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2 Constraint satisfactionA binary constraint satisfaction problem consists of a set of variables, each witha domain of values, and a set of binary constraints. Each constraint rules out asubset of the possible values for a pair of variables. Each assignment of valuesto variables ruled out is called a nogood. Associated with each problem is aconstraint graph. This has variables as vertices and edges between variables thatappear in nogoods. The constraint satisfaction decision problem is to decide ifthere is an assignment of values to variables so that none of the constraints areviolated.Four models of random problems are used in most experimental and theor-etical studies. In each model, we generate a constraint graph G, and then foreach edge in this graph, choose pairs of incompatible values. The models di�er inhow we generate the constraint graph and how we choose incompatible values.In each case, we can describe problems by the tuple hn;m; p1; p2i, where n is thenumber of variables,m is the uniform domain size, p1 is a measure of the densityof the constraint graph, and p2 is a measure of the tightness of the constraints.model A: with probability p1, we select each one of the n(n � 1)=2 possibleedges in G, and for each edge with probability p2 we pick each one of them2 possible pairs of values as incompatible;model B: we uniformly select exactly p1n(n � 1)=2 edges for G, and for eachedge we uniformly pick exactly p2m2 pairs of values as incompatible;model C: with probability p1, we select each one of the n(n � 1)=2 possibleedges in G, and for each edge we uniformly pick exactly p2m2 pairs of valuesas incompatible;model D: we uniformly select exactly p1n(n � 1)=2 edges for G, and for eachedge with probability p2 we pick each one of the m2 possible pairs of valuesas incompatible.3 Phase transitionsConstraint satisfaction algorithms are now routinely benchmarked using randomproblems from one of these four models. To help unify experimental studies withdi�erent problems, Gent et al. [8] de�ne the constrainedness, � of an ensembleof combinatorial problems as,� =def 1� log2(hSoli)Nwhere N is the log base 2 of the size of the state space, and hSoli is the expectednumber of these states that are solutions. Since 0 � hSoli � 2N , it follows that� 2 [0;1). If � � 0 then problems are very under-constrained and soluble. It isusually very easy to �nd one of the many solutions. If � � 1 then problems arevery over-constrained and insoluble. It is usually relatively easy to prove theirinsolubility. If � � 1 then problems are on the \knife-edge" between solubility



and insolubility. It is often di�cult to �nd solutions or prove the insolubility ofsuch problems. This de�nition of constrainedness has been used to locate phasetransitions behaviour both in NP-complete problems like constraint satisfaction,and in polynomial problems like enforcing arc consistency [5].Consider, for example, binary constraint satisfaction problems from modelB. The state space has mn states, one for each possible assignment of values tothe n variables. Each of the p1n(n�1)=2 edges in the constraint graph rules outa fraction (1� p2) of the possible assignments of values to variables. Thus,hSoli = mn(1� p2)p1n(n�1)=2 N = n log2(m)Substituting these into the de�nition of constrainedness gives,� = n � 12 p1 logm( 11� p2 )Gent el al. [7] show experimentally that rapid transitions in solubility occuraround � � 1 for a selection of model B problems with between 10 and 110variables and domains of sizes between 3 and 50. Problem hardness for a widevariety of algorithms tends to peak around these transitions.4 The problem with random problemsAchlioptas et al. [1] identify a shortcoming of all four random models. Theyprove that if p2 � 1=m then, as n goes to in�nity, there almost surely exists aawed variable, one which has every value unsupported. A value for a variableis unsupported if, when the value is assigned to the variable, there exists an ad-jacent variable in the constraint graph that cannot be assigned a value withoutviolating a constraint. A problem with a awed variable cannot have a solu-tion. They argue that therefore \. . . the currently used models are asymptoticallyuninteresting except, perhaps, for a small region of their parameter space . . . "(when p2 < 1=m). Further, they claim that \. . . the threshold-like picture givenby experimental results [with these models] is misleading, since the problems withde�ning parameters in what is currently perceived as the underconstrained region(because a solution can be found fast) are in fact overconstrained for large n (ob-viously, larger than the values used in experiments) . . . ". Note that this resultdoes not apply to problems in which the constraints have certain types of struc-ture. For example, if each constraint only allows variables to take di�erent valuesthen problems encode graph colouring, which has good asymptotic properties.Achlioptas et al. [1] propose an alternative random problem class, modelE which does not su�er from this asymptotic shortcoming, and which does notseparate the generation of the constraint graph from the selection of the nogoods.In this model, we select uniformly, independently and with repetitions, pm2n(n�1)=2 nogoods out of the m2n(n � 1)=2 possible. They prove that if a randominstance generated using this model has less than n=2 nogoods then it almostsurely has a solution (theorem 6, page 113). They conjecture that substantially



stronger bounds could be derived to increase the number of allowed nogoods. Wenote that model E is not entirely novel since Williams and Hogg study randomproblems with both a �xed number of nogoods picked uniformly, and with anuniform probability of including a nogood [15]. As Achlioptas et al. themselvesremark [1], the expected number of repetitions in model E is usually insigni�cant(for instance, it is O(1) when the number of nogoods is �(n)), and repetitionsare only allowed to simplify the theoretical analysis. The di�erences betweenmodel E and the models of Williams and Hogg are therefore likely to be slight.5 Experimental practiceAchlioptas et al.'s result does not apply to random problems for which p2 < 1=m.To study the practical signi�cance of this restriction, we surveyed the literaturefrom 1994 (when phase transition experiments with random constraint satisfac-tion problems �rst started to appear), covering all papers in the proceedingsof CP, AAAI, ECAI and IJCAI which gave details of experiments on randomconstraint satisfaction problems. The results of this survey are summarized inTables 1 and 2. An experimental study is deemed \inapplicable" if the problemsets tested include an ensemble of problems with p2 < 1=m.Conference Inapplicable Totalstudies studiesAAAI-94 2 3ECAI-94 0 4CP-95 3 4IJCAI-95 1 5AAAI-96 0 4CP-96 3 5ECAI-96 1 5AAAI-97 2 4CP-97 0 7IJCAI-97 0 1totals 12 42Table 1. Summary of results of the literature survey.Just over a quarter of papers include problems to which the results of [1] donot apply. The most common exception are random problems with m = 3 andp2 = 1=9 or 2=9. Model B is the most common model of generation, followedby model A. Whilst a signi�cant number of papers use problems outside thescope of [1], nearly three quarters use problem sets that are vulnerable to thesecriticisms. In addition, all of the papers which included inapplicable problemsets also used some instances with p2 � 1=m. In conclusion therefore, the resultsof [1] apply to most published experiments.



Conference Author initials Model hn;mi p2 < 1=m?AAAI-94 [DF,RD] B h25� 250; 3i p2 = 1=9; 2=9[DF,RD] B h25� 275; 3i p2 = 1=9; 2=9h15� 60; 6i p2 = 4=36h15� 35; 9i no[NY,YO,HH] B h20; 10i noECAI-94 [PP] D h20; 10i, h20; 20i, h30; 10i no[BMS] B h8; 10i no[DL] B h10; 20i no[DS,ECF] A h50; 8i noCP-95 [IPG,EM,PP,TW] B h10� 110; 3i p2 = 2=9h10; 10i, h20; 10i, h10; 5� 50i, . . . no[JL,PM] A h10; 10i no[FB,PR] B h25; 3i p2 = 1=9h35; 6i, h50; 6i p2 = 4=36h15; 9i, h35; 9i no[FB,AG] B h25; 3i p2 = 2=9h25; 6i, h15; 9i noIJCAI-95 [ECF,PDH] A h50; 8i no[DF,RD] B h125; 3i p2 = 1=9h35; 6i p2 = 4=36h250; 3i, h50; 6i, h35; 9i, . . . no[PM,JL] D h10; 10i, h20; 10i, h30; 10i no[KK,RD] B h100; 8i no[BMS,SAG] B h20; 10i, h50; 10i noAAAI-96 [AC,PJ] B h16; 8i, h32; 8i no[ECF,CDE] B h100; 6i no[IPG,EM,PP,TW] B h20; 10i no[KK,RD] B h100; 8i, h125; 6i, h150; 4i noCP-96 [CB,JCR] B h35; 6i p2 = 4=36h125; 3i, h350; 3i p2 = 1=9h35; 9i, h50; 6i, h50; 20i, . . . no[DAC,JF,IPG,EM,NT,TW] B h20; 10i no[IPG,EM,PP,BMS,TW] B h20� 50; 10i no[JL,PM] B h15; 5i p2 = 1=25� 4=25h10; 10i p2 = 1=100� 9=100[RJW] A h30; 5i, h100; 5i p2 = 0:1ECAI-96 [JEB,EPKT,NRW] B h50; 10i no[BC,GV,DM,PB] B h50; 10i, h20; 5i no[SAG,BMS] B h30� 70; 10i no[ACMK,EPKT,JEB] B h30; 5i p2 = 0:12h40; 5i p2 = 0:08h60; 5i p2 = 0:04h10; 5i, h20; 5i, h10; 10i, . . . no[Jl,PM] B h10; 10i noAAAI-97 [AM,SES,GS] B h6� 12; 9i no[DRG,WKJ,WSH] B h10; 5i no[IPG,EM,PP,TW] B h10� 120; 3i p2 = 2=9h10; 10� 100i no[DF,IR,LV] B h20; 4i p2 = 0:125h150; 3i p2 = 0:222h20� 75; 6i, h20; 10i noCP-97 [IPG,JLU] D h10; 10i no[IR,DF] B h100; 8i no[DS,ECF] B h20; 20i, h40; 20i no[BMS,SAG] B h10; 10i no[PG,JKH] B h50; 10i, h100; 15i, h250; 25i, . . . no[ED,CB] B h100; 20i no[IPG,EM, PP, PS, TW] B h20� 70; 10i noIJCAI-97 [RD, CB] B h20; 10i noTable 2. Parameters and models used in some previous studies of random constraintsatisfaction problems.



6 Probability of awed variablesAs Achlioptas et al. themselves suggest [1], previous experimental studies will nothave been greatly inuenced by the existence of awed variables since problemsizes are usually too small. Using the Markov inequality, they give a �rst momentbound on the probability of a awed variable,Prfproblem has a awed variableg � n(1� (1� pm2 )n)mFor example, for the popular hn; 10; 1; 1=2i problem class, they calculate thatthe probability of a awed variable is less than 10�5 even for n as large as 200.At what size of problem and sample do awed variables start to occur?By making a few simplifying assumptions, we can estimate the probabilityof a awed variable with reasonable accuracy. This estimate might be used todetermine parameters for experimental studies. Our �rst assumption is that eachvariable is connected to exactly p1(n�1) others. In practice, some variables havea greater degree, whilst others have a lesser degree. Fortunately, our experimentsshow that this mean-�eld approximation does not introduce a large error intothe estimate. We also assume independence between the probabilities that thedi�erent variables have at least one unawed value. The probability that thereare no awed variables is then simply the product of the probabilities that thevariables have at least one unawed value. For model A problems, we have,Prfproblem has a awed variableg= 1� Prfthere are no awed variablesg= 1� (Prfa variable has at least one unawed valueg)n= 1� (1� Prfevery value for the variable is awedg)n= 1� (1� (Prfa value for the variable is awedg)m)n= 1� (1� (Prfvalue inconsistent with every value of an adjacent variableg)m)n= 1� (1� (1� Prfvalue consistent with a value of every adjacent variableg)m)n= 1� (1� (1� (Prfvalue consistent with a value of an adjacent variableg)p1(n�1))m)n= 1� (1� (1� (1� Prfvalue inconsistent with every value of adjacent variableg)p1(n�1))m)n= 1� (1� (1� (1� (Prfvalue inconsistent with a value of adjacent variableg)m)p1(n�1))m)nFor model A, the probability that a given value is inconsistent with everyvalue of an adjacent variable is p2. Hence, we obtain the estimate,Prfproblem has a awed variableg = 1� (1� (1� (1� pm2 )p1(n�1))m)nA similar derivation can be made for model B problems. In this model each con-straint is picked uniformly from the m2Cp2m2 possible binary constraints. If weassign a value to one of the variables involved in a constraint, thenm2�mCp2m2�mof the possible constraints have nogoods that rule out all the values for the othervariable. Hence, the probability that a particular value for a variable is incon-sistent with every value for an adjacent variable is given by,Prfvalue inconsistent with every value of adjacent variableg = � m2 �m)p2m2 �m�=� m2p2m2 �



Thus, for model B problems, we obtain the estimate,Prfproblem has a awed variableg = 1�(1�(1�(1�� m2 �mp2m2 �m�=� m2p2m2 �)p1(n�1))m)nNote that we have assumed independence between the probabilities that them di�erent values for a given variable are awed. The probability that everyvalue for a variable is awed is then simply the product of the probabilities thateach individual value is awed. Whilst this independence assumption is valid formodel A, it is not strictly true for model B.7 Problem sizeWe can use these estimates for the probability of awed variables to determinewhen awed variables will start to occur in experimental studies. To test theaccuracy of these estimates and to compare them with the simpler �rst momentbound, we generated random problems from the popular model B and calculatedthe fraction with a awed variable. Since awed variables are more likely in denseconstraint graphs, we generated problems with complete constraint graphs (i.e.with p1 = 1). As in other studies (e.g. [12, 6]), we also generated a separateset of problems in which the average degree of the vertices in the constraintgraph is kept constant. That is, we vary p1 as 1=(n � 1). As we argue in Sec-tion 9, the constraint tightness at the phase transition then remains roughlyconstant. Keeping the average degree constant also reduces the probability ofawed variables occurring. In Table 3, we give the results for hn; 10; 1; 1=2i andhn; 10; 19=(n � 1); 1=2i with n from 200 to 4000. In this (and indeed all thesubsequent experiments) our estimate for the probability of a problem havinga awed variable is very close to the observed fraction of problems with awedvariables, and much closer than the �rst moment bound to the observed fractionof awed variables.With complete constraint graphs, awed variables are observed in samplesof 1000 when the problems have 500 or more variables. This is beyond the sizeof problems typically solved with systematic procedures but potentially withinthe reach of approximation or local search algorithms. By comparison, withconstraint graphs of constant average degree, awed variables are not observedin samples of 1000 even when the problems have thousands of variables. Becauseof the greater homogeneity of model B problems, we expect awed variables tobe less likely than in model A. Our estimates for the probability of a awedvariable support this conjecture. For example, for h1000; 10; 1; 1=2i problems,our estimate for the probability that a model A problem has a awed variableis 0:99986 whilst for a model B problem it is 0:275.With constraint graphs of constant average degree, we can estimate when weexpect to observe awed variables. If p1 = =(n�1) and a fraction f of problemscontain awed variables then, by rearranging our estimates for the probabilityof a awed variable, the number of variables nf in model A problems is,nf = log(1� f)log(1� (1� (1� pm2 ))m)



sample fraction with estimate for 1st momentn size awed variables Prfawed variableg bound200 106 0.000000 0.000000 0:000006500 104 0.0005 0.0006 0.03701000 103 0.272 0.275 > 11200 103 0.753 0.755 > 11500 103 1.000 0.999 > 12000 103 1.000 1.000 > 14000 103 1.000 1.000 > 1(a) hn; 10; 1; 1=2isample fraction with estimate for 1st momentn size awed variables Prfawed variableg bound200 103 0.000 0.000 0.000500 103 0.000 0.000 0.0371000 103 0.000 0.000 > 11500 103 0.000 0.000 > 12000 103 0.000 0.000 > 14000 103 0.000 0.000 > 1(b) hn; 10; 19=(n� 1); 1=2iTable 3. The impact of awed variables on model B problems with a domain size of 10and: (a) complete constraint graphs; (b) constraint graphs of constant average degree.And in model B problems,nf = log(1� f)log(1� (1� (1� � m2 �m)p2m2 �m�=� m2p2m2 �))m)For instance, for model B problems with similar parameters to those of Table 3(i.e. m = 10,  = 19 and p2 = 1=2), n1=1000 � 3:2 � 1017 and n1=2 � 2:2 � 1019.That is, problems needmore than 1017 variables before we start to observe awedvariables in samples of 1000 problem instances, and more than 1019 variablesbefore half contain a awed variable. As a consequence, at this domain size,constraint tightness, and degree of the constraint graph, experimental studiescan safely ignore awed variables.With smaller domain sizes, we expect awed variables to be more prevalent.To test this hypothesis, we generated problems withm = 3, p2 = 1=m and eithercomplete constraint graphs or constraint graphs of constant average degree. Notethat, for model B, p2 = 1=m is the smallest possible value which gives awedvariables. If p2 < 1=m then at least one value for each variablemust be supportedas each constraint rules out strictly less than m possible values. Note also thatthese problems have the same domain size and same constraint tightness as 3-colouring problems. Table 4 gives the results for hn; 3; 1; 1=3i and hn; 3; 19=(n�1); 1=3i with n = 10 to 2000. With complete constraint graphs, awed variablesoccur with a signi�cant frequency in problems with as few as 20 variables. This



is despite p2 being given the minimal possible value. With constraint graphs ofconstant average degree, although awed variables occur in problems with asfew as 20 variables, their frequency increases much more slowly with n. We needa thousand or more variables to ensure that problems almost always include aawed variable. By comparison, with complete constraint graphs, we need just60 or so variables. Some of the experiments surveyed in Section 5 used randomproblems containing hundreds of variables with m = 3 and p2 = 1=3. Flawedvariables may therefore have had a signi�cant impact on these experiments.sample fraction with estimate for 1st momentn size awed variables Prfawed variableg bound10 103 0.006 0.011 0.31120 103 0.143 0.156 > 130 103 0.504 0.536 > 140 103 0.869 0.882 > 150 103 0.987 0.990 > 160 103 1.000 1.000 > 1(a) hn; 3; 1; 1=3isample fraction with estimate for 1st momentn size awed variables Prfawed variableg bound20 103 0.143 0.156 > 150 103 0.318 0.345 > 1100 103 0.524 0.571 > 1200 103 0.796 0.816 > 1500 103 0.986 0.985 > 11000 103 0.999 1.000 > 12000 103 1.000 1.000 > 1(b) hn; 3; 19=(n� 1); 1=3iTable 4. The impact of awed variables on model B problems with a small domain sizeand: (a) complete constraint graph; (b) constraint graph of constant average degree.8 Model EAt the sizes typically used in previous experimental studies, how does model Edi�er from the conventional models? To explore this issue, we compared problemsfrom model E with n = 20 and m = 10 against problems of a similar size fromthe popular model B. As we argue in the next section, model E quickly givesproblems with complete constraint graphs. We therefore used model B problemswith p1 = 1 as a comparison. For model B, we generated 1000 problems at eachvalue of p2 between 1/100 and 99/100. For model E, we generated 1000 problemsat each value of p from 1/190 to 500/190 in steps of 1/190. Note that model Eallows for repetitions when selecting nogoods so p can be greater than 1.
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Fig. 1. Fraction of soluble problems against constrainedness, �To aid comparison, we estimated the constrainedness, � of the generatedproblems. We have found � a useful measure for comparing algorithm perform-ance across a wide variety of di�erent problem classes [9]. Since the nogoodsin model E are selected independently and with repetitions, � is approximatelyproportional to p. In Figure 1, we plot the fraction of soluble problems againstthe constrainedness. In both models, we see a rapid transition between solubleand insoluble problems at around � � 1 as predicted. Associated with this trans-ition is a peak in search cost. In Figure 2, we plot the median consistency checksperformed by the forward checking algorithm with conict-directed backjumpingand the fail-�rst heuristic (FC-CBJ-FF). The search cost for the two models isvery similar, depending almost entirely on their constrainedness and size. Theonly slight di�erence is that at very small values of p, model E problems do havecomplete constraint graphs and are easier to solve. We discuss the size of theconstraint graph in more detail in the next section.9 Constraint graphSome of the experimental studies listed in Section 5 keep p1 constant as n in-creases. Even if problem and sample sizes are small enough that awed variablesare unlikely, this may not be a very good idea. The transition between soluble andinsoluble problems occurs around � � 1. That is, when �n�12 p1 logm(1�p2) � 1.If we �x m and p1 then p2 decreases as we increase n. Eventually p2 is less than1=m2 and, in model B at least, we are unable to generate any non-empty con-straints. For instance, with p1 = 1, m = 3 and � � 1, p2 is smaller than 1=m2



100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ed

ia
n 

co
ns

is
te

nc
y 

ch
ec

ks

Constrainedness

Model B
Model E

Fig. 2. Median search cost for FC-CBF-FF against constrainedness, �for n larger than about 20. In other words, even though awed variables cannotoccur since p2 < 1=m, we cannot run an experiment at the phase transition withm = 3 and p1 = 1 for n larger than about 20.It may be better experimental practice to maintain the topology of the con-straint graph by keeping the average degree constant. That is, to vary p1 as1=(n� 1). If � � 1 and p1 = =(n� 1), then p2 � 1�m�2= which is constant.Hence the phase transition is expected to occur at a roughly constant value of p2as n varies. Experimental data for small n supports this conclusion. For example,Figure 2 of [12] shows that the transition in solubility for model B problems withm = 10 and p1 = 4:9=(n�1) occurs at p2 � 1�m�2=4:9 � 0:6 as n increases from10 to 50. Of course, since p2 � 1=m, such problems contain awed variables andare trivially insoluble for large enough n. However, as we argued before, n needsto be so large that our experiments can safely ignore this fact. For instance, form = 10, p1 = 4:9=(n � 1), and p2 = 0:6, we calculate that n1=1000 � 5:6 � 1013and n1=2 � 3:8 � 1016. That is, problems need more than 1013 variables beforewe expect to observe awed variables in samples of 1000 problem instances, andmore than 1016 variables before half contain a awed variable.One shortcoming of model E is that it generates complete constraint graphsfor quite small values of p, even though each constraint contains just a fewnogoods. It is hard therefore to generate sparse constraint graphs with tightconstraints. By comparison, in models A to D we can independently adjust theconstraint tightness and density. In model E, we randomly select pm2n(n�1)=2nogoods independently and with repetitions. By a coupon collector's argument,we expect a complete constraint graph when p � log(n(n � 1)=2)=m2. For ex-



ample, for n = 20, m = 10, we just need p � 0:052 before we expect a completeconstraint graph. With a larger number of nogoods, there is a very small probab-ility that the constraint graph is not complete. Assuming independence betweenthe nogoods, we can estimate this probability as follows,Prfconstraint graph is completeg= Prfall pairs of vertices are joinedg= (Prftwo given vertices are joinedg)n(n�1)=2= (1� Prftwo given vertices are not joinedg)n(n�1)=2= (1� Prfno nogoods mention the two variablesg)n(n�1)=2= (1� (Prfa given nogood does not mention the twog)pm2n(n�1)=2)n(n�1)=2= (1� (1� Prfa given nogood does mention the twog)pm2n(n�1)=2)n(n�1)=2As there are n(n � 1)=2 possible pairs of variables that a nogood could men-tion, the probability that any nogood does not mention two given variables issimply 2=n(n� 1). Hence,Prfconstraint graph is completeg = (1� (1� 2n(n� 1))pm2n(n�1)=2)n(n�1)=2For example, for n = 20 andm = 10, the probability that the constraint graph isincomplete is less than 10�2 when p = 1=m, and less than 10�18 when p = 1=2.We can generalize model E to tackle this problem by reversing the usualprocess of generating a constraint graph and then selecting nogoods within it. Inmodel F, we select uniformly, independently and with repetitions, p1p2m2n(n�1)=2 nogoods out of the m2n(n � 1)=2 possible. We then generate a constraintgraph with exactly p1n(n� 1)=2 edges and throw out any nogoods that are notbetween connected vertices in this graph. Note that model E is a special case ofmodel F in which p1 = 1. Using similar arguments to [1], we can show that modelF (like model E) is not trivially insoluble as we increase problem size. In addition,by setting p1 small but p2 large, we can generate sparse constraint graphs withtight constraints. We leave it as an open question if there are models with goodasymptotic properties which admit problems with a few tight constraints, butwhich do not throw out nogoods.10 Non-random problemsRandom problems provide a plentiful and unbiased source of problems for bench-marking. However, we must be careful that our algorithms do not become tunedto solve randomproblems and perform poorly on real problems. All of the modelsdiscussed here generate simple binary constraints, but real problems can con-tain structures that occur very rarely in these models. For example, in a graphcolouring problem derived from a real exam time-tabling problem at EdinburghUniversity, Gent and Walsh found a 10 clique of nodes with only 9 colours avail-able [10]. This was in a 59 node graph with 594 edges. The presence of this cliquedominated the performance of their graph colouring algorithm. Random graphsof similar size and density are very unlikely to contain such a large clique.



The probability that m given nodes in a random graph with n nodes and eedges are connected by the right m(m� 1)=2 edges to form a m-clique is,Prfm given nodes form a m-cliqueg = m(m�1)2 �1Yi=0 e� in(n�1)2 � iMultiplying this probability by nCm, the number of sets of m nodes in a n nodegraph, we get the expected number of m-cliques. By the Markov inequality, thisgives a bound on the probability of the graph containing a m-clique,Prfm-clique in graph of n nodes & e edgesg � n!m!(n�m)! m(m�1)2 �1Yi=0 e� in(n�1)2 � iFor n = 59, m = 10 and e = 594, the probability of clique of size 10 or larger isless than 10�10. It is thus very unlikely that a random graph of the same size anddensity as the graph in the exam time-tabling problem would contain a regularstructure like a 10-clique. However, cliques of this size are very likely in the realdata due to the module structure within courses.As another example, Gomes et al. have proposed quasigroup completion asa constraint satisfaction benchmark that models some of the structure found intime-tabling problems [11]. Quasigroup completion is the problem of �lling inthe missing entries in a Latin square, a multiplication table in which each entryappears once in every row and column. An order n quasigroup problem can beformulated as n-colouring a graph with n2 nodes and n2(n�1) edges. The edgesform 2n cliques, with each clique being of size n and representing the constraintthat each colour appears once in every row or column. For example, an order10 quasigroup has 20 cliques of size 10 in a 100 node graph with 900 edges.With a random graph of this size and edge density, the probability of a cliqueof size 10 or larger is less than 10�20. It is thus unlikely that a random graph ofthis size and density would contain a regular structure like a 10-clique, let alone20 of them linked together. The random models are thus unlikely to generateproblems like the exam time-tabling problem or quasigroup completion.11 ConclusionsWe have performed a detailed study of the experimental consequences of a recenttheoretical result of Achlioptas et al. [1]. This result shows that, as we increaseproblem size, the conventional models of random problems almost surely con-tain a awed variable and are therefore trivially insoluble. Our survey of previousexperimental studies shows that most meet the restriction on their result thatp2 � 1=m. Fortunately, most (but not all) of these studies use too few variablesand too large domains to be a�ected by the result. As expected, awed vari-ables occur most often with dense constraint graphs and small domains. Withconstraint graphs of �xed average degree and large domains, awed variables
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