
Manipulating Two Stage Voting Rules

Nina Narodytska
NICTA and UNSW
Sydney, Australia

nina.narodytska@nicta.com.au

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

ABSTRACT
We study the computational complexity of computing a manipula-
tion of a two stage voting rule. An example of a two stage voting
rule is Black’s procedure. The first stage of Black’s procedure se-
lects the Condorcet winner if it exists, otherwise the second stage
selects the Borda winner. In general, we argue that there is no con-
nection between the computational complexity of manipulating the
two stages of such a voting rule and that of the whole. However,
we also demonstrate that we can increase the complexity of even a
very simple base rule by adding a simple first stage to the front of
the base rule. In particular, whilst Plurality is polynomial to ma-
nipulate, we show that the two stage rule that selects the Condorcet
winner if it exists and otherwise computes the Plurality winner is
NP-hard to manipulate with three or more candidates, weighted
votes and a coalition of manipulators. In fact, with any scoring
rule, computing a coalition manipulation of the two stage rule that
selects the Condorcet winner if they exist and otherwise applies the
scoring rule is NP-hard with three or more candidates and weighted
votes. It follows that computing a coalition manipulation of Black’s
procedure is NP-hard with weighted votes. With unweighted votes,
we prove that the complexity of manipulating Black’s procedure is
inherited from the Borda rule that it includes. More specifically, a
single manipulator can compute a manipulation of Black’s proce-
dure in polynomial time, but computing a manipulation is NP-hard
for two manipulators. With two stage voting rules, we can also al-
low agents to re-vote between rounds. We study the impact of such
re-voting on manipulation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Economics

Keywords
social choice, voting, manipulation

1. INTRODUCTION
There exist several voting procedures that work in stages. For

example, Black’s procedure is a two stage voting rule whose first

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

stage elects the Condorcet winner if one exists, and otherwise
moves to a second stage which elects the Borda winner [12]. As
a second example, the French presidential elections use a two stage
runoff voting system. If there is a majority winner in the first stage,
then this candidate is the overall winner, otherwise we go to the sec-
ond stage where there is a runoff vote between the two candidates
with the most votes in the first round. Such two stage voting rules
can inherit a number of attractive axiomatic properties from their
parts. For example, Black’s procedure inherits Condorcet consis-
tency from its first part, and properties like monotonicity, participa-
tion and the Condorcet loser property from its second part. Inherit-
ing such properties from its parts might be considered an attractive
feature of two stage voting rules. On the other hand, a less desirable
property of one of the base rules can infect the overall two stage
rule. For instance, it has been shown that, with single peaked votes,
many types of control and manipulation problems are polynomial
for Black’s procedure [4]. This polynomial cost is essentially inher-
ited from the first stage of the rule which selects the Condorcet win-
ner (which must exist with single peaked votes). Such vulnerabil-
ity to manipulation and control might be considered an undesirable
property for a two stage voting rule. This raises several interesting
questions from the perspective of computational social choice. For
example, with unrestricted votes as opposed to single peaked votes,
are two stage voting rules more or less computationally difficult to
manipulate than single stage voting rules? How does the computa-
tional complexity of manipulating a two stage voting rule depend
on the computational complexity of manipulating the two rules that
it composes? In this paper, we address such questions.

Our work builds upon recent research that looks at methods to
combine together voting rules. In [10], Davies et al. considered a
recursive combinator that successively eliminates the least popular
candidate(s). This captures voting rules proposed in the past like
those of Nanson, Baldwin or Coombs (all described in more detail
in the next section). By comparison, we consider here a sequential
combinator where the first rule eliminates all but the most popular
candidates and the second rule then decides between those that re-
main. This captures voting rules proposed in the past like Black’s
procedure. Perhaps closest to this work is the sequential combi-
nator introduced by Elkind and Lipmaa in [11]. This is an inter-
mediate position between the two extremes of eliminating the least
popular and all but the most popular candidates. Elkind and Lip-
maa’s combinator eliminates candidates by applying some given
number of rounds of the first rule before using the second rule to
decide between the candidates that remain. Even more recently,
Nardoytska el al. have considered a parallel combinator that com-
bines together the opinions of two (or more) different voting rules
[16]. This combinator applies both rules simultaneously and com-
pares their results. As well as proving computational properties of



existing two stage voting rules like Black’s procedure, this paper
strengthens the evidence that adding multiple rounds to voting of-
ten increases the computational resistance to manipulation.

2. BACKGROUND
A profile is a sequence of n total orders over m candidates. A

voting rule is a function mapping a profile onto a set of winners
(strictly speaking this is a social choice correspondence). We con-
sider some of the most common voting rules.
Scoring rules: Given a scoring vector (w1, . . . , wm) of weights,
the ith candidate in a vote scores wi, and the winner is the candi-
date with highest total score over all the votes. The Plurality rule
has the weight vector (1, 0, . . . , 0), the Veto rule has the vector
(1, 1, . . . , 1, 0), and the Borda rule has the vector (m − 1,m −
2, . . . , 0). With Majority, a candidate wins if they have half or
more of the votes. With two candidates, Plurality is the same as
Majority voting. We say that one scoring rule is isomorphic to an-
other iff the scoring vector of one is a linear transformation of the
other. That is, there exist α and β such that the two scoring vectors
are related by (u1, . . . , um) = (αv1 + β, . . . , αvm + β).
Cup: The winner is the result of a series of pairwise majority elec-
tions between candidates. Given the agenda, a binary tree in which
the leaves are labelled with candidates, we label the parent of two
nodes by the winner of the pairwise majority election between the
two children. The winner is the label of the root.
Black’s procedure: This rule has two stages. We first determine
if there is a Condorcet winner, a candidate that beats all others in
pairwise majority comparisons. If there is, this is the winner. Oth-
erwise, we return the result of the Borda rule.
Single Transferable Vote (STV): This rule requires up to m −
1 rounds. In each round, the candidate with the least number of
agents ranking them first is eliminated until one of the remaining
candidates has a majority.
Nanson’s and Baldwin’s rules: These are iterated versions of the
Borda rule. In Nanson’s rule, we compute the Borda scores and
eliminate all candidates with less than half the mean score. We
repeat until a single candidate remains. In Baldwin’s rule, we com-
pute the Borda scores and eliminate the candidate with the lowest
score. We again repeat until there is a single winner.
Coombs’ rule: This is an iterated version of the Veto rule. We
repeatedly eliminate the candidate with the most vetoes until we
have one candidate with a strict majority.

We consider both unweighted and integer weighted votes. A
weighted vote can simply be viewed as a block of identical un-
weighted votes. Given a fixed profile of votes cast by the non-
manipulators, the weighted coalition manipulation problem is to
decide if there exist strategic votes for the manipulators, each with
a given weight, so that a given candidate wins. Given a fixed profile
of votes cast by the non-manipulators, the unweighted manipula-
tion problem for one manipulator (two manipulators) is to decide
if there exist strategic votes for the one manipulator (two manip-
ulators) so that a given candidate wins. We suppose that any ties
in the operation of a voting rule are broken lexicographically, and
that candidates are renamed so that the candidate preferred by the
manipulators is always first in this order.

3. TWO STAGE VOTING RULES
We consider a general class of two stage voting rules. Given

voting rules X and Y , the rule XTHENY applies the voting
Y to the profile constructed by eliminating all but the winning
candidates from the voting rule X . Both X and Y can them-
selves be two stage voting rules giving us the possibility to con-

struct multi-stage voting rules. For example, Black’s procedure
is CondorcetTHENBorda where Condorcet is the multi-winner
rule that elects the Condorcet winner if it exists, and otherwise
elects all candidates. As a second example, Plurality with Runoff
is TopTwoTHENMajority where TopTwo is the multi-winner
voting rule that elects the candidates with the two most plurality
votes. There are many possible rules that we might choose to com-
bine this way. Condorcet is an attractive choice for the first rule
as it guarantees that the resulting combination is Condorcet consis-
tent. However, there are other interesting choices including:

CondorcetLoser: This rule elects all candidates except, when it
exists, the Condorcet loser.

CopelandSet: This rule elects all candidates in the Copeland set.
The Copeland score of a candidate is the number of candi-
dates that it beats less the number of candidates that beats it.
The Copeland set contains those candidates with the maxi-
mal Copeland score. When there is a Condorcet winner, this
is the only candidate in the Copeland set.

SmithSet: This rule elects all candidates in the Smith set. This
is the smallest non-empty set of candidates such that every
candidate in the set beats every candidate outside the set in
pairwise elections. When there is a Condorcet winner, this
is the only candidate in the Smith set. Voting rules like Nan-
son’s and Kemeny are guaranteed to pick candidates from the
Smith set.

SchwartzSet: This rule elects all candidates in the Schwartz set.
The Schwartz set is a subset of the Smith set and is the union
of all the undominated sets. A set is undominated if every
candidate inside the set is pairwise unbeaten by every can-
didate outside, and no non-empty proper subset satisfies this
property. When there is a Condorcet winner, this is the only
candidate in the Schwartz set.

We also consider recursively defined multi-stage voting rules. We
suppose any recursion terminates when either we have a single can-
didate left, or the set of candidates left does not reduce in size. For
example, we can recursively define STV by:

STV = PluralityLoserTHENSTV

P luralityLoser is the rule that elects all candidates but the candi-
date with the fewest first place votes. As a second example, we can
recursively define Baldwin’s rule by:

Baldwin = BordaLoserTHENBaldwin

BordaLoser is the multi-winner rule that elects all candidates but
the candidate with the lowest Borda score. Nanson’s rule can be
defined recursively in a similar way. As a third example, we can
define Coombs’ rule by:

Coombs =MajorityTHEN(V etoLoserTHENCoombs)

Majority elects the candidate with a majority of first place
votes or, if there is no such candidate, elects all candidates, and
V etoLoser is the rule that elects all candidates but the candidate
with the most last placed votes.

4. SOME AXIOMATIC AND ALGEBRAIC
PROPERTIES

It is interesting to consider which axiomatic properties are inher-
ited from the base rules being combined. For example, it is simple
to see that we can inherit Condorcet consistency or the Condorcet
loser properties.



PROPOSITION 1. For any voting rule X , CondorcetTHENX ,
CopelandSetTHENX , SchwartzSetTHENX , and
SmithSetTHENX are Condorcet consistent. Similarly, for
any voting rule Y , the combination CondorcerLoserTHENY
satisfies the Condorcet loser property.

With recursively defined rules, we can give a similar result. We
say that a multi-winner rule is Condorcet consistent if it includes
the Condorcet winner in the set of winners, and satisfies the Con-
dorcet loser property if the set of winners never includes the Con-
dorcet loser.

PROPOSITION 2. Suppose Y is recursively defined by Y =
XTHENY and X is Condorcet consistent. Then Y is also Con-
dorcet consistent. Similarly, if X satisfies the Condorcet loser
property then Y does also.

Note that the Borda loser is never the Condorcet winner. Hence,
the multi-winner rule BordaLoser is Condorcet consistent. Thus,
it follows from Proposition 2 that Baldwin’s rule (which is recur-
sively defined using BordaLoser) is also Condorcet consistent.
There are also axiomatic properties which can be lost by combin-
ing together voting rules. For example, the Borda loser rule which
eliminates the lowest Borda scoring candidate is monotonic since
increasing one’s preference for a candidate can only prevent them
from being the Borda loser. However, Baldwin’s rule, which is
the recursive version of the Borda loser rule, is not monotonic. It
will therefore be interesting to identify conditions under which two
stage voting rules are monotonic.

The THEN combinator has a number of interesting algebraic
properties. For example, the Identity rule that returns all can-
didates is a left and right identity of the THEN combinator. Note
that the THEN combinator is neither commutative nor associative.
If a voting rule is recursively defined then it is idempotent (that is,
XTHENX = X). More complex identities can be derived such as
the following.

PROPOSITION 3. If X is idempotent then
XTHEN(XTHENY ) = XTHENY and (Y THENX)THENX =
Y THENX .

PROPOSITION 4. SmithSetTHENNanson = Nanson.

PROPOSITION 5. IfX is Condorcet consistent and only returns
the Condorcet winner when they exist then CondorcetTHENX =
X .

5. COMPLEXITY OF MANIPULATION
One of the main contributions of this paper is to consider the im-

pact of two stage voting rules on the computational complexity of
computing a manipulation. As in previous studies (e.g. [2, 7]), we
consider manipulation with unweighted votes and a small number
of manipulators, and manipulation with weighted votes, a coalition
of manipulators and a small number of candidates. As is common
in the literature, we break ties in favour of the manipulators.

5.1 Weighted votes, general results
With weighted votes, we first argue that there is no connection in

general between the computational complexity of computing a ma-
nipulation of a two stage voting rule and the computational com-
plexity of manipulating its parts.

PROPOSITION 6. There exist voting rules X and Y with the
following properties for weighted votes:

1. computing coalition manipulations of X , Y and XTHENY
are polynomial;

2. computing coalition manipulations of X and Y are polyno-
mial but of XTHENY is NP-hard;

3. computing a coalition manipulation of X is polynomial and
of Y is NP-hard, but of XTHENY is polynomial;

4. computing a coalition manipulation of X is polynomial, but
of Y and XTHENY are NP-hard;

5. computing a coalition manipulation of X is NP-hard, but of
Y and XTHENY are polynomial;

6. computing a coalition manipulation of X is NP-hard and of
Y is polynomial, but of XTHENY is NP-hard;

7. computing coalition manipulations of X and Y are NP-hard
but of XTHENY is polynomial;

8. computing coalition manipulations of X , Y and XTHENY
are NP-hard.

Proof: The NP-hardness results are derived from the NP-hardness
of computing a weighted coalition manipulation of STV with three
or more candidates [7].

1. Consider X = FirstRoundCup and Y = Cup
where FirstRoundCup is the multi-winner rule that
runs one round of the Cup voting rule. Note that
FirstRoundCupTHENCup is the Cup rule itself, and both
FirstRoundCup andCup are polynomial to manipulate by
a coalition even with weighted votes [7].

2. Consider X = TopTwo and Y = Plurality where
TopTwo elects the two candidates with the two high-
est plurality scores. With three or fewer candidates,
TopTwoTHENPlurality is plurality with runoff. This is
NP-hard to manipulate by a weighted coalition with three or
more candidates [7].

3. Consider X = Plurality′ and Y = STV where
Plurality′ is the decisive form of plurality that tie-breaks
in favour of the manipulators. Note that XTHENY is again
Plurality′ which is polynomial to manipulate by a coalition
even with weighted votes [7].

4. Consider X = Identity and Y = STV where Identity is
the identity rule that elects all the candidates in the election.
Note that XTHENY is also STV .

5. Consider X = STV1 which is the multi-winner voting
rule that elects both the STV winner and the candidate with
the lexicographically smallest label, and Y elects the can-
didate with the lexicographically smallest label. Note that
XTHENY always elects the candidate with the lexicographi-
cally smallest label. Such a rule is polynomial to manipulate
by a coalition even with weighted votes.

6. Consider X = STV and Y = Identity. Note that
XTHENY is again STV .

7. Consider X = STV2 and Y = STV3 where STV2 is the
multi-winner rule that elects the STV winner as well as those
candidates with the lexicographically smallest and largest
names, and STV3 elects the plurality winner from the candi-
dates with the lexicographically smallest and largest names if



there are thress or fewer candidates and otherwise elects the
STV winner. Note that XTHENY elects the plurality winner
from the candidates with the lexicographically smallest and
largest names. Computing a coalition manipulation of such
a rule is polynomial even with weighted votes.

8. ConsiderX = Y = STV ′ where STV ′ is the decisive form
of STV where we tie-break in favour of the manipulators.
Note that XTHENY is also STV ′.

�

5.2 Weighted votes, specific rules
With weighted votes, we already know that several multi-stage

voting rules are NP-hard to manipulate including STV, Plurality
with runoff, Baldwin’s rule (all with 3 candidates), and Nanson’s
rule (with 4 candidates) [7, 15]. We first show that computing a ma-
nipulation of CondorcetTHENX with weighted votes is NP-hard
for any scoring rule X . This contrasts to scoring rules in general
where computing a coalition manipulation is NP-hard for any rule
that is not isomorphic to Plurality, but is polynomial for Plurality.
This demonstrates that adding the test for a Condorcet winner to
give CondorcetTHENX increases the computational complexity
of manipulation over that for the scoring rule X alone.

PROPOSITION 7. Deciding whether there exists a coalitional
manipulation for the combination CondorcetTHENPlurality
with weighted votes is NP-complete with three or more candidates.

Proof: We reduce from the number partitioning problem with n
integers ki, i = 1, . . . , n,

∑n
i=1 ki = 2K. We have n manip-

ulators with the weight ki each. We have three candidates, a, b
and p (who the manipulators wish to make win), 4K votes cast by
the non-manipulators and 2K to be cast by the manipulators. Sup-
pose agents with total weight 2K cast (a, b, p) and agents with total
weight 2K cast (b, a, p). The candidate p is a Condorcet loser as
it loses to both a and b. Moreover, as a and b are tied, there is no
Condorcet winner. Note that if all manipulators put p in the first
position then p wins under plurality. However, the manipulators
have to make sure that they also do not make a or b the Condorcet
winner. Note that if a (b) gets a higher score than b (a) then a (b)
is the Condorcet winner. Therefore, the only way to prevent one of
them from becoming the Condorcet winner is to partition the total
weight of votes between a and b. Thus, manipulators with a total
weight of K have to vote (p, a, b) and the remaining manipulators
have to vote (p, b, a). Therefore, there exists a manipulation iff
there is a partition with the required sum K. �

PROPOSITION 8. With weighted votes and any scoring rule X
that is not isomorphic to Plurality, computing a coalition manipu-
lation of CondorcetTHENX is NP-hard for three or more candi-
dates.

Proof: Without loss of generality, we consider a scoring rule which
gives a score of α1 for a candidate in 1st place in a vote, α2 for 2nd
place, and 0 for 3rd place. We adapt the reduction used in the proof
of Theorem 6 in [7] for the NP-hardness of manipulating any scor-
ing rule that is not isomorphic to Plurality voting. The reduction
in [7] is from the number partitioning problem and constructs an
election with a weight of 6α1K − 2 votes over the candidates a,
b and p (who the manipulators wish to make win). Within these
votes, the manipulators have a weight of 2(α1 + α2)K votes, and
the rest are fixed. The number partition problem is to divide a set of
integers summing to 2K into two equal sums. There is a manipu-
lator of weight (α+1+α2)k1 for every integer ki in the set being

partitioned. We add 6α1K − 1 triples of votes to this election:
(a, b, p), (b, p, a), (p, a, b). This has no impact on the differences
in the scores between the candidates. However, it creates a Con-
dorcet cycle so that there cannot be a Condorcet winner whatever
the manipulators do with their votes. Hence, we must pass to the
second round where the winner is decided by the scoring rule X .
As in the proof of Theorem 6 in [7], there is a manipulation that
makes p the winner of the scoring rule X iff there is a partition
into two equal sums. Thus, computing a coalition manipulation of
CondorcetTHENX is NP-hard. �

It follows immediately that coalition manipulation of Black’s
procedure, which isCondorcetTHENBorda is NP-hard with three
or more candidates.

COROLLARY 1. With weighted votes, computing a coalition
manipulation of Black’s procedure is NP-hard with three or more
candidates.

5.3 Unweighted votes, general results
As with weighted votes, there is no connection in general be-

tween the computational complexity of computing a manipulation
of a two stage voting rule with unweighted votes and the computa-
tional complexity of computing a manipulation of its parts.

PROPOSITION 9. There exist voting rules X and Y with the
following properties:

1. computing manipulations of X , Y and XTHENY are poly-
nomial;

2. computing manipulations of X and Y are polynomial but of
XTHENY is NP-hard;

3. computing a manipulation of X is polynomial and of Y is
NP-hard, but of XTHENY is polynomial;

4. computing a manipulation of X is polynomial, but of Y and
XTHENY are NP-hard;

5. computing a manipulation of X is NP-hard, but of Y and
XTHENY are polynomial;

6. computing a manipulation ofX is NP-hard and of Y is poly-
nomial, but of XTHENY is NP-hard;

7. computing manipulations of X and Y are NP-hard but of
XTHENY is polynomial;

8. computing manipulations of X , Y and XTHENY are NP-
hard.

Proof: The NP-hardness results are derived from the NP-hardness
of manipulating STV with unweighted votes and a single manipu-
lator [2].

1 Identical examples to the weighted case.

2 Consider the multi-winner voting rule X that eliminates a fixed
candidate p, and the rule Y that elects the plurality win-
ner between the candidates that are preferred by at least one
agent to p or, if there are no such candidates, the STV winner.
Now X is polynomial to manipulate as it ignores the votes.
Similarly, Y is polynomial to manipulate since the manipu-
lators should always put the candidate that they wish to win
in first place, and p anywhere else in their vote. If all other
agents prefer p to any other candidate, then this vote will en-
sure that the manipulators’ preferred candidate wins. On the



other hand, if the other agents prefer one or more candidates
to p, then this is the best vote for ensuring the manipulators’
preferred candidate is the plurality winner. Now XTHENY
is NP-hard to manipulate. We adapt the reduction used in
[2] to prove that STV is NP-hard to manipulate by a single
manipulator. We simply introduce an additional candidate, p
into the voting profile used in this proof.

3-8 Identical examples to the weighted case. �

5.4 Unweighted votes, specific rules
With unweighted votes, we already know that a number of spe-

cific multi-stage voting rules are NP-hard to manipulate including
STV [2], Nanson’s, Baldwin’s [15] and Coombs rules [10]. We
can add Black’s procedure to this list of voting rules that are NP-
hard to manipulate with unweighted votes. Like Borda voting on
which it is based, a single manipulator can compute a manipula-
tion of Black’s procedure in polynomial time, but coordinating two
manipulators makes the problem NP-hard [3, 9].

PROPOSITION 10. Computing a manipulation of Black’s pro-
cedure with unweighted votes and two manipulators is NP-hard.

Proof: We adapt the reduction used in the proof of Theorem 3.1
in [3] for the NP-hardness of manipulating Borda voting. This re-
duction is from a special case of numerical matching with target
sums. It constructs an election with 5 votes, 3 fixed votes and
2 votes of the manipulators over the candidates 1 to m. We add
6 sets of cyclic votes: (1, 2, . . . ,m − 1,m), (2, 3 . . . ,m, 1), . . . ,
(m−1,m, . . . ,m−3,m−2), (m, 1, . . . ,m−2,m−1). This has
no impact on the differences in the scores between the candidates.
However, it creates a Condorcet cycle so there cannot be a Con-
dorcet winner however the two manipulators vote. Hence, we must
pass to the second round where the winner is decided by the Borda
rule. As in the proof of Theorem 3.1 in [3], there is a manipulation
that makes a chosen candidate the Borda winner iff there is a so-
lution to the numerical matching problem with target sums. Thus,
computing a manipulation of CondorcetTHENBorda, which is
Black’s procedure, is NP-hard. �

PROPOSITION 11. Deciding whether one manipulator can
make a candidate win for Black’s procedure with unweighted votes
is polynomial.

Proof: Let p be the candidate who the manipulator wishes to win.
We give a polynomial time greedy procedure which constructs a
successful manipulation if one exists or fails (in which case there is
no way to make p win). We put p in first place in the manipulator’s
vote. This is the best possible thing we can do to ensure p wins. If
p is now necessarily the Condorcet winner, we are done; p will win
however we complete the vote. Otherwise we consider the remain-
ing positions in the manipulator’s vote, starting with the 2nd (and
most dangerous) position. We put the least dangerous candidate for
Borda in this position that does not create a Condorcet winner. To
do this, we consider the remaining candidates in reverse order of
their Borda scores. We put in this position the first candidate that
is not then necessarily a Condorcet winner or a candidate with a
higher Borda score than p. If there is no such candidate, we fail.
Otherwise, we move to the next position in the vote and repeat. �

6. MULTIPLE BALLOTS
So far, we have assumed that agents vote only once. However,

the THEN combinator is naturally sequential. We therefore con-
sider the case where agents are allowed to re-vote in each round.

For example, in the French presidential elections, voters re-vote in
the second stage. Such re-voting increases the potential for manip-
ulation in several different ways. First, there are elections which
can only be manipulated when the manipulators vote differently
in the two rounds. Of course, all those elections where manipula-
tors can change the result by strategically voting just once remain
manipulable. Second, the first round of voting reveals agents’ pref-
erences, thereby enabling manipulations to take place that require
such knowledge. We discuss this more in the next section. Third,
agents can vote strategically in the first round to give their preferred
candidate an easier contest in the second round.

If agents re-vote between rounds, we use the term “re-voting” in
the description of the voting rule. Hence, plurality with runoff and
re-voting is the two stage election rule used in French presidential
elections in which, unless there a majority in the first round, plural-
ity is used in the first round to select two candidates to go through
to the runoff, and agents then re-vote in the second round to decide
the winner of the runoff. The following two results demonstrate
that allowing agents to re-vote between rounds can either increase
or decrease the computational complexity of computing a strategic
vote. The first result also shows that there exist elections where
strategic voting with plurality with runoff is not possible unless we
permit re-voting between rounds.

PROPOSITION 12. There exists a class of weighted elections on
3 candidates such that computing a coalition manipulation for plu-
rality with run-off is polynomial when agents vote just once, but it
is NP-hard to compute a coalition manipulation when the manipu-
lating agents can re-vote in the run-off.

Proof: We suppose that only the manipulating agents change their
vote in the run-off. Reduction from number partitioning. We con-
sider a bag of integers ki with sum 2K and ask if we can divide
them into two bags each with sum K. We construct an election
which is not manipulable if agents vote just once (hence, it is poly-
nomial to compute if there is a successful manipulation). However,
a coalition of agents, each with vote of weight ki can construct a
successful manipulation of this election when they re-vote between
rounds iff there is a perfect partition. There are 3 candidates, a, b
and p. The manipulating coalition wish to make p win. The elec-
tion has 2K fixed votes for (a, b, p), 2K fixed votes for (b, a, p),K
fixed votes for (b, p, a), and 2K fixed votes for (p, a, b). We sup-
pose that in the case of a 3-way tie in the first round, b is eliminated.
Now, for p to win, b must be eliminated in the first round since 3K
more agents prefer b to p and the coalition cannot over-turn this
majority. Since a and p have 2K fixed votes and b has 3K, this
is only possible if we have a 3-way tie in the first round. This re-
quires the manipulating coalition to vote so that there is a weight of
K votes for a and for p (which corresponds to a perfect partition).
Suppose that this is possible. If the manipulating coalition cannot
re-vote in the run-off, then a wins with 5K votes against the 4K
votes for p. However, if all the coalition re-vote in the run-off for p
then pwins with 5K votes against the 4K votes for a. Hence, there
is a successful manipulation in which p wins iff there is a perfect
partition and the manipulators can re-vote in the run-off. �

We also show the reverse: we identify a class of elections where
plurality with run-off is polynomial to manipulate with re-voting in
the run-off, but NP-hard when agents can vote just once.

PROPOSITION 13. There exists a class of weighted elections on
4 candidates such that computing a coalition manipulation for plu-
rality with run-off is NP-hard when agents vote just once, but it is
polynomial to compute a coalition manipulation when agents can
re-vote in the run-off.



Proof: We reduce from number partitioning. We consider a bag
of integers ki with sum 2K and ask if we can divide them into two
bags each with sum K. We construct an election which is easy
to manipulate if agents can re-vote in the run-off, but it requires
a solution to the partitioning problem to compute a manipulation
if they vote just once. There are 4 candidates, a, b, c and p. The
manipulating coalition, each with a weight of 2ki wish to make
p win. The election has 4K fixed votes for (p, a, b, c), 4K fixed
votes for (a, b, c, p), 4K − 1 fixed votes for (b, p, c, a), 2K fixed
votes for (b, c, p, a), and 6K − 2 fixed votes for (c, b, p, a). In the
first round, both p and a have 4K votes, b has 6K − 1, and c has
6K − 2. If the manipulators can re-vote in the run-off then it is
easy to construct a manipulation. The manipulators cast one vote
for c and the rest for p. Suppose this one vote has weight 2k (where
k ≥ 1). Then p and c go through to the run-off as p has 8K − 2k
votes, a has 4K votes, b has 6K − 2 votes and c has 6K − 2 + 2k
votes. In the run-off, if all the manipulators now vote for p then p
wins with 12K − 1 votes compared to 12K − 2 votes for c.

On the other hand, if the manipulators cannot re-vote in the run-
off, we argue that p cannot win unless a and p enter the run-off,
and this is only possible if there is a perfect partition. Suppose
b and p go through to the run-off. Then, irrespective of how the
manipulators vote, b wins as there are 16K − 3 fixed votes for b
and only 4K fixed votes for p. Suppose c and p go through to the
run-off. Then cmust receive vote of weight 2k (where k ≥ 1) from
the manipulators to beat b in the first round. In the run-off, c then
has 12K−2+2k votes which is more than the 12K−1−2k votes
for p. Hence, cwill win the run-off. Thus, for p to win, we just need
to consider the case that p and a enter the run-off. The only way
that p and a can enter run-off is if there is a perfect partition and
agents in the manipulating coalition corresponding to one partition
vote (a, . . .) whilst the other partition vote (p, . . .). Then p and a
both have 6K votes and go through to the run-off. In the run-off, p
wins with 18K − 3 votes compared to the 6K votes for a. Hence,
p wins iff there is a perfect partition. Thus computing a coalition
manipulation is NP-hard when agents cannot re-vote in the run-off.
�

6.1 General results on re-voting
The last two results demonstrates that permitting agents to re-

vote between rounds can either increase or decrease the computa-
tional complexity of computing a coalition manipulation. We might
wonder if the same holds for unweighted votes. We argue here that,
in the unweighted case, there is also no connection between the
computational complexity of manipulating a two-stage voting rule
with and without re-voting. We give two artificial two-stage voting
rules where re-voting between rounds either increases or decreases
the worst case complexity of computing a single strategic vote.

PROPOSITION 14. There exists a two-stage voting rule such
that computing a strategic vote by a single manipulator is NP-hard
when the manipulator cannot re-vote between rounds but polyno-
mial when the manipulator can.

Proof: (Sketch) We reduce from the 1in3-SAT problem (“does
there exist a truth assignment that satisfies exactly one in three lit-
erals in each clause?”) on positive clauses. The reduction uses
votes to represent clauses and a truth assignment. We use positive
integers to represent literals, as well as the candidates 0 and -1 to
identify the vote represent a truth assignment. By distinguishing
between the non-negative integers, 0 and -1, our voting rules are
not neutral (that is, are not invariant to the names of the candidates).
They can, however, be made neutral but at the expense of greater
complexity. For any vote in which 0 is not in first place, the first

three non-zero positive candidates represent the positive literals in
a clause. For any vote in which 0 is in first place, the non-zero
positive candidates before -1 represent the positive literals in the
truth assignment which are set to true, and all other positive literals
are set to false. X is the rule that elects 0 if no vote represents a
truth assignment which satisfies at least one in three literals in each
clause represented by the other votes, otherwise it elects all candi-
dates. On the other hand, Y is the rule that elects -1 if there is a vote
representing a truth assignment which satisfies at most one in three
literals in each clause, otherwise it elects 0. The non-manipulators
cast votes that represent the clauses. When the manipulator cannot
re-vote between rounds, a manipulator can make -1 win XTHENY
iff there is a satisfying 1in3-SAT assignment. On the other hand,
computing a manipulation of XTHENY is polynomial when the
manipulator can re-vote between rounds. The manipulator simply
puts 0 in first place and -1 in last place in the first round, and 0 in
first place and -1 in second place in the second round. �

PROPOSITION 15. There exists a two-stage voting rule such
that computing a strategic vote by a single manipulator is poly-
nomial when the manipulator cannot re-vote between rounds but
NP-hard when the manipulator can.

Proof: We again reduce from 1in3-SAT on positive clauses and
uses votes to represent clauses and a truth assignment in the same
way as the last proof. As before, our voting rules are not neutral
but could be made so with some additional complexity. X is the
voting rule that elects 0 if there is any vote with 0 in first place oth-
erwise elects every candidate. On the other hand, Y is the rule that
elects -1 if there is a vote representing a truth assignment which
satisfies exactly one in three literals in each clause, otherwise it
elects 0. As before, the non-manipulators cast votes that represent
the clauses. When the manipulator cannot re-vote between rounds,
the only possible result of XTHENY is 0. On the other hand, when
there is re-voting between rounds, a manipulator can make -1 win
iff there is a satisfying 1in3-SAT assignment. The manipulator sim-
ply puts 0 in last place in the first round, and in the second round
casts a vote corresponding to a satisfying 1in3-SAT truth assign-
ment. �

6.2 Specific results on re-voting
For commonly occurring two-stage voting rules like plurality

with run-off and Black’s procedure, we now show that re-voting has
no impact on the worst case complexity of computing a strategic
vote when we consider manipulating any possible profile of votes.
Consider plurality with runoff. With unweighted votes, computing
a manipulation of plurality with runoff with and without re-voting
is polynomial. With weighted votes and three or more candidates,
it is NP-hard to compute a coalition manipulation of plurality with
run-off when agents vote just once [7]. With re-voting in the run-
off, computing a coalition manipulation remains NP-hard with just
three candidates.

PROPOSITION 16. Computing a weighted coalition manipula-
tion for plurality with run-off is NP-hard with three or more candi-
dates when agents can re-vote in the run-off.

Proof: We use the same reduction as in the proof of Theorem 9
in [7] which demonstrates that weighted coalition manipulation for
plurality with run-off is NP-hard when agents vote just once, and
do not re-vote in the run-off. We consider a number partitioning
problem of the integers ki with sum 2K. There are 3 candidates,
a, b and p with 6K − 1 votes for (b, p, a), and 4K votes each for
(a, b, p) and (p, a, b). The manipulating coalition wish to make p



win. Each manipulator has a vote of weight 2ki. As in [7], if there
is a partition, then we can construct a manipulation in which agents
corresponding to one partition vote (a, p, b) and to the other parti-
tion vote (p, a, b). Both a and p then advance to the run-off where
p wins easily without the manipulators needing to re-vote. On the
other hand, suppose there is a manipulation, with manipulators po-
tentially re-voting in the run-off. As argued in [7], for p to win,
both p and a must go through to the run-off since b will beat p in
any run-off whatever the manipulators do. However, this is only
possible if we have manipulating votes corresponding to a partition
with half putting a in first place, and the other half putting p in first
place. �

We turn next to Black’s procedure. Computing a coalition ma-
nipulation of Black’s procedure with weighted votes remains NP-
hard when we permit re-voting.

PROPOSITION 17. Computing a weighted coalition manipula-
tion of Black’s procedure is NP-hard when there are three or more
candidates and agents can re-vote in the second round.

Proof: We use the same reduction as in the proof of Proposition 8.
Whatever vote is cast by the manipulators in the first round, there
is not a Condorcet winner. Hence all candidates proceed to the sec-
ond round. In the second round, the agents re-vote and the desired
candidate p wins iff the coalition cast new votes corresponding to
a perfect partition. Thus computing a coalition manipulation of
Black’s procedure with re-voting is NP-hard. �

With unweighted votes, re-voting also has no impact on the worst
case complexity of computing a strategic vote.

PROPOSITION 18. Computing a manipulation of Black’s pro-
cedure by two manipulators is NP-hard when votes are unweighted
and agents can re-vote in the second round, whilst it is polynomial
with just one manipulator.

Proof: With two manipulators, we use the same reduction as in
the proof of Proposition 10 where the two manipulators cannot re-
vote. With one manipulator, we construct a strategic vote for the
first round by putting the desired candidate first, and reverse order-
ing the remaining candidates according to their Copeland scores.
For the second round, we simply use the greedy method for ap-
proximating Borda manipulation that puts the desired candidate
first, and reverse orders the remaining candidates according to their
Borda scores. �

7. REVEALED PREFERENCES
One of the (potentially strong) assumptions made in much work

on (the computational complexity of) manipulation is that the ma-
nipulators know the other agents’ preferences [8]. There are many
situations where this is unrealistic. When we have re-voting, it may
be reasonable to suppose agents’ preferences have been (partially)
revealed by the first round of voting. This introduces new opportu-
nities for manipulation. Consider Black’s procedure with re-voting
and a manipulator who lacks any knowledge of the other agents’
preferences, so votes truthfully in the first round. The following
example demonstrates that this manipulator can vote strategically
in the second round based on the votes revealed in the first round.

EXAMPLE 1. Suppose the first round reveals that there are 2
votes for (a, b, p), 2 votes for (b, p, a), 1 vote for (p, a, b), and a
single manipulator’s truthful vote for (p, b, a). There is no Con-
dorcet winner so all candidates go through to the second round.
Without re-voting, b has the highest Borda score in the second

round and is the overall winner. On the other hand, suppose the ma-
nipulator changes their vote in the second round to (p, a, b) based
on the preferences revealed in the first round. Then, assuming the
other votes remain the same, the Borda scores of all candidates are
equal. If such a 3-way tie is broken in favour of the manipulator,
then the manipulator’s preferred candidate p now wins.

It is natural to consider more game theoretic behaviours in such
two stage voting rules. Re-voting can be viewed as a finite repeated
sequential game so we can use concepts like subgame perfect Nash
equilibrium and backward induction to predict how agents will play
strategically in each round. An interesting open question is the
computational complexity of computing such strategic behaviour.
This sort of strategic voting has already received some attention
in the literature. For example, Bag, Sabourian and Winter prove
that a class of voting rules which use repeated ballots and eliminate
one candidate in each round are Condorcet consistent [1]. They
illustrate this class with the weakest link rule in which the candidate
with the fewest ballots in each round is eliminated.

It is also natural to consider iterated voting in multiple stage vot-
ing rules. After each round of voting, we might suppose that agents
change their vote according to a best response strategy, starting per-
haps from a truthful vote. We can also consider the situation where
the full preferences of the agents are revealed in each round of vot-
ing, as well as the situation where only partially information is re-
vealed like total Borda scores. However, unlike previous studies
like [14], candidates are also eliminated in each round.

8. RELATED WORK
As noted earlier, a number of well known voting rules like

Black’s procedure and Plurality with runoff are instances of this
voting schema. However, there exist many other related voting
rules. For example, Conitzer and Sandholm [5] studied the impact
on the computational complexity of manipulation of adding an ini-
tial round of the Cup rule to a voting rule X . This initial round
eliminates half the candidates and makes manipulation NP-hard to
compute for several voting rule including plurality and Borda. Con-
sider the multi-winner voting rule, Bisect which runs an election
between given pairs of candidates, and returns the winning half of
the candidates. Then Conitzer and Sandholm’s study can be viewed
as of the two stage voting rule BisectTHENX .

Elkind and Lipmaa [11] extended Conitzer and Sandholm’s
idea of making manipulation computationally hard to computer by
adding a pre-round of the cup rule. They proposed a general tech-
nique for combining together any two voting rules. The first voting
rule is run for some number of rounds to eliminate some of the can-
didates, before the second voting rule is applied to the candidates
that remain. They proved that many such combinations of voting
rules are NP-hard to manipulate.

As mentioned previously, Davies et al. have recently considered
a general class of voting rules in which a base rule is repeatedly
applied to eliminate the least popular candidates [10]. STV, Bald-
win’s and Coombs rules can all be viewed as instances of this gen-
eral schema. For example, STV is eliminate(plurality), Bald-
win’s rule is eliminate(Borda), and (a variant of) Coombs is
eliminate(veto). Successively eliminating candidates in this way
can often increase the computational complexity of computing a
manipulation.

Beside STV, Nanson’s, Baldwin’s and Coombs rule, a number
of other recursively defined rules have been put forwards in the
literature. For example, Tideman proposed the Alternative Smith
rule [18]. This is recursively defined as

SmithSetTHEN(PluralityLoserTHENAlternativeSmith)



Other complex multi-stage rules have also been proposed. For
example, [13] has proposed a complex rule that computes the
Schwartz choice set, then iteratively applies Copeland’s procedure
until a fixed point is reached. If several candidates remain at this
point, the rule then selects the plurality winners. If there are several
such winners, the rule then chooses among then according to the
number of second place votes, and so on. If this still does not select
a winner, a lottery is used amongst the candidates that remain.

Finally, as mentioned previously, Narodytska et al. have also
considered a parallel combinator for taking the consensus of two
(or more) voting rules [16]. Given two voting rules X and Y ,
the parallel combinator X + Y computes the winners of X and
Y and then recursively applies X + Y to this set. If X and Y
are majority consistent (that is, given an election with just two
candidates, they both return the majority winner) then X + Y is
(XORY )THENMajority where XORY returns the union of the
winners of X and Y .

9. CONCLUSIONS
We have considered voting rules which have two stages. For

example, Black’s procedure selects the Condorcet winner if they
exist, otherwise in the second stage, it selects the Borda winner.
We denoted this as CondorcetTHENBorda. Combining voting
rules together in this way can increase their resistance to manipu-
lation. For example, whilst Plurality is polynomial to manipulate
with weighted votes, CondorcetTHENPlurality is NP-hard with
three or more candidates and a coalition of manipulators. A com-
bination of voting rules can also inherit computational resistance to
manipulation from its parts. For example, we proved that comput-
ing a manipulation of Black’s procedure, which is the combination
CondorcetTHENBorda, is NP-hard with weighted or unweighted
votes. We have also considered the impact of allowing agents to
re-vote between rounds. Our results are mostly worst case and may
not reflect the difficulty of computing a manipulation on average
or in practice (see, for instance, [6, 17, 19, 20]). Thus this work
should be a first step in understanding the computational complex-
ity of manipulating two stage voting rules. There are many other
directions for future work. For instance, it would also be interesting
to consider the impact of such two stage voting on other types of
control, on bribery and on issues like the computation of possible
winners.

10. ACKNOWLEDGEMENTS
NICTA is funded by the Department of Broadband, Commu-

nications and the Digital Economy, and the Australian Research
Council. The authors are also supported by the Asian Office of
Aerospace Research and Development (AOARD 124056).

11. REFERENCES
[1] P.K. Bag, H. Sabourian, and E. Winter. Multi-stage voting,

sequential elimination and Condorcet consistency. Journal of
Economic Theory, 144(3):1278 – 1299, 2009.

[2] J.J. Bartholdi and J.B. Orlin. Single transferable vote resists
strategic voting. Social Choice and Welfare, 8(4):341–354,
1991.

[3] N. Betzler, R. Niedermeier, and G.J. Woeginger. Unweighted
coalitional manipulation under the Borda rule is NP-hard. In
Proc. of the 22nd International Joint Conf. on Artificial
Intelligence (IJCAI 2011). 2011.

[4] F. Brandt, M. Brill, E. Hemaspaandra, and L.A.
Hemaspaandra. Bypassing combinatorial protections:
Polynomial-time algorithms for single-peaked electorates. In

Proc. of the 24th AAAI Conf. on Artificial Intelligence (AAAI
2010). 2010.

[5] V. Conitzer and T. Sandholm. Universal voting protocol
tweaks to make manipulation hard. In Proc. of 18th IJCAI,
pages 781–788. 2003.

[6] V. Conitzer and T. Sandholm. Nonexistence of voting rules
that are usually hard to manipulate. In Proc. of the 21st
National Conf. on Artificial Intelligence (AAAI 2006), pages
627–634. 2006.

[7] V. Conitzer, T. Sandholm, and J. Lang. When are elections
with few candidates hard to manipulate. Journal of the
Association for Computing Machinery, 54, 2007.

[8] V. Conitzer, T. Walsh, and L. Xia. Dominating manipulations
in voting with partial information. In Proc. of the 25th AAAI
Conf. on Artificial Intelligence (AAAI 2011). AAAI Press,
2011.

[9] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh.
Complexity of and Algorithms for Borda Manipulation. In
Proc. of the 25th AAAI Conf. on Artificial Intelligence (AAAI
2011). AAAI Press, 2011.

[10] J. Davies, N. Narodytska, and T. Walsh. Eliminating the
weakest link: Making manipulation intractable? In Proc. of
the 26th AAAI Conf. on Artificial Intelligence (AAAI 2012).
2012.

[11] E. Elkind and H. Lipmaa. Hybrid voting protocols and
hardness of manipulation. In Proc. of the 16th Annual
International Symposium on Algorithms and Computation
(ISAAC’05), 2005.

[12] P.C. Fishburn. Condorcet social choice functions. SIAM
Journal on Applied Mathematics, 33(3):469–489, 1977.

[13] C.G. Hoag and G.H. Hallett. Proportional Representation.
Macmillan, 1926.

[14] O. Lev and J.S. Rosenschein. Convergence of iterative
voting. In The 11th International Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2012), 2012.

[15] N. Narodytska, T. Walsh, and L. Xia. Manipulation of
Nanson’s and Baldwin’s rules. In Proc. of the 25th AAAI
Conf. on Artificial Intelligence (AAAI 2011). AAAI Press,
2011.

[16] N. Narodytska, T. Walsh, and L. Xia. Combining voting rules
together. In Proc. of the 20th European Conf. on Artificial
Intelligence (ECAI-2012). 2012.

[17] A. D. Procaccia and J. S. Rosenschein. Junta distributions
and the average-case complexity of manipulating elections.
Journal of Artificial Intelligence Research, 28:157–181,
2007.

[18] N. Tideman. Collective Decisions And Voting: The Potential
for Public Choice. Ashgate, 2006.

[19] T. Walsh. Where are the really hard manipulation problems?
The phase transition in manipulating the veto rule. In Proc.
of the 21st International Joint Conf. on Artificial Intelligence
(IJCAI-2009), pages 324–329. 2009.

[20] T. Walsh. An empirical study of the manipulability of single
transferable voting. In Proc. of the 19th European Conf. on
Artificial Intelligence (ECAI-2010), pages 257–262. 2010.


