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Abstract
Preferences can be aggregated using voting rules.
We consider here the family of rules which perform
a sequence of pairwise majority comparisons be-
tween two candidates. The winner thus depends on
the chosen sequence of comparisons, which can be
represented by a binary tree. We address the dif-
ficulty of computing candidates that win for some
trees, and then introduce and study the notion of
fair winner, i.e. candidates who win in a balanced
tree. We then consider the situation where we lack
complete informations about preferences, and de-
termine the computational complexity of comput-
ing winners in this case.

1 Introduction
When the voters’ preferences and the voting rule are fully
specified, the computation of the winner is easy for many
voting rules. Often, however, the voters’ preferences or the
voting rule itself may be incompletely specified. For in-
stance, only some voters might have expressed their prefer-
ences. Even if all voters have expressed their preferences, a
new candidates might be introduced. As a third example, we
might be eliciting preferences using a compact language such
as CP-nets [Boutilier et al., 2004] which induces only a par-
tial or incomplete ordering. [Konczak and Lang, 2005] have
therefore considered voting with incompletely specified pref-
erences. They compute the candidates winning in some (resp.
all) of the complete extensions of the partial preference pro-
files for a given voting rule. A second kind of incompleteness
is in the voting rule itself. For example, the order in which
candidates are compared may not yet be fixed. This can make
manipulation by a coalition of voters more difficult [Conitzer
and Sandholm, 2003].

In this paper, we consider a well-known family of voting
rules based on sequential majority comparisons, where the
winner is computed from a series of majority comparisons
along a binary tree. We study the impact of these two kinds
of incompleteness on such voting rules.

The paper is structured as follows. In Section 2 we recall
some basics on sequential majority voting. In Section 3 we
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deal with incompleteness in the voting rule. We study the
complexity of computing candidates that win in some or all
possible binary trees. Then, in Section 4 we focus on binary
trees where the number of competitions for each candidate is
as balanced as possible and give characterizations of winners
in such trees. In particular, it is possible to build in polyno-
mial time a tree featuring a bounded level of imbalance where
a particular candidate A wins, if such a tree exists. Finally, in
Section 5 we study the scenario where the agents have only
partially revealed their preferences, giving characterizations
for notions of possible and Condorcet winners and proving
that such winners can be found in polynomial time.

2 Background

Preferences and profiles. We assume that each agent’s
preferences are specified by a (possibly incomplete) total or-
der (TO) (that is, by an asymmetric, irreflexive and transitive
order) over a set of candidates (denoted by Ω). Given two
candidates, A,B ∈ Ω, an agent will specify exactly one of
the following: A < B, A > B, or A?B where A?B means
that the relation between A and B has not yet been revealed.
A profile is a sequence of total orders describing the prefer-
ences for a sequence of n agents. An incomplete profile is
a sequence in which one or more of the preference relations
is incomplete. For the sake of simplicity we assume that the
number n of voters is odd. A Condorcet winner (if it exists)
is a candidate A such that for any candidate B 6= A, a strict
majority of voters prefers A to B.

The majority graph. Given a (complete) profile P , the ma-
jority graph M(P ) is the graph whose set of vertices is the set
of the candidates Ω and in which for all A,B ∈ Ω, there is a
directed edge from A to B in M(P ) (denoted by A >m B) iff
a strict majority of voters prefer A to B. The majority graph
is asymmetric and irreflexive, but it is not necessarily transi-
tive. Moreover, since the number of voters is odd, M(P ) is
complete: for each A, B 6= A, either A >m B or B >m A
holds. Therefore, M(P ) is a complete, irreflexive and asym-
metric graph, also called a tournament on Ω [Laslier, 1997].

The weighted majority graph associated with a complete
profile P is the graph MW (P ) whose set of vertices is Ω and
in which for all A,B ∈ Ω, there is a directed edge from A to
B weighted by the number of voters who prefer A to B in P .
Weights can quantify the amount of disagreement (e.g. the



number of voters preferring A to B). When we want to use
standard majority graphs, we just consider all weights to be
equal, and we call them simply majority graphs.

Example 1. The majority graph induced by the 3-voter pro-
file ((A > B > C), (B > C > A), (B > A > C)) has the
three edges B >m A, B >m C, and A >m C.

Binary voting trees. Given a set of candidates Ω, a binary
(voting) tree T is a binary tree where each internal node (in-
cluding the root) has two children, each node is labelled by
a candidate (element of Ω), and the leaves contain every can-
didate in Ω (one per leaf). Given an internal node n and its
two children n1 and n2, the candidate associated to n is the
winner of the competition between the candidates associated
to n1 and n2 [Moulin, 1988].

A binary tree T is balanced iff the difference between the
maximum and the minimum depth among the leaves is less
than or equal to 1. In general, such a difference denotes the
level of imbalance of the tree.

Sequential majority voting rules induced by binary trees.
Given a binary voting tree T , the voting rule induced by T
maps each tournament G to the candidate returned from the
following procedure (called a knock-out competition):

1. Pick a nonterminal node x in T whose successors p, q
are terminal nodes; let P and Q be the candidates asso-
ciated to p and q respectively.

2. Delete the branches x → p and x → q from T , thus
making x a terminal node with candidate P (resp. Q) if
P >m Q (resp. Q >m P ) is in G.

3. Repeat this operation until T consists of a single node.
Then the candidate associated to this node is returned.

Example 2. Given the majority graph in Figure 1 (a), Fig-
ure 1 (b) shows the voting tree corresponding to the sequence
of competitions ((A,C), (B,A)).2
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Figure 1: Majority graph and the resulting voting tree.

Possible winners and Condorcet winners. A candidate A
is a Condorcet winner if and only if, for any other candidate
B, we have A >m B. Thus, a Condorcet winner corre-
sponds to a vertex of the majority graph with outgoing edges
only. There are profiles for which no Condorcet winner ex-
ists. However, when a Condorcet winner exists, it is unique.
If there is a Condorcet winner, then it is the sequential ma-
jority winner for each binary tree. If there exists at least one
binary tree for which a candidate A is the winner, then A is
called a possible winner.

Many other ways of computing winners from a majority
graph exist (see [Laslier, 1997] for a review). For example,

the set of possible winners contains the uncovered set [Miller,
1980], which itself contains the Banks set [Banks, 1995]. It
also contains the set of Copeland winners, defined as the can-
didates who maximize the number of outgoing edges in the
majority graph. When a Condorcet winner A exists, all these
sets coincide with the singleton {A}.

3 Computing possible winners
The set of possible winners coincides with the top cycle of the
majority graph [Moulin, 1988]. The top cycle of a majority
graph G is the set of maximal elements of the reflexive and
transitive closure G∗ of G. An equivalent characterization of
possible winners is in terms of paths in the majority graph.

Theorem 1 (see e.g. [Moulin, 1988; Laslier, 1997]) Given
a complete majority graph G, a candidate A is a possible
winner iff for every other candidate C, there exists a path
Bi → Bi+1 for i = 1, . . . , k − 1 from A to C in G.

Since path finding is polynomial, we get the following
corollary:

Theorem 2 Given a complete majority graph and a candi-
date A, checking whether A is a possible winner and, if so,
finding a tree where A wins, is polynomial .

Example 3. Assume that, given a majority graph G over
candidates A, B2, B3, and C, candidate A is a possible win-
ner and that only C beats A. Then, for Theorem 1, there
must be a path in G from A to every other candidate. Assume
A → B2 → B3 → C is a path from A to C in G. Figure 2
shows the voting tree corresponding to such a path. 2
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Figure 2: A path and the corresponding voting tree.

4 Fair possible winners
Possible winners are candidates who win in at least one voting
tree. However, such a tree may be very unbalanced and the
winner could compete with few other candidates. This might
be considered unfair. In the following, we will consider a
competition fair if it has a balanced voting tree, and we will
call such winners fair possible winners. For simplicity, we
will assume there are 2k candidates but results can easily be
lifted to situations where the number of candidates is not a
power of 2. Notice that a Condorcet winner is a fair possible
winner, since it wins in all trees, thus also in balanced ones.

We will show that a candidate is a fair possible winner
when the nodes of the majority graph can be covered by a
binomial tree [Cormen et al., 1990], which means that the
nodes of the majority graph are the terminal nodes of a bal-
anced competition tree. Binomial trees are defined induc-
tively as follows:



• A binomial tree of order 0, written T0, is a tree with only
one node.

• A binomial tree of order k, with k > 0, written Tk, is the
tree where the root has k children, and for i = 1, . . . , k
the i-th child is a binomial tree of order k − i.

It is easy to see that, in a binomial tree of order k, there are
2k nodes and the tree has height k.

Given a majority graph with 2k nodes, and given a can-
didate A, it may be possible to find a covering of the nodes
which is a a binomial tree of order k with root A. In this situ-
ation, we have a balanced voting tree where A wins. Thus A
is a fair possible winner.

Example 4. Consider the majority graph G over candidates
A, B, C and D depicted in Figure 3. Since such a majority
graph is covered by the binomial tree T2 with root A, we can
conclude that A is a fair possible winner. 2
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Figure 3: From a majority graph to a balanced voting tree via a
binomial tree.

Theorem 3 Given a complete majority graph G with 2k

nodes, and a candidate A, there is a binomial tree Tk cov-
ering all nodes of G with root A, if and only if A is a fair
possible winner.

Proof: Assume there is a binomial tree Tk satisfying the
statement of the theorem. Then each node of Tk is associ-
ated to a candidate. For node n, we will write cand(n) to
denote such a candidate.

We will show that it is possible to define, starting from Tk,
a balanced voting tree b(Tk) where A wins. Each node of
b(Tk) is associated to a candidate as well, with the same no-
tation as above. The definition of b(Tk) is given by induction:

• If k = 0, b(T0) = T0;

• If k > 0, b(Tk) is the balanced tree built from two in-
stances of b(Tk−1), corresponding to the two instances
of Tk−1 which are part of Tk by definition; the roots of
such trees are the children of the root of b(Tk); the can-
didate of the root of b(Tk) is the candidate of the root of
Tk.

It is easy to see that b(Tk) is a perfectly balanced binary tree,
where the winner is A if A is the candidate associated to the
root of the binomial tree. Proof of the opposite direction is
similar. 2

Notice that a Condorcet winner is a fair winner, and that
a fair winner is a possible winner. Moreover, there is always

at least one fair winner, thus a voting rule accepting only fair
possible winners is well-defined.

Unfortunately, the complexity of deciding if A is a fair pos-
sible winner is an open problem. However, for weighted ma-
jority graphs, it is NP-hard to check whether a candidate A is
a fair possible winner. This means that, if we restrict the vot-
ing trees only to balanced ones, it is difficult for the chair (if
he can choose the voting tree) to manipulate the election. The
problem of manipulation by the chair (also called ”control”)
has been first considered in [Bartholdi et al., 1992].

Theorem 4 Given a complete oriented and weighted major-
ity graph G and a candidate A, it is NP-complete to check
whether A is a fair possible winner for G.

Proof: (Sketch) We prove that the Exact Cover problem re-
duces polynomially to the problem of finding a minimum bi-
nomial tree with root A covering G. The proof is similar to
the one in [Papadimitriou and Yannakakis, 1982] that reduces
Exact Cover to the problem of finding a minimum spanning
tree for a graph from a class of trees which are sets of disjoint
flowers of type 2 and where, for each tree t in the class, the
number of flowers of type 2 is d ≥ c|t|ε.

A flower is a tree where all nodes but the root have degree
at most 2 and are at distance 1 or 2 from the root. A flower is
of type 2 if at least a node has distance 2 from the root.

Binomial trees are trees which consist of disjoint flowers
of type 2. In fact, the binomial tree T2 is a flower of type 2,
and all bigger binomial trees Tk, with 2k nodes, consist of
2k−2 instances of such flowers of type 2, all disjoint1. Thus
we have d = 2k−2 = |Tk|

2
≥ c|Tk|ε.

Given an instance of the Exact Cover Problem, consisting
of 3k sets of size 3 and 3k elements, each of which appears
three times in the sets, the proof proceeds by constructing a
graph such that the instance has an exact cover iff the graph
has a minimum covering binomial tree. 2

On the other hand, given a possible winner A, it is easy
to find a tree, with a bounded level of imbalance in which A
wins. We define D(T,A) as the length of the path in the tree
T from the root to the only leaf labelled A. We define ∆(A)
as the maximum D(T,A) over all competition trees T where
A wins. If ∆(A) = m − 1, then A is a Condorcet winner,
and vice-versa. In fact, this means that there is a tree where A
competes against everybody else, and wins. This can be seen
as an alternative characterization of Condorcet winners.

It is important to be able to compute ∆(A). This is an easy
task. In fact, once we know that a candidate A is a possible
winner, ∆(A) coicides with the number of outgoing edges
from A in the majority graph.

Theorem 5 Given a majority graph G and a possible winner
A, ∆(A) is the number of outgoing edges from A in G.

Proof: If A has k outgoing edges, no voting tree where A
wins can have A appearing at depth larger than k. In fact, to
win, A must win in all competitions scheduled by the tree, so
such competitions must be at most k. Thus ∆(A) ≤ k.

1We thank Claude-Guy Quimper for this observation and for sug-
gesting we look at [Papadimitriou and Yannakakis, 1982].



Moreover, it is possible to build a voting tree where
A wins and appears at depth k. Let us first consider the
linear tree, T1 in which A competes against all and only
the D1, . . . , Dk candidates which it defeats directly in G.
Clearly in such tree, T1, D(T1, A) = k. However T1 may
not contain all candidates. In particular it will not contain
candidates defeating A in G. We now consider, one by one,
each candidate C such that C → A in G. For each such
candidate we add a subtree to the current tree. The current
tree at the beginning is T1. Let us consider the first C and
the path, which we know exists, which connects A to C,
say A → B1 → B2 . . . → Bh → C. Let j ∈ {1, . . . , h}
be such that Bj belongs to the current tree and ∀i > j,
Bi does not belong to the current tree. Notice that such
candidate Bj always exists, since any path from A must start
with an edge to one of the D1, . . . , Dk candidates. We then
attach to the current tree the subtree corresponding to the
path Bj → . . . → C at node Bj obtaining a new tree in
which only new candidates have been added. After having
considered all candidates defeating C in A, the tree obtained
is a voting tree in which A wins and has depth exactly k.
Thus ∆(A) = k. 2

We now show that, if A is a possible winner, there exists
a voting tree where A wins with level of imbalance at most
m−∆(A)−1. Notice that there could also be more balanced
trees in which A wins.

Theorem 6 Given a complete majority graph G and a pos-
sible winner A, there is a voting tree with level of imbalance
smaller than or equal to m − ∆(A) − 1, where A wins. This
tree can be built in polynomial time.

Proof: Since A beats ∆(A) candidates, we can easily
build a balanced voting tree BT involving only A and the
candidates beaten by A. Then we have to add the remaining
m − ∆(A) − 1 candidates to BT . Since A is a possible
winner, there must be a path from one of the candidates
beaten by A to each of the remaining candidates. In the worst
case, this adds a subtree of depth m − ∆(A) − 1 rooted at
one of the nodes beaten by A in BT . 2

If unfair tournaments are undesirable, we can consider
those possible winners for which there are voting trees which
are as balanced as possible. Theorem 6 helps us in this re-
spect: if A is a possible winner, knowing ∆(A) we can com-
pute an upper bound to the minimum imbalance of a tree
where A wins. In general, if ∆(A) ≥ k, then there is a tree
with imbalance level smaller or equal than m − k − 1, hence
the higher ∆(A) is, the lower is the upper bound to the level
of imbalance of a tree where A wins.

If a candidate has the maximum number of outgoing edges
in the majority graph (i.e., it is a Copeland winner), we can
give a smaller upper bound on the amount of imbalance in the
fairest/most balanced tree in which it wins. Notice that that
every Copeland winner is a possible winner.

Theorem 7 If a candidate A is a Copeland winner, then the
imbalance of a fairest/most balanced tree in which A wins is
smaller or equal than log(m − ∆(A) − 1).

Proof: If A is Copeland winner then every candidate
beating A must be beaten by at least one candidate beaten
by A. Consider the balanced tree BT defined in the proof
of Theorem 6 rooted at A and involving all and only the
candidates beaten by A. In the worst case all the remaining
m − ∆(A) − 1 candidates are beaten only by the same
candidate in BT , say B′. In such case, however, we can add
to BT a balanced subtree with depth log(m − ∆(A) − 1)
rooted at B′, involving all the remaining candidates. 2

5 Incomplete majority graphs
Up till now, agents have defined all their preferences over
candidates, thus the majority graph is complete; uncertainty
comes only from the tree, i.e., from the voting rule itself. An-
other source of uncertainty is that the agents’ preferences may
only be partially known.

Let P be an incomplete profile, i.e., a collection of n in-
complete preference relations over Ω. The incomplete major-
ity graph M(P ) induced by P is defined as the graph whose
set of vertices is Ω and containing an edge from A to B if
the number of voters who prefer A to B is greater than n/2.
M(P ) is thus an incomplete asymmetric graph (or partial
tournament) over Ω. For instance, the graph induced by the
3-voter incomplete profile (A > B > C), (A > C), (A >
B,C) is the graph with the two edges A >m B and A >m C.

Note, importantly, that the set of all (complete) majority
graphs extending M(P ) is a superset of the set of major-
ity graphs induced by all possible completions of P ; this in-
clusion can be strict, which means that summarizing P into
M(P ) implies a loss of information.

We would like to reason about possible winners and Con-
dorcet winners in such a scenario. Following [Konczak and
Lang, 2005], we say that x ∈ Ω is a ∀-possible winner (resp.
∃-possible winner) for P iff it is a possible winner in all com-
pletions (resp. in some completion) of P , and that x ∈ Ω is
a ∀-Condorcet winner (resp. ∃-Condorcet winner) for P iff it
is a Condorcet winner in all completions (resp. in some com-
pletion) of P . We know from [Konczak and Lang, 2005] that
∀-Condorcet winner and ∃-Condorcet winners can be com-
puted from P in polynomial time. However, computing ∀-
possible winners and ∃-possible winners looks far less easy
(we conjecture that it is NP-hard). Now, by reasoning from
the incomplete majority graph rather than from the comple-
tions of P , we can define the following four approximations
of ∃- and ∀-possible (and Condorcet) winners, which, as we
will show shortly, are all computable in polynomial time.

Definition 1 Let G be an incomplete majority graph and A
a candidate.

• A is a weak possible winner for G iff there exists a com-
pletion of G and a tree for which A wins.

• A is a strong possible winner for G iff for every comple-
tion of G there is a tree for which A wins.

• A is a weak Condorcet winner for G iff there is a com-
pletion of G for which A is a Condorcet winner.

• A is a strong Condorcet winner for G iff for every com-
pletion of G, A is a Condorcet winner.

When the majority graph is complete, strong and weak



Condorcet winners (resp. strong and weak possible winners)
coincide, and coincide also with Condorcet winners (resp.
possible winners as defined in Section 2).

We denote by WP (G), SP (G), WC(G) and SC(G) the
sets of, respectively, weak possible winners, strong possible
winners, weak Condorcet winners and strong Condorcet win-
ners for G. We have the following inclusions:

SC(G) ⊆ WC(G) ∩ SP (G)
WC(G) ∪ SP (G) ⊆ WP (G)

Furthermore, because the set of all complete majority
graphs extending M(P ) contains the set of majority graphs
induced by the completions of P , any strong possible winner
for M(P ) is a ∀-possible winner and any ∃-possible winner
for P is a weak possible winner for M(P ). (And similarly
for weak/strong Condorcet winners.)

We now give graph-theoretic characterizations for each of
the four notions above.

Theorem 8 Given an incomplete majority graph G and a
candidate A, A is a strong possible winner if and only if for
every other candidate B, there is a path from A to B in G.

Proof: (⇐) Suppose that for each B 6= A there is a path
from A to B in G. Then these paths remain in every com-
pletion of G. Therefore, using Theorem 1, A is a possible
winner in every completion of G, i.e., it is a strong pos-
sible winner. (⇒) Suppose there is no path from A to B
in G. Let us define the following three subsets of the set
of candidates Ω: R(A) is the set of candidates reachable
from A in G (including A); R−1(B) is the the set of can-
didates from which B is reachable in G (including B); and
Others = Ω \ (R(A) ∪ R−1(B)). Because there is no path
from A to B in G, we have that R(A) ∩ R−1(B) = ∅ and
therefore {R(A), R−1(B), Others} is a partition of Ω. Now,
let us build the complete tournament Ĝ as follows:

1. Ĝ := G;

2. ∀ x ∈ R(A), y ∈ R−1(B), add (y, x) to Ĝ;

3. ∀ x ∈ R(A), y ∈ Others, add (y, x) to Ĝ;

4. ∀ x ∈ Others, y ∈ R−1(B), add (y, x) to Ĝ;

5. ∀ x, y belonging to the same element of the partition: if
neither (x, y) nor (y, x) is in G then add one of them
(arbitrarily) in Ĝ.

Let us first show that Ĝ is a complete tournament. If
x ∈ R(A) and y ∈ R−1(B), then (x, y) 6∈ G (otherwise
there would be a path from A to B in G). If x ∈ R(A)
and y ∈ Others, then (x, y) 6∈ G, otherwise y would be in
R(A). If x ∈ Others and y ∈ R−1(B), then (x, y) 6∈ G,
otherwise x would be in R−1(B). Therefore, whenever x

and y belong to two distinct elements of the partition, Ĝ
contains (y, x) and not (x, y). Now, if x and y belong to
the same element of the partition, by Step 5, Ĝ contains
exactly one edge among {(x, y), (y, x)}. Therefore, Ĝ
is a complete tournament. Let us show now that there is
no path from A to B in Ĝ. Suppose there is one, that
is, there exist z0 = A, z1, . . . , zm−1, zm = B such that
{(z0, z1), (z1, z2), . . . , (zm−1, zm)} ⊆ Ĝ. Now, for all

x ∈ R(A) and all y such that (x, y) ∈ Ĝ, by construction of
Ĝ we necessarily have y ∈ R(A). Therefore, for all i < m, if
zi ∈ R(A) then zi+1 ∈ R(A). Now, since z0 = A ∈ R(A),
by induction we have zi ∈ R(A) for all i, thus B ∈ R(A),
which is impossible. Therefore, there is no path from A to B

in Ĝ. Thus, Ĝ is a complete tournament with no path from A

to B, which implies that A is not a possible winner w.r.t. Ĝ.
Lastly, by construction, Ĝ contains G. So Ĝ is a complete
extension of G for which A is not a possible winner. This
shows that A is not a strong possible winner for G. 2

Clearly, a procedure based on the previous theorem gives
us a polynomial algorithm to find strong possible winners.

Let G be an asymmetric graph, Ω the set of candidates, and
A ∈ Ω. Let us consider the following algorithm:

begin
Σ := {A}∪ {X| there is a path from A to X in G};
G′ := G;
Repeat

for all (Y, Z) ∈ Σ × (Ω \ Σ) do
if (Z → Y ) 6∈ G′ then add (Y → Z) to G′;

for all Z ∈ Ω \ Σ do
if there is a path from A to Z in G′

then add Z to Σ
Until Σ = Ω or there is no (Y, Z) ∈ Σ × (Ω \ Σ) s. t. (Z → Y ) ∈ G′;
Return Σ.

Let us call f(G,A) the set Σ returned by the algorithm on
G and A. Then we have the following result:

Theorem 9 f(G,A) = Ω if and only if A is a weak possible
winner for G.

Proof: We first make the following observation: the graph
G′ obtained at the end of the algorithm is asymmetric and
extends G. It is asymmetric because it is so at the start of
the algorithm (since G is) and then, when an edge Y → Z is
added to G′ when Z → Y is not already in G′.

Now, assume f(G,A) = Ω. Let G′′ be a tournament
extending G′ (and, a fortiori, G). Such a G′′ exists (because
G′ is asymmetric). By construction of G′, there is a path
in G′ from A to every node of f(G,A) \ {A}, hence to
every node of Ω \ {A}; since G′′ extends G′, this holds
a fortiori for G′′, hence A is a possible winner in G′′ and
therefore a weak possible winner for G. Conversely, assume
f(G,A) = Σ 6= Ω. Denote Θ = Ω \ Σ. Then, for all
(Y,Z) ∈ Σ × Θ we have Z → Y ∈ G′. Now, Z ∈ Θ means
that no edge Z → Y (for Z ∈ Θ and Y ∈ Σ) was added
to G′; hence, for every Y ∈ Σ and Z ∈ Θ, we have that
Z → Y ∈ G′ if and only if Z → Y ∈ G. This implies that
for all (Y,Z) ∈ Σ × Θ we have Z → Y ∈ G, therefore,
in every tournament G′′ extending G, every candidate of Θ
beats every candidate of Σ, and in particular A. Therefore,
there cannot be a path in G′′ from A to a candidate in Z,
which implies that A is not a possible winner in G′′. Since
the latter holds for every tournament G′′ extending G, A is
not a weak possible winner for G. 2

Since the above algorithm for copmuting f(G,A) runs in
time O(|Ω|2), we get as a corollary that weak possible win-
ners can be computed in polynomial time.



Given an asymmetric graph G, Θ is said to be a dominant
subset of G if and only if for every Z ∈ Θ and every X ∈
Ω \ Θ we have (Z,X) ∈ G. Then we have an alternative
characterization of weak possible winners:

Theorem 10 A is a weak possible winner with respect to G
if and only if A belongs to all dominant subsets of G.

Proof: Suppose there exists a dominant subset Θ of G
such that A 6∈ Θ. Then there can be no extension of G
in which there is a path from A to a candidate Z ∈ Θ.
Hence A is not a weak possible winner for G. Conversely,
suppose that A is not a weak possible winner for G. Then the
algorithm for computing f(G,A) stops with f(G,A) 6= Ω
and Ω \ f(G,A) being a dominant subset of G. Since
A ∈ f(G,A), Ω \ f(G,A) is a dominant subset of G to
which A does not belong. 2

As a consequence of Theorems 8 and 10, weak and strong
possible winners are computable in polynomial time, which
means that they can be seen as polynomial approximations
of ∃-possible and ∀-possible winners, respectively (the com-
putation of those looks much harder). We do not need
such a polynomial characterization for ∃-Condorcet and ∀-
Condorcet winners, since these are computable in polyno-
mial time; however, for the sake of completeness we give
below simple (and obvious) graph-theoretic characterizations
of weak and strong Condorcet winners.

Theorem 11 Given an incomplete majority graph G and a
candidate A, A is the strong Condorcet winner iff A has m−1
outgoing edges in G.

Theorem 12 Given an incomplete majority graph G and a
candidate A, A is a weak Condorcet winner iff A has no in-
going edges in G.

Given an incomplete majority graph, the set of weak/strong
Condorcet winners can therefore be computed in polynomial
time from the majority graph.

We end this section by giving bounds on the number of
weak/strong possible/Condorcet winners.

Theorem 13 Let |Ω| = m. The following inequalities
hold, and for each of them the bounds are reached: 0 ≤
|SC(G)| ≤ 1; 0 ≤ |WC(G)| ≤ m; 0 ≤ |SP (G)| ≤ m;
1 ≤ |WP (G)| ≤ m.

6 Conclusions
We have addressed various computational issues for sequen-
tial majority voting. We summarize here our results and their
potential impact.

We first dealt with uncertainty about the choice of the bi-
nary tree. Because the choice of the tree is under the control
of the chair, our results can be interpreted in terms of diffi-
culty of manipulation by the chair (as in, e.g., [Bartholdi et
al., 1992]). We proved that sequential majority voting is easy
to manipulate. We gave characterizations of fair possible win-
ners, i.e. possible winners who win in a balanced voting tree.

We also dealt with uncertainty about voters’ preferences.
We showed that in this case, it is easy to compute a lower and
an upper bound of the set of candidates winning for some bi-
nary tree. These results apply to manipulation by coalitions of

voters and elicitation by the chair as these are two situations
where we have to reason with incomplete preferences. See
[Konczak and Lang, 2005] for a discussion on the relation-
ship between computing weak/strong winners and computing
constructive and destructive manipulations by coalitions of
voters [Conitzer and Sandholm, 2002a] and vote elicitation
[Conitzer and Sandholm, 2002b].

Many issues remain open, such as the complexity of com-
puting fair possible winners, and the complexity of deciding
whether a candidate is a possible winner for some/all com-
pletions of an incomplete preference profile.
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