex-leader constraint onX1 toX4. This
will permit the solutionX1, . . . , X4 = 2, 4, 1, 3 and eliminate the solutionX1, . . . , X4 =
3, 1, 4, 2. Suppose we break the value symmetry using Puget’s method on the same or-
dering of variables. This will ensure that 1 first occurs before 4. But this will eliminate
the solution X1, . . . , X4 = 2, 4, 1, 3. Hence, all solutions in this symmetry class are
eliminated. In this case, both variable and value symmetry breaking use the same order
on variables. However, we can show that all solutions in at least one symmetry class are
eliminated whatever the orders used by both the variable and value symmetry breaking.

The proof is by case analysis. In each case, we consider a set of symmetry classes of
solutions, and show that the combination of the lex-leader constraints to break variable
symmetries and Puget’s method to break value symmetries eliminates all solutions from
one symmetry class. In the first case, suppose the variable and value symmetry breaking
constraints eliminateX1, . . . , X4 = 3, 1, 4, 2 and permitX1, . . . , X4 = 2, 4, 1, 3. In the
second case, suppose they eliminate X1, . . . , X4 = 2, 4, 1, 3 and permit X1, . . . , X4 =
3, 1, 4, 2. This case is symmetric to the first except we need to reverse the names of the
variables throughout the proof. We therefore consider just the first case. In this case,
the lex-leader constraint breaks the variable symmetry by putting either X1 first in its
ordering variables or X3 first.

Suppose X1 goes first in the ordering used by the lex-leader constraint. Puget’s
method ensures that the first occurrence of 1 is before that of 4. Puget’s method therefore
uses an ordering on variables which puts X3 before X2. Consider now the symmetry
class of solutions:X1, . . . , X4 = 2, 1, 4, 3 andX1, . . . , X4 = 3, 4, 1, 2. Puget’s method
eliminates the first solution as 4 occurs before 1 in any ordering that put X3 before X2.



And the lex-leader constraint eliminates the second solution as X1 is larger than its
symmetry X4. Therefore all solutions in this symmetry class are eliminated.

Suppose, on the other hand, X3 goes first in the lex-leader constraint. Consider now
the symmetry class of solutions: X1, . . . , X4 = 1, 2, 3, 4 and X1, . . . , X4 = 4, 3, 2, 1.
The lex-leader constraint eliminates the first solution asX3 is greater than its symmetry
X2. Suppose now that the second solution is not eliminated. Puget’s method ensures
the first occurrence of 1 is before that of 4. Puget’s method therefore uses an ordering
on variables which puts X4 before X1. Consider now the symmetry class of solutions:
X1, . . . , X4 = 1, 3, 2, 4 and X1, . . . , X4 = 4, 2, 3, 1. Puget’s method eliminates the
first solution as 4 occurs before 1 in any ordering that put X4 before X1. And the lex-
leader constraint eliminates the second solution as X3 is larger than its symmetry X2.
Therefore all solutions in this symmetry class are eliminated. 2

6.3 Value precedence

We end with a special but common case where variable and value symmetry break-
ing do not conflict. When values partition into interchangeable sets, Puget’s method is
equivalent to breaking symmetry by enforcing value precedence [14, 15]. Given any two
interchangeable values i and j with i < j, a value PRECEDENCE constraint ensures that
if i occurs then the first occurrence of i is before that of j. It is safe to break row and col-
umn symmetry with ROWWISELEXLEADER and value symmetry with PRECEDENCE
when value precedence considers variables either in a row-wise or in a column-wise or-
der. This is a simple consequence of Theorem 1 in [14]. It follows that it is also safe to
use PRECEDENCE to break value symmetry when using constraints like DOUBLELEX
derivable from the lex-leader method.

7 Snake Lex

A promising alternative to DOUBLELEX for breaking row and column symmetries is
SNAKELEX [16]. This is also derived from the lex leader method, but now applied to
a snake-wise unfolding of the matrix. To break column symmetry, SNAKELEX ensures
that the first column is lexicographically smaller than or equal to both the second and
third columns, the reverse of the second column is lexicographically smaller than or
equal to the reverse of both the third and fourth columns, and so on up till the penul-
timate column is compared to the final column. To break row symmetry, SNAKELEX
ensures that each neighbouring pair of rows, X1,i, . . . , Xn,i and X1,i+1, . . . , Xn,i+1

satisfy the entwined lexicographical ordering:

〈X1,i, X2,i+1, X3,i, X4,i+1, . . .〉 ≤lex 〈X1,i+1, X2,i, X3,i+1, X4,i, . . .〉

Like DOUBLELEX, SNAKELEX is an incomplete symmetry breaking method. In
fact, like DOUBLELEX, it may leave a large number of symmetric solutions.

Theorem 8 There exists a class of 2n by 2n+1 0/1 matrix models on which SNAKELEX
leaves O(4n/

√
n) symmetric solutions, for all n ≥ 2.



Proof: Consider the following 4 by 4 matrix:

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

This is a permutation matrix as there is a single 1 on each row and column. It satisfies
the SNAKELEX constraints. In fact, we can add any 5th column which reading top to
bottom is lexicographically larger than or equal to 0010 and reading bottom to top is
lexicographically larger than or equal to 0010. We shall add a 4 bit column with 2 bits
set. That is, reading top to bottom: 1100, 1010, 0110 or 0011. Note that all 4 of these 4
by 5 matrices are row and column symmetries of each other. For instance, consider the
row and column symmetry σ that reflects the matrix in the horizontal axis, and swaps
the 1st column with the 2nd, and the 3rd with the 4th:

0 1 0 0 1
0 0 0 1 1
0 0 1 0 0
1 0 0 0 0

⇔
σ

0 1 0 0 0
0 0 0 1 0
0 0 1 0 1
1 0 0 0 1

In general, we consider the 2n by 2n permutation matrix:

0 1 0 0 0 0 . . . 0 0 0
0 0 0 1 0 0 . . . 0 0 0
0 0 0 0 0 0 . . . 0 0 0
0 0 0 0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 0 0
0 0 0 0 0 0 . . . 0 0 1
0 0 0 0 0 0 . . . 0 1 0
...

...
...

...
...

...
...

...
...

0 0 0 0 1 0 . . . 0 0 0
0 0 1 0 0 0 . . . 0 0 0
1 0 0 0 0 0 . . . 0 0 0

This satisfies the SNAKELEX constraints. We can add any 2n + 1th column which
reading top to bottom is lexicographically larger than or equal to the 2n − 1th column
and reading bottom to top is lexicographically larger than or equal to the 2nth column.
In fact, we can add any column with eactly n of the 2n bits set. This gives us a set
of 2n by 2n + 1 matrices that are row and column symmetries of each other. There
are (2n)!/(n!)2 bit vectors with exactly n of 2n bits set. Hence, we have (2n)!/(n!)2

matrices which satisfy SNAKELEX that are in the same row and column symmetry
class. Using Stirling’s formula, this grows as O(4n/

√
n). 2

8 Experimental results

The proof of Theorem 1 gives a polynomial method to break all row and column sym-
metry. This allows us to compare symmetry breaking methods for matrix models like



DOUBLELEX and SNAKELEX, not only with respect to each other but for the first time
in absolute terms. Our aim is to evaluate: first, whether the worst-case scenarios identi-
fied in theorems 2 and 8 are indicative of what can be expected in practice; second, how
effective these methods are with respect to each other; third, in cases where they differ
significantly, how much closer the best of them is to the optimal.

To answer these questions, we experimented with different symmetry breaking con-
straints: DOUBLELEX, the column-wise SNAKELEX (SNAKELEXC) or the row-wise
SNAKELEX (SNAKELEXR) [16]. We use NOSB to denote no symmetry breaking con-
straints. For each problem instance we found the total number of solutions left by sym-
metry breaking constraints (#s) and computed how many of them were symmetric
based on the method outlined in the proof of Theorem 1. The number of non symmetric
solutions is equal to the number of symmetry classes (#ns) if the search space is ex-
hausted. In all instances at least one model exhausted the search space to compute the of
symmetry classes, shown in the column ROWWISELEX. We use ‘−’ to indicate that the
search is not completed within the time limit. As the NOSB model typically could not
exhaust the search space within the time limit, we use ‘>’ to indicate a lower bound on
the number of solutions. Finally, we used a variable ordering heuristic that follows the
corresponding lex-leader variable ordering in each set of symmetry breaking constraints
(i.e. row-wise snake ordering with SNAKELEXR). We ran experiments in Gecode 3.3.0
on an Intel XEON X5550, 2.66 GHz, 32 GB RAM with 18000 sec timeout.

Unconstrained problems. We first evaluated the effectiveness of symmetry break-
ing constraints in the absence of problem constraints. This gives the “pure” effect of
these constraints at eliminating row and column symmetry. We considered a problem
with a matrix mr×c, r ≤ c = [2, 6], D(mr,c) = [0, d − 1], d = [2, . . . , 5] whose
rows and columns are interchangeable. Table 1 summarizes the results. The first part
presents typical results for 0/1 matrices whilst the second part presents results for larger
domains. The results support the exponential worst case in Theorems 2 and 8, as the ra-
tio of solutions found to symmetry classes increases from 1.25 (3,3,2) to over 6 (6,6,2),
approximately doubling with each increase of the matrix size. As we increase the prob-
lem size, the number of symmetric solutions left by DOUBLELEX and SNAKELEX
grows rapidly. Interestingly, SNAKELEXC achieves better pruning on 0/1 matrices,
while DOUBLELEX performs better with larger domains.

Constrained problems. Our second set of experiments was on three benchmark do-
mains: Equidistant Frequency Permutation Array (EFPA), Balanced Incomplete Block
Designs and Covering Array (CA) problems. We used the non-Boolean model of EFPA [4]
(Table 2), the Boolean matrix model of BIBD [1] (Table 3) and a simple model of
CA [17] (Table 4). We consider the satisfaction version of the CA problem with a
given number of vectors b. In all problems instances the DOUBLELEX, SNAKELEXR
and SNAKELEXC constraints show their effectiveness, leaving only a small fraction of
symmetric solutions. Note that SNAKELEXC often leaves fewer symmetric solutions.
However, it is significantly slower compared to DOUBLELEX and SNAKELEXR be-
cause it tends to prune later (thereby exploring larger search trees). For example, the
number of failures for the (5, 3, 3, 4) EFPA problem is 21766, 14072 and 1129085
for DOUBLELEX, SNAKELEXR and SNAKELEXC respectively. On EFPA problems,
SNAKELEXR is about twice as fast as DOUBLELEX and leaves less solutions. On the



Table 1. Unconstrained problems. Number of solutions found by posting different sets of symmetry breaking constraints. r
is the number of rows, c is the number of columns, d is the size of the domains.

(r, c, d) ROWWISELEX NOSB DOUBLELEX SNAKELEXR SNAKELEXC

#ns #s #s / time #s / time #s / time
(3, 3, 2) 36 512 45 / 0.00 44 / 0.00 44 / 0.00
(4, 4, 2) 317 65536 650 / 0.00 577 / 0.00 577 / 0.00
(5, 5, 2) 5624 3.36·107 24520 / 0.05 18783 / 0.06 18783 / 0.06
(6, 6, 2) 251610 > 9.4·109 2.62 · 106 / 22.2 1.71 · 106 / 22.2 1.71 · 106 / 18.1
(3, 3, 3) 738 19683 1169 / 0.00 1232 / 0.00 1232 / 0.00
(3, 3, 4) 8240 2.62·105 14178 / 0.03 15172 / 0.02 15172 / 0.05
(3, 3, 5) 57675 1.95·106 1.02·105 / 0.19 1.09·105 / 0.15 1.09·105 / 0.21
(3, 3, 6) 289716 1.01·107 5.20·105 / 2.32 5.54·105 / 3.29 5.54·105 / 2.83

Table 2. Equidistant Frequency Permutation Array problems. Number of solutions found by posting different sets of sym-
metry breaking constraints. v is the number code words, q is the number of different symbols, λ is the size of the domains.

(q, λ, d, v) ROWWISELEX NOSB DOUBLELEX SNAKELEXR SNAKELEXC

#ns #s #s / time #s / time #s / time
(3, 3, 2, 3) 6 1.81·105 6 / 0.00 6 / 0.00 6 / 0.00
(4, 3, 3, 3) 8 > 3.88·107 16 / 0.01 16 / 0.01 16 / 0.16
(4, 4, 2, 3) 12 > 5.87·107 12 / 0.00 12 / 0.00 12 / 0.04
(3, 4, 6, 4) 1427 > 5.57·107 11215 / 5.88 10760 / 5.36 8997 / 493.87
(4, 3, 5, 4) 8600 > 2.03·107 61258 / 69.90 58575 / 51.62 54920 / 3474.09
(4, 4, 5, 4) 9696 > 5.45·106 72251 / 173.72 66952 / 132.46 66168 / 14374.82
(5, 3, 3, 4) 5 > 4.72·106 20 / 0.36 20 / 0.25 20 / 31.61
(3, 3, 4, 5) 18 > 2.47·107 71 / 0.17 71 / 0.13 63 / 30.08
(3, 4, 6, 5) 4978 > 2.08·107 77535 / 167.50 71186 / 137.88 −
(4, 3, 4, 5) 441 > 6.55·106 2694 / 19.37 2688 / 12.80 2302 / 5960.43
(4, 4, 2, 5) 12 > 6.94·106 12 / 0.02 12 / 0.01 12 / 1.60
(4, 4, 4, 5) 717 > 6.27·106 4604 / 38.15 4397 / 24.58 −
(4, 6, 4, 5) 819 > 4.08·106 5048 / 69.83 4736 / 44.83 −
(5, 3, 4, 5) 3067 > 2.39·106 20831 / 403.97 20322 / 216.93 −
(6, 3, 4, 5) 15192 > 2.16·106 1.11·105 / 4924.41 1.06·105 / 2006.19 −

Table 3. Balanced Incomplete Block Designs. Number of solutions found by posting different sets of symmetry breaking
constraints. v is the number of objects, k is the objects in each block, every two distinct objects occur together in exactly λ
blocks.

(v, k, λ) ROWWISELEX NOSB DOUBLELEX SNAKELEXR SNAKELEXC

#ns #s #s / time #s / time #s / time
(5, 2, 7) 1 > 0 1 / 0.01 1 / 0.02 1 / 73.26
(5, 3, 6) 1 > 1.51·109 1 / 0.00 1 / 0.00 1 / 0.82
(6, 3, 4) 4 > 1.29·109 21 / 0.01 25 / 0.00 21 / 12.62
(6, 3, 6) 6 > 1.21·109 134 / 0.04 146 / 0.07 134 / 1685.58
(7, 3, 4) 35 > 1.18·109 3209 / 0.33 9191 / 1.07 5270 / 7241.92
(7, 3, 5) 109 > 1.09·109 33304 / 4.15 85242 / 11.90 −

Table 4. Covering Arrays. Number of solutions found by posting different sets of symmetry breaking constraints. b is the
number of vectors, k is the length of a vector, g is the size of the domains, t is the covering strength.

(t, k, g, b) ROWWISELEX NOSB DOUBLELEX SNAKELEXR SNAKELEXC

#ns #s #s / time #s / time #s / time
(2, 3, 2, 4) 2 48 2 / 0.00 2 / 0.00 2 / 0.00
(2, 3, 2, 5) 8 1440 15 / 0.00 15 / 0.00 15 / 0.00
(2, 3, 3, 9) 6 4.35·106 12 / 0.00 12 / 0.00 12 / 1.95

(2, 3, 3, 10) 104 > 5.08·108 368 / 0.00 370 / 0.03 372 / 7.06
(2, 3, 3, 11) 1499 > 5.56·108 6824 / 0.23 6905 / 0.24 6892 / 26.29
(2, 3, 4, 16) 150 > 0 576 / 0.72 576 / 0.70 −
(2, 3, 4, 17) 8236 > 0 43368 / 12.43 43512 / 12.82 −
(2, 3, 5, 25) 27280 > 0 1.61·105 / 1166.94 1.61·105 / 1178.14 −
(2, 4, 2, 5) 5 1920 10 / 0.00 10 / 0.00 10 / 0.00
(2, 4, 2, 7) 333 1.60·107 2285 / 0.04 2224 / 0.07 1850 / 0.04
(2, 4, 3, 9) 5 2.61·107 36 / 0.02 36 / 0.01 26 / 1102.30



CA problems DOUBLELEX and SNAKELEXR show similar results, while DOUBLELEX
performs better on BIBD problems in terms of the number of solution left.

Overall, our results show that DOUBLELEX and SNAKELEX prune most of the sym-
metric solutions. SNAKELEXC slightly outperforms DOUBLELEX and SNAKELEXR in
terms of the number of solutions left, but it explores larger search trees and is about two
orders of magnitude slower. However, there is little difference overall in the amount of
symmetry eliminated by the three methods.

9 Other related work

Lubiw proved that any matrix has a row and column permutation in which rows and
columns are lexicographically ordered and gave a nearly linear time algorithm to com-
pute such a matrix [18]. Shlyakhter and Flener et al. independently proposed eliminat-
ing row and column symmetry using DOUBLELEX [10, 11, 1]. To break some of the
remaining symmetry, Frisch, Jefferson and Miguel suggested ensuring that the first row
is less than or equal to all permutations of all other rows [19]. As an alternative to or-
dering both rows and columns lexicographically, Frisch et al. proposed ordering the
rows lexicographically but the columns with a multiset ordering [20]. More recently,
Grayland et al. have proposed SNAKELEX, an alternative to DOUBLELEX based on
linearizing the matrix in a snake-like way [16]. An alternative way to break the symme-
try of interchangeable values is to convert it into a variable symmetry by channelling
into a dual 0/1 viewpoint in which Yij = 1 iff Xi = j, and using lexicographical order-
ing constraints on the columns of the 0/1 matrix [1]. However, this hinders propagation
[15]. Finally, dynamic methods like SBDS have been proposed to remove symmetry
from the search tree [21]. Unfortunately, dynamic techniques tend not to work well
with row and columns symmetries as the number of symmetries is usually too large.

10 Conclusions

We have provided a number of positive and negative results on dealing with row and
column symmetry. To eliminate some (but not all) symmetry we can post static con-
straints like DOUBLELEX and SNAKELEX. On the positive side, we proposed the first
polynomial time method to eliminate all row and column symmetry when the number of
rows (or columns) is bounded. On the negative side, we argued that DOUBLELEX and
SNAKELEX can leave a large number of symmetric solutions. In addition, we proved
that propagating DOUBLELEX completely is NP-hard. Finally, we showed that it is
not always safe to combine Puget’s value symmetry breaking constraints with row and
column symmetry breaking constraints, correcting a claim made in the literature.

References

1. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row
and column symmetry in matrix models. In: 8th International Conference on Principles and
Practices of Constraint Programming (CP-2002), Springer (2002)



2. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix Modelling.
Technical Report APES-36-2001, APES group (2001) Presented at Formul’01 (Workshop
on Modelling and Problem Formulation), CP2001 post-conference workshop.

3. Crawford, J., Ginsberg, M., Luks, G., Roy, A.: Symmetry breaking predicates for search
problems. In: Proceedings of 5th International Conference on Knowledge Representation
and Reasoning, (KR ’96). (1996) 148–159

4. Huczynska, S., McKay, P., Miguel, I., Nightingale, P.: Modelling equidistant frequency
permutation arrays: An application of constraints to mathematics. In Gent, I., ed.: Principles
and Practice of Constraint Programming - CP 2009, 15th International Conference, CP 2009,
Lisbon, Portugal, September 20-24, (2009) 50–64

5. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In:
Proceedings of the 19th National Conference on AI, AAAI (2004)

6. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. Con-
straints, 12(2) (2007) 239-259

7. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering con-
straints. Technical report T2002-18, Swedish Institute of Computer Science (2002).

8. Katsirelos, G., Narodytska, N., Walsh, T.: Breaking Generator Symmetry In: Proceedings
of SymCon’09 - 9th International Workshop on Symmetry and Constraint Satisfaction Prob-
lems, colocated with CP2009.

9. Puget, J.F.: Breaking symmetries in all different problems. In: Proceedings of 19th IJCAI,
International Joint Conference on Artificial Intelligence (2005) 272–277

10. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. Elec-
tronic Notes in Discrete Mathematics 9 (2001) 19–35

11. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Symme-
try in matrix models. Technical Report APES-30-2001, APES group (2001) Presented at
SymCon’01 (Symmetry in Constraints), CP2001 post-conference workshop.

12. Walsh, T.: Breaking Value Symmetry. In: Proceedings of 13th International Conference on
Principles and Practice of Constraint Programming (CP2007), Springer (2007)

13. Puget, J.F.: Breaking all value symmetries in surjection problems. In van Beek, P., ed.:
Proceedings of 11th International Conference on Principles and Practice of Constraint Pro-
gramming (CP2005), Springer (2005)

14. Law, Y., Lee, J.: Global constraints for integer and set value precedence. In: Proceed-
ings of 10th International Conference on Principles and Practice of Constraint Programming
(CP2004), Springer (2004) 362–376

15. Walsh, T.: Symmetry breaking using value precedence. In Brewka, G., Coradeschi, S.,
Perini, A., Traverso, P., eds.: ECAI 2006, IOS Press (2006) 168–172

16. Grayland, A., Miguel, I., Roney-Dougal, C.: Snake lex: An alternative to double lex. In
Gent, I.P., ed.: Proceedings of 15th International Conference on Principles and Practice of
Constraint Programming. Springer (2009) 391–399

17. Hnich, B., Prestwich, S., Selensky, E., Smith, B.: Constraint models for the covering test
problem. Constraints 11 (2006) 199–219

18. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. on Computing 16 (1987) 854–879
19. Frisch, A., Jefferson, C., Miguel, I.: Constraints for breaking more row and column sym-

metries. In Rossi, F., ed.: Proceedings of 9th International Conference on Principles and
Practice of Constraint Programming (CP2003), Springer (2003)

20. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Multiset ordering constraints. In:
Proceedings of 18th IJCAI, International Joint Conference on Artificial Intelligence (2003)

21. Gent, I., Smith, B.: Symmetry breaking in constraint programming. In Horn, W., ed.: Pro-
ceedings of ECAI-2000, IOS Press (2000) 599–603


