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Abstract
We consider a simple sequential allocation proce-
dure for sharing indivisible items between agents
in which agents take turns to pick items. Suppos-
ing additive utilities and independence between the
agents, we show that the expected utility of each
agent is computable in polynomial time. Using this
result, we prove that the expected utilitarian social
welfare is maximized when agents take alternate
turns. We also argue that this mechanism remains
optimal when agents behave strategically.

1 Introduction
There exist a variety of mechanisms to share indivisible goods
between agents without side payments [Brams and Fish-
burn, 2000; Herreiner and Puppe, 2002; Brams et al., 2003;
Brams and Kaplan, 2004; Brams et al., 2012]. One of the sim-
plest is simply to let the agents take turns to pick an item. This
mechanism is parameterized by a policy, the order in which
agents take turns. In the alternating policy, agents take turns in
a fixed order, whilst in the balanced alternating policy, the or-
der of agents reverses each round. Bouveret and Lang (2011)
study a simple model of this mechanism in which agents have
strict preferences over items, and utilities are additive. They
conjecture that computing the expected social welfare for a
given policy is NP-hard supposing all preference orderings
are equally likely. Based on simulation for up to 12 items,
they conjecture that the alternating policy maximizes the ex-
pected utilitarian social welfare for Borda utilities, and prove
it does so asymptotically. We close both conjectures. Sur-
prisingly, we prove that the expected utility of each agent
can be computed in polynomial time for any policy and util-
ity function. Using this result, we prove that the alternating
policy maximizes the expected utilitarian social welfare for
any number of items and any linear utility function including
Borda. Our results provides some justification for a mecha-
nism in use in school playgrounds around the world.

2 Notation
We have p items and n agents. Each agents has a total prefer-
ence order over the items. A profile is an n-tuple of such or-
ders. Agents share the same utility function. An item ranked

in kth position has a utility g(k). For Borda utilities, g(k) =
p−k+1. The utility of a set of items is merely the sum of their
individual utilities. Preference orders are independent and
drawn uniformly at random from the set of all p! possibilities
(full independence). Agents take turns to pick items accord-
ing to a policy, a sequence π = π1 . . . πp ∈ {1, 2, . . . , n}p.
At the k-th step, agent πk chooses one item from the remain-
ing set. Without loss of generality, we suppose π1 = 1. For
profile R, uR(i, π) denotes the utility gained by agent i sup-
posing every agent always chooses the highest ranked item
in their ranking from the available items. We write ui(π)
for the expectation of uR(i, π) over all possible profiles.
We take an utilitarian standpoint, measuring social welfare
by the sum of the utilities: swR(π) =

∑n
i=1 uR(i, π). By

linearity of expectation, the expected utilitarian social wel-
fare is sw(π) =

∑n
i=1 ui(π). To help compute the expected

utilities, we need a sequence γk given by γ1 = γ2 = 1,

γk =
b(k−1)/2c∏

j=1

2j+1
2j for k > 3 and γk = γk/k for all k.

Asymptotically γk =
√

2k
π +O

(
1√
k

)
. To simplify notation,

we suppose empty sums are zero and empty products are one.

3 Computing the Expected Social Welfare
Bouveret and Lang 2011 conjectured that it is NP-hard to
compute the expected social welfare of a given policy. This
calculation takes into account a super-exponential number of
possible profiles. Nevertheless, as we show here, the expected
utility of each agent can be computed in just O(np2) time for
an arbitrary utility function, and O(np) time for Borda utili-
ties. We begin with this last case, and then extend the results
to the general case.

Let Pnp denote the set of all policies of length p for n
agents. For p > 2, we define an operator Pnp → Pnp−1 map-
ping π 7→ π̃, by deleting the the first entry. More precisely,
π̃i = πi+1 for i ∈ {1, . . . , p − 1}. For example, π = 1211
and π̃ = 211.
Lemma 1. For Borda scoring, n > 2 agents, p > 2 items
and π ∈ Pnp with π1 = 1, we have:

u1(π) = p+ u1(π̃), ui(π) =
p+ 1

p
ui(π̃), i 6= 1

and these values can be computed in O(np) time.
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Proof. Agent 1 picks her first item, giving her a utility of p.
After that, from her perspective, it’s the standard game on
p − 1 items with policy π̃, so she expects to get an utility of
u1(π̃). This proves the first equation. For the other agents, it
is more involved. Let i ∈ {2, . . . , n} be a fixed agent. For
q ∈ {1, . . . , p}, let ai(q, π) denote the probability that under
policy π agent i gets the item with utility q. Note that this
probability does not depend on the utility function but only
on the ranking: it is the probability that agent i gets the item
of rank p− q+ 1 in her preference order. By the definition of
expectation,

ui(π) =

p∑
q=1

ai(q, π)q. (1)

There are three possible outcomes of the first move of agent
1 with respect to the item that has utility q for agent i. With
probability (q − 1)/p, agent 1 has picked an item with utility
less than q (for agent i), with probability (p−q)/p, agent 1 has
picked an item with utility more than q, and with probability
1/p it was the item of utility equal to q. In the first case there
are only q− 2 items of utility less than q left, hence the prob-
ability for agent i to get the item of utility q is ai(q−1, π̃). In
the second case there are still q− 1 items of value less than q,
hence the probability to get the item of utility q is a(q, π̃). In
the third case, the probability to get the item of utility is zero,
and together we obtain

a(q, π) =
q − 1

p
ai(q − 1, π̃) +

p− q
p

ai(q, π̃). (2)

Substituting this into (1) yields

ui(π) =

p∑
q=1

[
q − 1

p
ai(q − 1, π̃) +

p− q
p

ai(q, π̃)

]
q

=

p∑
q=1

(q − 1)q

p
ai(q − 1, π̃) +

p∑
q=1

(p− q)q
p

ai(q, π̃)

In the first sum we substitute q′ = q − 1 and this yields

ui(π) =

p−1∑
q′=0

q′

p
· ai(q′, π̃) · (q′ + 1) +

p∑
q=1

p− q
p
· ai(q, π̃) · q

The first term in the first sum and the last term in the second
sum are equal to zero, so they can be omitted and we obtain

u2(π) =

p−1∑
q′=1

q′

p
· ai(q′, π̃) · (q′ + 1) +

p−1∑
q=1

p− q
p
· ai(q, π̃) · q

=

p−1∑
q=1

ai(q, π̃)

[
q

p
· (q + 1) +

p− q
p
· q
]

=
p+ 1

p

p−1∑
q=1

ai(q, π̃) · q =
p+ 1

p
u2(π̃).

The time complexity follows immediately from the recur-
sions.

π1 = 121212 π2 = 111222
π u1(π) u2(π) sw(π) π u1(π) u2(π) sw(π)

1 2 0 1 1 2 0 1 1
2 12 2 1.5 3.5 22 0 3 3
3 212 2.67 4.5 7.17 222 0 6 6
4 1212 6.67 5.63 12.3 1222 4 7.5 11.5
5 21212 8 10.63 18.63 11222 9 9 18
6 121212 14 12.4 26.4 111222 15 10.5 25.5

Table 1: Expected utilities and expected utilitarian social wel-
fare computation for π1 = 121212 and π2 = 111222

Example 1. Consider two agents with Borda utilities and the
policies π1 = 121212 and π2 = 111222. We compute ex-
pected utilities and expected social welfare for each of them
using Lemma 1. Table 1 shows results up to two decimal
places. Note that expected values computed in all examples
in the paper coincide with the results obtained by the brute-
force search algorithm from [Bouveret and Lang, 2011].

Due to the linearity of Borda scoring the probabilities
ai(q, π) in the proof of Lemma 1 cancel, and this will allow
us to solve recursions explicitly and to prove our main result
about the optimal policy for Borda scoring in Section 5.

In the general case, we can still compute the expected util-
ities u(i, π), and thus sw(π), but we need the probabilities
ai(q, π) from the proof of Lemma 1: ai(q, π) is the probabil-
ity that under policy π, agent i gets the item ranked at position
p− q + 1 in her preference order. Computing these probabil-
ities using (2) adds a factor of p to the runtime.
Lemma 2. For n > 2 agents, p > 2 items, a policy π ∈ Pnp
and an arbitrary scoring function g, the expected utility for
agent i is

ui(π) =

p∑
q=1

ai(q, π)g(q)

and can be computed in O(np2) time.
Lemma 2 allows us to resolve an open question from [Bou-

veret and Lang, 2011].
Corollary 1. For n agents and an arbitrary scoring utility
function g, the expected utility of each agent, as well as the
expected utilitarian social welfare can be computed in poly-
nomial time.

For some special policies, the recursions in Lemma 1
can be solved explicitly. A particularly interesting policy
is the strictly alternating one (denoted ALTPOLICY) π =
123 . . . n123 . . . n123 . . . n . . . .

Proposition 1. Let π be the strictly alternating policy of
length p starting with 1. The expected utilities and utilitar-
ian social welfare for two agents and Borda scoring are

sw(π) =
1

3

[
(2p− 1)(p+ 1) + γp+1

]
(u1(π), u2(π)) =


(
p(p+1)

3 , p
2−1
3 + 1

3γp+1

)
if p is even,(

p(p+1)
3 + 1

3γp+1,
p2−1

3

)
if p is odd.

For n agents the expectations are, for all i ∈ {1, . . . , n},

ui(π) =
p2

n+ 1
+O(p), sw(π) =

np2

n+ 1
+O(p).



Proof. A proof for the two agents case can be done
by straightforward induction using the recursions from
Lemma 1. For n agents we outline the proof. The full proof
is given in the Appendix A of the online version [Kalinowski
et al., 2013a]. First, we solve the recursions for the expected
utility of agent i when the number of items is p ≡ i − 1
(mod n). Using these values, we approximate the expected
utility for the remaining combinations of p and i.

Example 2. Consider the policy π1 from Example 1. Us-
ing Proposition 1, we get: u1(π) = 6(6+1)

3 = 14, u2(π) =
62−1

3 + 1
3γ6+1 = 11.67 + 2.19/3 = 12.4 and sw(π) = 26.4.

These values coincide with results in Table 1.

For a fixed number n of agents, we write the number of
items as p = kn + r with 0 6 r < n. We call a policy π =
π1 . . . πp balanced if {πin+1, . . . , πin+n} = {1, 2, . . . , n}
for all i ∈ {0, . . . , k − 1} and |{πkn+1, . . . , πkn+r}| = r.
For any balanced policy, the expected utility of any agent lies
between that of agents 1 and n in the alternating policy. Thus
every agent has expected utility p2/(n+ 1) +O(p).

4 Comparison with Other Mechanisms
We compare with two other allocation mechanisms that pro-
vide insight into the efficiency of the alternating policy. The
best preference mechanism (BESTPREF) allocates each item
to the agent who prefers it most breaking ties at random. The
random mechanism (RANDOM) allocates items by flipping a
coin for each individual item.

Proposition 2. For two agents, and Borda utilities, the ex-
pected utilitarian social welfare of BESTPREF is (p+1)(4p−1)

6 .

For n agents, it is np2

n+1 + p
2 +O(1).

Proof. Due to space limitations we only present a proof for
two agents. The proof for n agents is again given in the on-
line Appendix B. Let Sp be the set of all permutations of
{1, 2, . . . , p}. Then the expected utilitarian social welfare is

1

p!

∑
a∈Sp

p∑
i=1

max{i, ai} =
1

p!

p∑
i=1

∑
a∈Sp

max{i, ai}.

We split the inner sum into two sums: one for all permutations
a = (a1, . . . , ap) with ai 6 i, and one for the remaining
permutations. Hence, we get

1

p!

p∑
i=1

 ∑
a∈Sp : ai6i

i+
∑

a∈Sp : ai>i

ai

 .
We compute the value of each inner sum separately. In the
first sum each term equals i, so we have to determine the
number of terms. For ai there are i possible values 1, 2, . . . , i,
and for a fixed value of ai there are (p − 1)! permutations of
the remaining values. So the first sum has (p − 1)!i terms
of value i, hence it equals (p − 1)!i2. The second sum con-
tains for each j ∈ {i + 1, . . . , p} exactly (p − 1)! terms
of value ai = j, hence it equals (p − 1)!

∑p
j=i+1 j =

sw(π)
ALTPOLICY BESTPREF RANDOM
np2

n+1 +O(p) np2

n+1 + p
2 +O(1) p2+p

2

Table 2: Expected utilitarian social welfare for different
mechanisms.

(p− 1)!(p(p+ 1)/2− i(i+ 1)/2). So the expected utilitarian
social welfare is

1

p!

p∑
i=1

(p− 1)!

[
i2 +

1

2
p(p+ 1)− 1

2
i(i+ 1)

]

=
1

2p

p∑
i=1

[
p(p+ 1) + i2 − i

]
=

(p+ 1)(4p− 1)

6
.

Proposition 3. For n agents, and Borda utilities, the expected
utilitarian social welfare of RANDOM is p(p+1)

2 .

Proof. As the probability of each agent obtaining the ith item
is 1/n, the expected utilitarian social welfare is n

∑p
i=1

i
n =

p(p+1)
2 .

Table 2 summarizes the expected utilitarian social welfares
for these mechanisms. Clearly, BESTPREF is an upper bound
on the expected utilitarian social welfare for any allocation
mechanism. As in [Bouveret and Lang, 2011], we define
asymptotic optimality of a sequence of policies (π(p))p=1,2,...

where π(p) is a policy for p items by

lim
p→∞

sw(π(p))

maxπ∈Pp
sw(π)

= 1.

As can be seen from the table, ALTPOLICY is an asymptoti-
cally optimal policy. By the observation in the end of the pre-
vious section the same is true for any balanced policy, and this
implies Proposition 5 in [Bouveret and Lang, 2011]. How-
ever, the proof in [Bouveret and Lang, 2011] is incorrect as
it implies that the expected utility is p2/n + O(1) for ev-
ery agent which contradicts our upper bound for BESTPREF.
See Appendix C for a detailed discussion of the gaps in the
proof. Of course, for any given p and preference orderings,
ALTPOLICY may not give the maximal utilitarian social wel-
fare possible.
Example 3. Consider two agents and six items with the fol-
lowing preferences: 1 > 2 > 3 > 4 > 5 > 6 and
1 > 6 > 2 > 3 > 4 > 5. The ALTPOLICY policy gives items
{1, 2, 4} and {6, 3, 5} to agents 1 and 2 respectively. Hence,
the total welfare is (6 + 5 + 3) + (5 + 3 + 1) = 23. Con-
sider a policy π = 121111 which gives the following items
to agents: {1, 2, 3, 4, 5} and {6}. The total welfare is now
(6 + 5 + 4 + 3 + 2) + (6) = 25.

The RANDOM mechanism gives the worst expected utili-
tarian social welfare among the three mechanisms. Moreover,
as n increases the expected utilitarian social welfare produced
by RANDOM declines compared with the other two mecha-

nisms: lim
p→∞

sw(RANDOM(p)
)

sw(BESTPREF(p)
)

= n+1
2n .

With two agents, the expected loss using ALTPOLICY com-
pared to BESTPREF (which requires full revelation of the



preference orders) is less than p/6. In particular, with high
probability ALTPOLICY yields an utilitarian social welfare
very close to the upper bound.

Proposition 4. For two agents and any ε > 0, with probabil-
ity at least 1 − ε, ALTPOLICY is a (1 − 1

3pε )-approximation
of the optimal expected utilitarian social welfare.

Proof. Let the random variables z1 and z2 denote the utili-
tarian social welfare for ALTPOLICY and BESTPREF. Then
z2 − z1 > 0 and for the expectations we have E(z1) =
2p2+p−1+γp

3 > 2p2+p
3 and E(z2) = 4p2+3p−1

6 .
So E(z2 − z1) < p/6, and by Markov’s inequality

P
(
z2 − z1 >

p

6ε

)
6

p/6

p/(6ε)
= ε.

Writing it multiplicatively, with probability at least 1− ε,

z1
z2

>
p2/2− p/(6ε)

p2/2
= 1− 1

3pε
.

A similar result holds for more than two agents.

Proposition 5. For n agents, there exists a constant C
such that for every ε > 0 with probability at least 1 − ε
ALTPOLICY is a (1 − C

pε )-approximation of the optimal ex-
pected utilitarian social welfare.

5 Optimality of the Alternating Policy
We now consider the problem of finding the policy that max-
imizes the expected utilitarian social welfare for Borda utili-
ties. Bouveret and Lang 2011 stated that this is an open ques-
tion, and conjectured that this problem is NP-hard. We close
this problem, by proving that ALTPOLICY is in fact the opti-
mal policy for any given p with two agents.

Theorem 1. The expected utilitarian social welfare is max-
imized by the alternating policy for two agents supposing
Borda utilities and the full independence assumption.

Note that by linearity of expectation this implies optimal-
ity of the alternating policy for every linear scoring func-
tion g(k) = αk + β with α, β ∈ R, α 6 0. In particu-
lar, the result also holds for quasi-indifferent scoring where
g(k) = N + (p− k + 1) for large N .

In the following let π∗p always be the alternating policy of
length p. We also recall that due to symmetry we can only
consider policies that starts with 1, e.g. policy 212 is equiva-
lent to 121. To prove Theorem 1 we need to prove that for any
policy π of length p the expected utilitarian social welfare is
smaller or equal to the expected utilitarian social welfare of
π∗p . That is, dswπ = sw(π)−sw(π∗p) 6 0. We proceed in two
steps. First, we describe dswπ recursively, by representing the
policy π in terms of its deviations from π∗p . Second, given the
recursive description of dswπ , we prove by induction that this
difference is never positive (Proposition 6). The proof is not
trivial as the natural inductive approach to derive dswπ 6 0
from dswπ̃ 6 0 does not go through. Hence, we will prove
a stronger result in Theorem 2 that implies Proposition 6 and
Theorem 1.

Recursive definition. To obtain a recursive definition of
dswπ , we observe that any policy π can be written in terms
of its deviations from ALTPOLICY policy π∗. We explain
this idea using the following example. Consider a policy
π = 1121. There are two ways to extend π with a prefix
to obtain policies of length 5: π′ = 11121 and π′′ = 21121
which is equivalent to π′′ = 12212. We say that π′′ = 12212
follows ALTPOLICY in extending π as its prefix is (12) which
coincides with the alternation step. We say that π′ = 11121
deviates from ALTPOLICY in extending π as its prefix is (11)
which does not correspond to the alternation step.

Next we define a notion of the policy tree, which is a bal-
anced binary tree, that represents all possible policies in terms
of deviations from π∗. The main purpose of this notion is to
explain intuitions behind our derivations and proofs. We start
with the policy (1), which is the root of the tree. We expand a
policy to the left by a prefix of length one. We can follow the
strictly alternation policy by expanding (1) with prefix 2. This
gives policy (21) which is equivalent to (12) due to symme-
try. Alternatively, we can deviate from ALTPOLICY by ex-
panding (1) with prefix 1. This gives policy (11). This way
we obtain all policies of length 2. We can continue expanding
the tree from (12) and (11) following the same procedure and
keeping in mind that we break symmetries by remembering
only polices that start with 1. The following example show all
polices of length at most 5. By convention, given a policy π in
a node of the tree we say that we follow ALTPOLICY on the
left branch and deviate from ALTPOLICY on the right branch.
Example 4. Figure 1 shows a tree which represents all poli-
cies of length at most 5. A number below each policy shows
the value of the expected utilitarian social welfare for this
policy. As can be seen from the tree, ALTPOLICY is the op-
timum policy for all p. Consider, for example, π = 12212.
We can obtain this by deviations from π∗5 (shown as the
dashed path): (1) →L1

(12) →L2
(121) →R3

(1121) →L4

(12212).
Next we give a formal recursive definition of dswπ . We

recall that from Lemma 1 the recursions for ALTPOLICY

(u1(π∗p), u2(π∗p)) =

(
p+ u2(π∗p−1),

p+ 1

p
u1(π∗p−1)

)
For any π ∈ Pp, p > 2 we obtain a similar recursion that de-
pends on whether π follows or deviates from π∗ in extension
of π̃ at each step. In the first case, the prefix of π is (12) and
in the second case the prefix is (11). So we have

(u1(π), u2(π)) =


(
p+ u2(π̃), p+1

p u1(π̃)
)

if π = 12 . . .,(
p+ u1(π̃), p+1

p u2(π̃)
)

if π = 11 . . ..

Then (u1(π)− u1(π∗p), u2(π)− u2(π∗p)) =
(
u2(π̃)− u2(π∗p−1), p+1

p

(
u1(π̃)− u1(π∗p−1)

))
if π = 12 . . .,(

u1(π̃)− u2(π∗p−1), p+1
p

(
u2(π̃)− u1(π∗p−1)

))
if π = 11 . . ..

We introduce notations to simplify the explanation. Us-
ing Proposition 1 we define δp = u1(π∗p) − u2(π∗p) =
1
3

[
p+ 1 + (−1)p+1γp+1

]
. We define the sets

Ap =
{(
u1(π)− u1(π∗p), u2(π)− u2(π∗p)

)
: π ∈ Pp

}
.
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Figure 1: The policy tree of depth 5.

Note that for an element (a, b) ∈ Ap corresponding to a pol-
icy π ∈ Pp we have a + b = sw(π) − sw(π∗p) = dswπ .
Hence, π has a higher expected utilitarian social welfare than
π∗p if and only if a+ b > 0.

The recursions above provide a description of the sets Ap.
We have A1 = {(0, 0)} because π∗1 is the only policy of
length 1, and for p > 2 the set Ap consists of the elements(
b, p+1

p a
)

and
(
a+ δp−1,

p+1
p (b− δp−1)

)
where (a, b) runs

over Ap−1. Theorem 1 is equivalent to the following state-
ment.

Proposition 6. Let A1 = {(0, 0)} and

Ak =

{(
b,
k + 1

k
a

)}
∪
{(

a+ δk,
k + 1

k
(b− δk)

)}
for k > 2 where (a, b) ∈ Ak−1, δk =

1

3

(
k + (−1)kγk

)
.

Then a+ b 6 0 for all (a, b) ∈
⋃
k Ak.

Figure 2 shows the setsAk, k = 1, . . . , 4 in the policy tree.

L1 / f1 R1 / g1
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Figure 2: The sets Ak, k = 1, . . . , 4 in the policy tree.

Proving optimality. We might try to prove Proposition 6
inductively by deriving a + b 6 0 for the point (a, b) ∈ Ap
corresponding to policy π from a′ + b′ 6 0 for (a′, b′) ∈
Ap−1 corresponding to policy π̃. Unfortunately, the induction
hypothesis is too weak as the following example shows.

Example 5. Assume (a′, b′) = (−12, 11.9) ∈ A10 corre-
sponding to some policy π ∈ P10. Let (a, b) ∈ A11 be ob-
tained from (−12, 11.9) by deviating from π∗11. With δ11 =
2.7643 we obtain a + b = −9.2357 + 9.9662 > 0. Thus
(a′, b′) satisfies Proposition 6 while (a, b) violates it.

To remedy this problem we would like to strengthen the
proposition, for example by proving a + b 6 f(a, b) for all
(a, b) ∈

⋃
k Ak where f is some function with f(x, y) 6

0 for all (x, y). The difficulty of finding such a function is
indicated by Figure 3 showing the set A10. Different markers
distinguish the points arising from A9 by following π∗ from
those deviating from π∗.

Figure 3: The set A10 and a more detailed view of the region
around the origin.

The key idea of our proof is to strengthen Proposition
6 in another direction. We describe this strengthening first
and then outline the induction argument. The technical de-
tails of the proof are presented in the online Appendix D.
Consider a policy π that is represented by a node nπ at
level k in the policy tree. Instead of requiring the inequal-
ity a + b 6 0 only for the point (a, b) ∈ Ak that corre-
sponds to policy π, we also require it for (i) all policies that
lay on the path that follow only the right branches from nπ
and (ii) all polices that lay on the path that starts from nπ
by following the left branch once and then only follow the
right branches. To formalize this idea, for k > 1 we define
functions fk, gk : R2 → R2 by fk(x, y) =

(
y, k+2

k+1x
)

and

gk(x, y) =
(
x+ δk+1,

k+2
k+1 (y − δk+1)

)
. Note that Ak+1 =

fk(Ak) ∪ gk(Ak) for all k > 1, as fk encodes the case when
we follow the left branch and gk – the right branch. Fig-
ure 2 illustrates this correspondence. We also consider iter-
ated compositions of these functions. For every k > 1 let
Gk0 denote the identity on R2, i.e. Gk0(x, y) = (x, y), and
for m > 1 let Gkm denote the function

Gkm = gk+m−1 ◦ gk+m−2 ◦ · · · ◦ gk.
Applying Gkm to the point (a, b) ∈ Ak corresponding to

π ∈ Pk gives the point (a′, b′) ∈ Ak+m which corresponds



to the policy π′ ∈ Pk+m that is obtained from π by following
the right branch m times. For all k > 1 and m > 1, we
define the function Fkm = Gk+1,m−1 ◦ fk. Fkm corresponds
to starting in level k, following the first left branch and then
m − 1 right branches. For (x, y) ∈ Ak, Gkm(x, y) ∈ Ak+m
for m > 0 and Fkm(x, y) ∈ Ak+m for m > 1. Proposition 6
is a consequence of the following theorem.
Theorem 2. Let A1 = {(0, 0)} and

Ak+1 = fk(Ak) ∪ gk(Ak) =

{(
y,
k + 2

k + 1
x

) }
∪{(

x+ δk+1,
k + 2

k + 1
(y − δk+1)

)}
for k > 1 where (x, y) ∈ Ak, δk =

1

3

(
k + (−1)kγk

)
. Then

for every k > 1 and every (x, y) ∈ Ak the following state-
ments are true.

1. For all m > 0, if (x′, y′) = Gkm(x, y) then x′+y′ 6 0.
2. For all m > 1, if (x′, y′) = Fkm(x, y) then x′+ y′ 6 0.

(x,y)

(x,y)

(0,0)

Gk-1m-1(x,y) 

to bound x + y

~ ~

~ ~

~
~

...

...

...

...

......

... ...... ... ... ...

...

...

...

...

......

......

...

fk-1 gk-1

Figure 4: Schematic representation of the proof of Theorem 2.

Proof sketch. We provide the full proof in the Appendix D.2.
We give a high-level overview. We start with a few tech-
nical lemmas to derive an explicit description of functions
(x′, y′) = Fkm(x, y) and (x′′, y′′) = Gkm(x, y). This gives
us explicit expressions for the sums x′ + y′ and x′′ + y′′

in terms of x and y. Then we proceed through the induc-
tion proof. We summarize the induction step here. Suppose
the statements of the theorem are already proved for all
sets Al with l < k. Let (x, y) be an arbitrary element of
Ak. Suppose (x, y) = fk−1(x̃, ỹ) for some (x̃, ỹ) ∈ Ak−1
(the case (x, y) = gk−1(x̃, ỹ) is similar). Figure 4 shows
(x̃, ỹ) and (x, y) that is obtained from (x̃, ỹ) by following
the left branch. By the induction hypothesis, x′ + y′ 6 0
whenever (x′, y′) ∈ {Gk−1,m(x̃, ỹ), Fk−1,m(x̃, ỹ)}. The cor-
responding nodes are highlighted in gray in Figure 4. To
complete the induction step we need to show x′ + y′ 6
0 for (x′, y′) ∈ {Gkm(x, y), Fkm(x, y)}. The correspond-
ing nodes are indicated by dashed circles. The result for
(x′, y′) = Gkm(x, y) (gray and dashed) follows immediately
as (x′, y′) = Gkm(x, y) = Fk−1,m+1(x̃, ỹ). For (x′, y′) =
Fkm(x, y) we first express x′ + y′ in terms of x̃ and ỹ. Then,
by induction x′′ + y′′ 6 0 for (x′′, y′′) = Gk−1,m−1(x̃, ỹ).

Inverting the representation of x′′ + y′′ in terms of x̃ and ỹ
we derive a bound x̃ + ỹ ≤ −c(m) 6 0, depending on m,
and this stronger bound is used to prove x′ + y′ 6 0 for
(x′, y′) = Fkm(x, y).

The extension of Theorem 2 to n agents is not straight-
forward. Firstly, it requires deriving exact recursions for the
expected utility for an arbitrary p. This is not trivial, as
Proposition 1 only provides asymptotics. An easier exten-
sion might be to other utility functions. The alternating pol-
icy is not optimal for all scoring functions. For example, it
is not optimal for the k-approval scoring function which has
g(i) = 1 for i 6 k and 0 otherwise. However, we conjecture
that ALTPOLICY is optimal for all convex scoring functions
(which includes lexicographical scoring).

6 Strategic Behaviour
So far, we have supposed agents sincerely pick the most valu-
able item left. However, agents can sometimes improve their
utility by picking less valuable items. To understand such
strategic behaviour, we view this as a finite repeated game
with perfect information. [Kohler and Chandrasekaran, 1971]
proves that we can compute the subgame perfect Nash equi-
librium for the alternating policy with two agents by simply
reversing the policy and the preferences and playing the game
backwards. More recently, [Kalinowski et al., 2012] prove
this holds for any policy with two agents.

We will exploit such reversal symmetry. We say that a pol-
icy π is reversal symmetric if and only the reversal of π, after
interchanging the agents if necessary, equals π. The policies
1212 and 1221 are reversal symmetric, but 1121 is not. The
next result follows quickly by expanding and rearranging ex-
pressions for the expected utilitarian social welfare using the
fact that we can compute strategic play by simply reversing
the policy and profile and supposing truthful behaviour.
Theorem 3. For two agents and any utility function, any re-
versal symmetric policy that maximizes the expected utilitar-
ian social welfare for truthful behaviour also maximizes the
expected utilitarian social welfare for strategic behaviour.

As the alternating policy is reversal symmetric, it follows
that the alternating policy is also optimal for strategic be-
haviour. Unfortunately, the generalisation of these results to
more than two agents is complex. Indeed, for an unbounded
number of agents, computing the subgame perfect Nash equi-
librium becomes PSPACE-hard [Kalinowski et al., 2013b].

7 Conclusions
Supposing additive utilities, and full independence between
agents, we have shown that we can compute the expected util-
ity of a sequential allocation procedure in polynomial time for
any utility function. Using this result, we have proven that the
expected utilitarian social welfare for Borda utilities is max-
imized by the alternating policy in which two agents pick
items in a fixed order. We have argued that this mechanism
remains optimal when agents behave strategically. There re-
main open several important questions. For example, is the
alternating policy optimal for more than two agents? What
happens with non-additive utilities?
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Appendix
A Proof of Proposition 1 for n agents
We determine the asymptotic behaviour of the expected utili-
ties for the strictly alternating policy of length p

π = 123 . . . n123 . . . n123 . . . n . . . .

As the policy is now determined by the number of items
we simplify notation by letting uip be the expected utility of
agent i for the allocation of p items. Then u11 = 1, u21 =
u31 = · · · = un1 = 0 and

u1p = p+ un,p−1, uip =
p+ 1

p
ui−1,p−1 (i = 2, . . . , n)

for p > 2. Decoupling these recursions we get for the first
agent

u1p = p, p 6 n, u1p = p+
p

p− n+ 1
u1,p−n, p > n.

and this allows us to write down the expected utility exactly
for one residue class modulo n per agent.
Proposition 7. For i ∈ {1, 2, . . . , n}, if p ≡ i − 1 (mod n)
then the expected utility of agent i equals

uip =
(p− i+ 1)(p+ 1)

n+ 1

Proof. We start with i = 1 and prove by induction that u1p =
p(p+1)
n+1 for all p ≡ 0 (mod n). The induction starts at p = n

with u1p = n = p(p + 1)/(n + 1). For p > n with p ≡ 0
(mod n), we have by induction

u1p = p+
p

p− n+ 1
u1,p−n

= p+
p

p− n+ 1

(p− n)(p− n+ 1)

n+ 1
=
p(p+ 1)

n+ 1
.

Now we proceed by induction on i. For i > 2 our recursion
gives

uip =
p+ 1

p
ui−1,p−1

=
p+ 1

p

((p− 1)− (i− 1) + 1)((p− 1) + 1)

n+ 1

=
(p− i+ 1)(p+ 1)

n+ 1
.

For the remaining residue classes mod n we provide
asymptotic statements.
Proposition 8. For fixed n the expected utility of agent i ∈
{1, 2, . . . , n} equals

uip =
p2

n+ 1
+O(p).

Proof. For p ≡ i− 1 (mod n) this follows from Proposition
7. Otherwise let k be the unique element of {1, . . . , n − 1}
such that p − k ≡ i − 1 (mod n). The following estimates
prove the claim. From

ui,p−k 6 uip 6 ui,p+(n−k)

it follows that

uip >
(p− k − i+ 1)(p− k + 1)

(n+ 1)
,

uip 6
(p+ (n− k)− i+ 1)(p+ (n− k) + 1)

n+ 1
.

This gives

p2

n+ 1
− 2p 6 uip 6

p2

n+ 1
+ 2p+ n.

Corollary 2. The expected utilitarian social welfare for the

alternating policy is
np2

n+ 1
+O(p).

B Proof of Proposition 2 for n agents
Proposition 9. Let π be the BESTPREF policy with n agents
using Borda utility functions. The expected utilitarian social
welfare is

np2

n+ 1
+
p

2
+O(1).

Proof. The expected utilitarian social welfare for this proce-
dure is the expected value of the random variable

X =

p∑
q=1

max
16i6n

αiq

where the n vectors αi = (αi1, αi2, . . . , αip) are random per-
mutations of the set {1, 2, . . . , p} that are drawn independent
and uniform from the set of all p! permutations. The interpre-
tation is that we fix an order of the items, and aiq is the value
of item q for agent i according to her random preference or-
der. We decompose X as a sum of random variables

Xq = max
16i6n

αiq

and calculate the expected value of these. For the probability
that Xq takes value j we can write

P (Xq = j) =

n∑
k=1

(
n

k

)(
1

p

)k (
j − 1

p

)n−k
=

(
1

p
+
j − 1

p

)n
−
(
j − 1

p

)n
=

(
j

p

)n
−
(
j − 1

p

)n
.



The expected value of Xq is

E (Xq) =

p∑
j=1

j

((
j

p

)n
−
(
j − 1

p

)n)

=
1

pn

p∑
j=1

j [jn − (j − 1)n] =
1

pn

 p∑
j=1

jn+1 −
p−1∑
j=0

(j + 1)jn


=

1

pn

 p∑
j=1

jn+1 −
p−1∑
j=0

jn+1 −
p−1∑
j=0

jn


=

1

pn

[
pn+1 − 1

n+ 1
(p− 1)n+1 − 1

2
(p− 1)n +O(pn−1)

]
=

1

pn

[
n

n+ 1
pn+1 +

1

2
pn +O(pn−1)

]
=

np

n+ 1
+

1

2
+O(1/p).

Now summation over q yields the result.

C Analysis of the proof of the asymptotic
optimality of balanced policies

Bouveret and Lang claim that every sequence of bal-
anced policies is asymptotically optimal. In fact, their state-
ment is even a bit stronger in that they do not require
πkn+1, . . . , πkn+q to be pairwise distinct (their θ is any agent
sequence). Our argument in Section 4 can be adapted to yield
this stronger result. In the present section we point out some
serious gaps in the proof given by Bouveret and Lang.

For i = 1, . . . , k let the sequence of stages (i−1)n+1, (i−
1)n + 2, . . . , in be called the i-th round, i.e. for a balanced
policy, in every round each agent picks exactly one item.

Bouveret and Lang start with the observation that in the
first round the first agent gets utility p and the second one
(p2 − 1)/p = (1 + o(1))p. They say that the third agent
gets Θ(p) which is too weak for what they want to derive:
If the third agent would get p/2 this would be Θ(p) but
not p + O(p−1) which is what the claim next. The proof
of this expectation of p + O(p−1) is already nontrivial and
could be done as follows. The j-th agent of the first round
gets her most preferred item with probability

(
p−1
j−1
)
/
(
p
j−1
)

=
p−j+1
p and her second most preferred item with probability(

p−2
j−2
)
/
(
p
j−1
)

= (j−1)(p−j+1)
p(p−1) , so her expected utility from

the first round is at least

p−j+1+
(j − 1)(p− j + 1)

p
= p− (j − 1)2

p
= p+O(p−1).

Then Bouveret and Lang continue by stating that in the
second round the starting agent gets her second preferred item
with probability 1− n−1

p−1 . This is only true if the second round
starts with the same agent as the first round. Otherwise one
has to take into account the probability, that the first agent
of the second round took her second favourite item already
in the first round (because her first choice was not available).
For instance if the starting agent of the second round was sec-
ond in the first round then her probability to pick her second

preferred item in the second round equals

p− 2

p
·
(
p−3
n−2
)(

p−2
n−2
) = 1− n

p
.

They argue that the starting agent of round two gets utility at
least (1− n−1

p−1 )(p−1) = p−1+O(p−1), and this last equality
is clearly wrong. In order to show that every agent from the
second round gets utility at least p− 1 +O(p−1) it would be
necessary to consider not only the probability that the agent
gets her second most preferred item in the second round, but
also probabilities for other items (just like for the first round
we had to take into account the most preferred and the second
most preferred item). It seems possible that this can be done
(maybe just the third preferred item is sufficient), but it is in
no way obvious how to do it.

It seems to be very difficult to generalize this from the
second round to the following rounds. Their claim is that in
round i every agent gets utility p− i+ 1 +O(p−1). It might
be that this is true (although highly non-obvious) for bounded
i, but Bouveret and Lang use this statement for all i up to k
(which tends to infinity with p). Even if the p−i+1+O(p−1)
utility for round i would be correct, their calculation of the
total utility

[
p+O(p−1) + · · ·+ (p+ k − 1) +O(p−1)

]
of

any agent is still wrong. It should be:

k∑
i=1

(p− i+ 1 +O(p−1)) = kp− k(k − 1)

2
+O(1)

=
(2n− 1)p2

2n2
+

p

2n
+O(1).

D Proof of Theorem 2
D.1 Technical lemmas
We start with the observation that

γk+1 =

{
γk if k is even,
k
k+1γk if k is odd.

(3)

In the following lemma we describe the functions Gkm and
Fkm explicitly.
Lemma 3. For k > 1, m > 0, and (x′, y′) = Gkm(x, y),
and (x′′, y′′) = Fkm(x, y), we have

x′ = x+

m∑
j=1

δk+j ,

y′ = (k +m+ 1)

 y

k + 1
−

m∑
j=1

δk+j
k + j

 .

For k > 1, m > 1, and (x′′, y′′) = Fkm(x, y), we have

x′′ = y +

m∑
j=2

δk+j ,

y′′ = (k +m+ 1)

 x

k + 1
−

m∑
j=2

δk+j
k + j

 .



Proof. The expression for x′ follows immediately from the
definitions. For y′ we proceed by induction on m. The start
for m = 0 is trivial: y′ = y. So assume m > 1 and let
(x̃, ỹ) = Gk,m−1(x, y). Then (x′, y′) = gk+m−1(x̃, ỹ), and
using the induction hypothesis we obtain

y′ =
k +m+ 1

k +m
(ỹ − δk+m)

=
k +m+ 1

k +m

(k +m)

 y

k + 1
−
m−1∑
j=1

δk+j
k + j

− δk+m


= (k +m+ 1)

 y

k + 1
−

m∑
j=1

δk+j
k + j

 .

Finally, the expressions for x′′ and y′′ follow immediately
from (x′′, y′′) = Gk+1,m−1

(
y, k+2

k+1x
)

.

In the following two lemmas we calculate how the func-
tions Gkm and Fkm affect the coordinate sum (x, y).

Lemma 4. Let k > 1, m > 0, and (x′, y′) = Gkm(x, y).

1. If k is odd, then

x′ + y′ =x+ y +
m

k + 1
y − m(m+ 1)

6
−

1

3

b(m+1)/2c∑
j=1

γk+2j−1.

(4)

2. If k is even, then

x′ + y′ =x+ y +
m

k + 1
y − m(m+ 1)

6
+

m

3
γk+1 −

1

3

bm/2c∑
j=1

γk+2j .

(5)

Proof. With Lemma 4 we obtain

x′ + y′ = x+
∑m
j=1 δk+j+

(k +m+ 1)
(

y
k+1 −

∑m
j=1

δk+j

k+j

)
= x+ y + m

k+1y+∑m
j=1

(
1− k+m−1

k+j

)
δk+j

= x+ y + m
k+1y−

1
3

∑m
j=1

m+1−j
k+j

(
k + j + (−1)k+jγk+j

)
= x+ y + m

k+1y −
1
3

∑m
j=1(m+ 1− j)−

1
3

∑m
j=1(−1)k+j(m+ 1− j)γk+j

= x+ y + m
k+1y −

m(m+1)
6 −

1
3

∑m
j=1(−1)k+j(m+ 1− j)γk+j .

Using (3) it is easy to check that for odd k

m∑
j=1

(−1)k+j(m+ 1− j)γk+j =

b(m+1)/2c∑
j=1

γk+2j−1,

and for even k,

m∑
j=1

(−1)k+j(m+ 1− j)γk+j = −mγk +

bm/2c∑
j=1

γk+2j ,

and this concludes the proof.

Lemma 5. Let k > 1, m > 1, and (x′, y′) = Fkm(x, y).

1. If k is odd, then

x′ + y′ = x+ y +
m

k + 1
x− (m− 1)m

6
+

m− 1

3
γk+2 −

1

3

b(m−1)/2c∑
j=1

γk+2j+1.

(6)

2. If k is even, then

x′ + y′ = x+ y +
m

k + 1
x− (m− 1)m

6

−1

3

bm/2c∑
j=1

γk+2j .

(7)

Proof. We proceed exactly as in the proof of Lemma 4.

In the proof of our main result we need some rough bounds
on the numbers γk. The following weak estimates will be suf-
ficient for the induction step in the proof of Theorem 2 below.

Lemma 6. For k > 2, m > 0 we have

γk − γk+2b(m+1)/2c 6
m(m+ 1)

2k
,

γk+1 − γk+2bm/2c+1 6
m2

2k
.

Proof. For m = 0 both of these inequalities are trivially
true. So assume m > 1. For i = 1, . . . , b(m + 1)/2c, us-
ing γk+2i−2 6 1/2 we have

γk+2i−2 − γk+2i 6

(
1− k + 2i− 2

k + 2i− 1

)
γk+2i−2 6

1

2k
,

and summation over i yields

γk − γk+2b(m+1)/2c 6
m+ 1

4k
6
m(m+ 1)

2k
.

The second inequality is also trivial for m = 1. For m > 2
and i = 1, . . . , bm/2c, using γ(k+1)+2i−2 6 1/2 we have

γk+1+2i−2 − γ(k+1)+2i

6
(

1− (k+1)+2i−2
(k+1)+2i−1

)
γ(k+1)+2i−2 6 1

2k ,

and summation over i yields

γk+1 − γk+2bm/2c+1 6
m

4k
6
m2

2k
.



D.2 The induction argument
Proposition 6 is a consequence of the following theorem.
Theorem 4. Let A1 = {(0, 0)} and

Ak+1 =fk(Ak) ∪ gk(Ak)

=

{(
y,
k + 2

k + 1
x

)
: (x, y) ∈ Ak

}
∪{(

x+ δk+1,
k + 2

k + 1
(y − δk+1)

)
: (x, y) ∈ Ak

}
for k > 1 where δk =

1

3

(
k + (−1)kγk

)
. Then for every

k > 1 and every (x, y) ∈ Ak the following statements are
true.

1. For all m > 0, if (x′, y′) = Gkm(x, y) then x′+y′ 6 0.

2. For all m > 1, if (x′, y′) = Fkm(x, y) then x′+ y′ 6 0.

In particular, the first statement with m = 0 implies Proposi-
tion 6 and hence Theorem 1.

Proof. We proceed by induction on k. For k = 1 we only
have to consider (x, y) = (0, 0). For (x′, y′) = G1m(0, 0), it
follows from (4) that

x′ + y′ = −m(m+ 1)

6
− 1

3

b(m+1)/2c∑
j=1

γk+2j−1 6 0.

For (x′, y′) = F1m(0, 0), it follows from (6) and γ3 = 1/2
that

x′ + y′ = − (m− 1)m

6
+
m− 1

3
γ3 −

1

3

b(m−1)/2c∑
j=1

γk+2j+1

= − (m− 1)2

6
− 1

3

b(m+1)/2c∑
j=1

γk+2j−1 6 0.

We now assume that k > 1 and the statements of the theo-
rem are already proved for all sets Al with l < k. Let (x, y)
be an arbitrary element of Ak. We distinguish two cases.
Case 1. (x, y) = fk−1(x̃, ỹ) for some (x̃, ỹ) ∈ Ak−1. If

(x′, y′) = Gkm(x, y) = Fk−1,m+1(x̃, ỹ) then x′ + y′ 6
0 follows immediately from the induction hypothesis ap-
plied to (x̃, ỹ). So suppose

(x′, y′) = Fkm(x, y) = Fkm

(
ỹ,
k + 1

k
x̃

)
.

We need to consider the two parities of k separately.
Odd k. From Lemma 5 it follows that

x′ + y′

=ỹ +
k + 1

k
x̃+

m

k + 1
ỹ − (m− 1)m

6
+

m− 1

3
γk+2 −

1

3

b(m−1)/2c∑
j=1

γk+2j+1.

(8)

By induction ỹ + k+1
k x̃ 6 0, and using γk+1 6

1/2 we conclude that x′ + y′ 6 0 is immediate
if ỹ 6 (m−1)2(k+1)

6m . Hence we may assume ỹ >
(m−1)2(k+1)

6m . Let (x′′, y′′) = Gk−1,m−1(x̃, ỹ). By
Lemma 4,

x′′ + y′′ = x̃+ ỹ +
m− 1

k
ỹ − (m− 1)m

6
+

m− 1

3
γk −

1

3

b(m−1)/2c∑
j=1

γk+2j−1,

and by induction x′′ + y′′ 6 0. Hence

x̃+ ỹ 6
(m− 1)m

6
+

1

3

b(m−1)/2c∑
j=1

γk+2j−1−

m− 1

k
ỹ − m− 1

3
γk,

and substituting into (8) yields together with γk >
γk+2,

x′ + y′ <
1

k
x̃+

(
m

k + 1
− m− 1

k

)
ỹ+

1

3

(
γk+1 − γk+2b(m−1)/2c+1

)
=
x̃+ ỹ

k
− m

k(k + 1)
ỹ+

1

3

(
γk+1 − γk+2b(m−1)/2c+1

)
.

With x̃+ ỹ 6 0 and ỹ > (m−1)2(k+1)
6m this implies

x′+y′ <
1

3

(
γk+1 − γk+2b(m−1)/2c+1

)
− (m− 1)2

6k
,

and finally, x′ + y′ < 0 by Lemma 6.
Even k. From Lemma 5 it follows that

x′ + y′ = ỹ +
k + 1

k
x̃+

m

k + 1
ỹ − (m− 1)m

6

−1

3

bm/2c∑
j=1

γk+2j .

(9)

By induction ỹ + k+1
k x̃ 6 0, so x′ + y′ 6 0 is im-

mediate if ỹ 6 (m−1)(k+1)
6 . Hence we may assume

ỹ > (m−1)(k+1)
6 . Let (x′′, y′′) = Gk−1,m−1(x̃, ỹ).

By Lemma 4,

x′′ + y′′ = x̃+ ỹ +
m− 1

k
ỹ − (m− 1)m

6
−

1

3

bm/2c∑
j=1

γk+2j−2,

and by induction x′′ + y′′ 6 0. Hence

x̃+ ỹ 6
(m− 1)m

6
+

1

3

bm/2c∑
j=1

γk+2j−2−
m− 1

k
ỹ,



and substituting into (9) yields

x′ + y′ <
1

k
x̃+

(
m

k + 1
− m− 1

k

)
ỹ +

1

3

(
γk − γk+2bm/2c

)
=
x̃+ ỹ

k
− m

k(k + 1)
ỹ +

1

3

(
γk − γk+2bm/2c

)
.

With x̃+ ỹ 6 0 and ỹ > (m−1)(k+1)
6 this implies

x′ + y′ <
1

3

(
γk − γk+2bm/2c

)
− m(m− 1)

6k
,

and finally, x′ + y′ < 0 by Lemma 6.
Case 2. (x, y) = gk−1(x̃, ỹ) for some (x̃, ỹ) ∈ Ak−1. If

(x′, y′) = Gkm(x, y) = Gk−1,m+1(x̃, ỹ) then x′+y′ 6
0 follows immediately from the induction hypothesis ap-
plied to (x̃, ỹ). So suppose

(x′, y′) = Fkm(x, y) = Fkm

(
x̃+ δk,

k + 1

k
(ỹ − δk)

)
.

Again we discuss odd and even k separately.
Odd k. From Lemma 5 it follows that

x′ + y′ =x̃+ δk +
k + 1

k
(ỹ − δk)+

m

k + 1
(x̃+ δk)− (m− 1)m

6
+

m− 1

3
γk+2 −

1

3

b(m−1)/2c∑
j=1

γk+2j+1.

(10)

By induction x̃+ δk + k+1
k (ỹ− δk) 6 0, and using

γk+2 6 1/2 we conclude that x′+y′ 6 0 is imme-
diate if m(x̃+ δk)/(k+ 1) 6 (m− 1)2/6. So with
δk = 1

3 (k − γk) we may assume

x̃ >
(k + 1)(m− 1)2

6m
− k − γk

3
. (11)

Substituting δk = 1
3 (k − γk) into (10), rearranging

terms, and using γk+2 = kγk/(k + 1) we obtain

x′ + y′ =

x̃+ ỹ +
1

k
ỹ +

m

k + 1
x̃− (m− 2)(m− 1)

6
−

1

3

b(m−1)/2c∑
j=1

γk+2j+1 −
m

3(k + 1)
+

γk
3(k + 1)

.

(12)

For m = 1 we rearrange terms and use x̃ + ỹ 6 0
and (11) to obtain

x′+y′ = x̃+ỹ+
1

k
ỹ+

1

k + 1
x̃− 1

3(k + 1)
+

γk
3(k + 1)

=
k + 1

k
(x̃+ỹ)− x̃

k(k + 1)
− 1

3(k + 1)
+

γk
3(k + 1)

6 − 1

k(k + 1)

(
x̃+

k − γk
3

)
< 0.

For m > 2 let (x′′, y′′) = Fk−1,m−1(x̃, ỹ). By
Lemma 5,

x′′+y′′ = x̃+ỹ+
m− 1

k
x̃− (m− 2)(m− 1)

6
−

1

3

b(m−1)/2c∑
j=1

γk+2j−1,

and by induction x′′ + y′′ 6 0. So

x̃+ỹ 6
(m− 2)(m− 1)

6
+

1

3

b(m−1)/2c∑
j=1

γk+2j−1−

m− 1

k
x̃,

and substituting into (12) yields

x′+y′ 6
x̃+ ỹ

k
− m

k(k + 1)
x̃− m

3(k + 1)
+

γk
3(k + 1)

+

1

3

(
γk+1 − γk+2b(m−1)/2c+1

)
.

With x̃+ ỹ 6 0 and (11) we obtain

x′+y′ 6
m

3k(k + 1)

(
k − (k + 1)(m− 1)2

2m
− γk

)
−

m

3(k + 1)
+

γk
3(k + 1)

+
1

3

(
γk+1 − γk+2b(m−1)/2c+1

)
=

(m− 1)2

6k
+

1−m
3(k + 1)

γk+
1

3

(
γk+1 − γk+2b(m−1)/2c+1

)
<

1

3

(
γk+1 − γk+2b(m−1)/2c+1

)
− (m− 1)2

6k
,

and finally x′ + y′ < 0 by Lemma 6.
Even k. From Lemma 5 it follows that

x′ + y′ = x̃+ δk +
k + 1

k
(ỹ − δk)+

m

k + 1
(x̃+ δk)− (m− 1)m

6
− 1

3

bm/2c∑
j=1

γk+2j .

(13)

By induction x̃ + δk + k+1
k (ỹ − δk) 6 0, and

we conclude that x′ + y′ 6 0 is immediate if
m(x̃ + δk)/(k + 1) 6 (m − 1)m/6. So with
δk = 1

3 (k + γk) we may assume

x̃ >
(k + 1)(m− 1)

6
− k + γk

3
. (14)

Substituting δk = 1
3 (k+γk) into (13) and rearrang-

ing terms we obtain

x′ + y′ = x̃+ ỹ +
1

k
ỹ +

m

k + 1
x̃− (m− 2)(m− 1)

6
+

m− 1

3
γk −

1

3

bm/2c∑
j=1

γk+2j −
m

3(k + 1)
(1 + γk).

(15)



For m = 1 we rearrange terms and use x̃ + ỹ 6 0
and (14) to obtain

x′ + y′ = x̃+ ỹ +
1

k
ỹ +

1

k + 1
x̃− 1 + γk

3(k + 1)

=
k + 1

k
(x̃+ ỹ)− x̃

k(k + 1)
− 1 + γk

3(k + 1)

6 − 1

k(k + 1)

(
x̃+

k + γk
3

)
< 0.

For m > 2 let (x′′, y′′) = Fk−1,m−1(x̃, ỹ). By
Lemma 5,

x′′+y′′ = x̃+ỹ+
m− 1

k
x̃− (m− 2)(m− 1)

6
+

m− 2

3
γk+1 −

1

3

b(m−2)/2c∑
j=1

γk+2j ,

and by induction x′′ + y′′ 6 0. So

x̃+ỹ 6
(m− 2)(m− 1)

6
+

1

3

b(m−2)/2c∑
j=1

γk+2j−

m− 1

k
x̃− m− 2

3
γk+1,

and substituting this into (15), taking into account
γk+1 = γk, yields

x′ + y′ 6
x̃+ ỹ

k
− m

k(k + 1)

(
x̃+

k + γk
3

)
+

1

3

(
γk − γk+2bm/2c

)
.

With x̃+ ỹ 6 0 and (14) we obtain

x′ + y′ <
1

3

(
γk − γk+2bm/2c

)
− (m− 1)m

6k

and finally x′ + y′ < 0 by Lemma 6.
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