
Singleton ConsisteniesPatrik Prosser1, Kostas Stergiou2, and Toby Walsh31 Glasgow University, Glasgow, Sotland. pat�ds.strath.a.uk2 University of Strathlyde, Glasgow, Sotland. ks�s.strath.a.uk3 University of York, York, England. tw�s.york.a.ukAbstrat. We perform a omprehensive theoretial and empirial studyof the bene�ts of singleton onsistenies. Our theoretial results helpplae singleton onsistenies within the hierarhy of loal onsistenies.To determine the pratial value of these theoretial results, we mea-sured the ost-e�etiveness of pre-proessing with singleton onsistenyalgorithms. Our experiments use both random and strutured problems.Whilst pre-proessing with singleton onsistenies is not in general ben-e�ial for random problems, it starts to pay o� when randomness andstruture are ombined, and it is very worthwhile with strutured prob-lems like Golomb rulers. On suh problems, pre-proessing with onsis-teny tehniques as strong as singleton generalized ar-onsisteny (thesingleton extension of generalized ar-onsisteny) an redue runtimes.We also show that limiting algorithms that enfore singleton onsisten-ies to a single pass often gives a small redution in the amount of prun-ing and improves their ost-e�etiveness. These experimental results alsodemonstrate that onlusions from studies on random problems shouldbe treated with aution.1 IntrodutionLoal onsisteny tehniques lie lose to the heart of onstraint programming'ssuess. They an prune values from the domain of variables, saving muh fruit-less exploration of the searh tree. They an also terminate branhes of the searhtree, again saving muh fruitless exploration. But how do we balane e�ort be-tween inferene (enforing some level of loal onsisteny) and searh (exploringpartial assignments)? If we maintain a loal onsisteny tehnique at eah nodein the searh tree, then experiene suggests that it must not be too expensive toenfore. We may, however, be able to a�ord a (relatively expensive) loal on-sisteny tehnique if it is only used for pre-proessing or for the �rst few levelsof searh. We are then faed with a large number of hoies as a vast menagerieof loal onsistenies have been de�ned over the last few years. Debruyne andBessiere identi�ed singleton ar-onsisteny as one of the most promising an-didates [DB97℄. This paper therefore explores its usefulness in greater detail, aswell as that of other singleton onsistenies.2 Formal bakgroundA onstraint satisfation problem (Csp) P is a triple (X;D;C). X is a setof variables. For eah xi 2 X , Di is the domain of the variable. Eah k-ary

2onstraint 2 C is de�ned over a set of variables (x1; : : : xk) by the subsetof the Cartesian produt D1 � : : : Dk whih are onsistent values. Following[DB97℄, we denote by P jDi=fag the CSP obtained by assigning value a to variablexi. An all-di�erent onstraint over the variables (x1; : : : xk) allows the valuesf(a1; : : : ak) j ai 2 Di &8u; v:au 6= avg. A solution is an assignment of values tovariables that is onsistent with all onstraints.Many lesser levels of onsisteny have been de�ned for binary onstraintsatisfation problems (see [DB97℄ for additional referenes). A problem is (i; j)-onsistent i� it has non-empty domains and any onsistent instantiation of ivariables an be extended to a onsistent instantiation involving j additionalvariables [Fre85℄. A problem is strong (i; j)-onsistent i� it is (k; j)-onsistentfor all k � i. A problem is ar-onsistent (AC) i� it is (1; 1)-onsistent. A prob-lem is path-onsistent (PC) i� it is (2; 1)-onsistent. A problem is strong path-onsistent i� it is strong (2; 1)-onsistent. A problem is path inverse onsistent(PIC) i� it is (1; 2)-onsistent. A problem is neighbourhood inverse onsistent(NIC) i� any value for a variable an be extended to a onsistent instantiationfor its immediate neighbourhood [FE96℄. A problem is restrited path-onsistent(RPC) i� it is ar-onsistent and if a variable assigned to a value is onsistentwith just a single value for an adjoining variable then for any other variablethere exists a value ompatible with these instantiations. A problem is singletonar-onsistent (SAC) i� it has non-empty domains and for any instantiation ofa variable, the resulting subproblem an be made ar-onsistent.Many of these de�nitions an be extended to non-binary onstraints. Forexample, a (non-binary) Csp is generalized ar-onsistent (GAC) i� for anyvariable in a onstraint and value that it is assigned, there exist ompatiblevalues for all the other variables in the onstraint [MM88℄. Regin gives an eÆ-ient algorithm for enforing generalized ar-onsisteny on a set of all-di�erentonstraints [Reg94℄. We an also maintain a level of onsisteny at every nodein a searh tree. For example, the MAC algorithm for binary Csps maintainsar-onsisteny at eah node in the searh tree [Gas79℄. As a seond example,on a non-binary problem, we an maintain generalized ar-onsisteny (MGAC)at every node in the searh tree.3 Singleton onsisteniesThe notion of a singleton onsisteny is general, and an be applied to otherlevels of loal onsisteny than ar-onsisteny. For instane, a problem is sin-gleton restrited path-onsistent (SRPC) i� it has non-empty domains and forany instantiation of a variable, the resulting subproblem an be made restritedpath-onsistent [DB97℄. As a seond (and we believe previously unde�ned) ex-ample, a non-binary problem is singleton generalized ar-onsistent (SGAC) i� ithas non-empty domains and for any instantiation of a variable, the resulting sub-problem an be made generalized ar-onsistent. As generalized ar-onsistenyis itself a high level of onsisteny to ahieve (see, for example, [SW99℄), sin-gleton generalized ar-onsisteny is a very high level of onsisteny to ahieve.However, as our experimental results demonstrate, it an be very worthwhileenforing it.

3One advantage of singleton onsistenies (whih is shared with inverse on-sistenies like path inverse onsisteny and neighbourhood inverse onsisteny,as well as with restrited path-onsisteny) is that enforing them only requiresvalues to be pruned from the domain of variables. Enforing path-onsisteny, byomparison, an hange the onstraint graph by adding new binary onstraints.Note that a singleton onsisteny an be ahieved using any algorithm thatahieves the relevant loal onsisteny. The de�nition of singleton onsistenyonly insists we an make the resulting subproblem loally onsistent. We arenot interested in what values need to be pruned (or nogoods added) to make thesubproblem loally onsistent. We an therefore use a lazy approah to enforingthe loal onsisteny. For example, we an use the lazy AC7 algorithm [SRGV96℄when ahieving SAC.In this paper, we have used the algorithm proposed in [DB97℄ to ahieve SACand a simple generalization of this algorithm to n�ary CSPs to ahieve SGAC.To ahieve SAC (SGAC) in a CSP P , this algorithm �rst ahieves AC (GAC)and then goes through eah variable xi in P . For every value a in the domainof xi it heks if the subproblem P jDi=fag is AC (GAC). If it is not then a isremoved from the domain of xi and AC (GAC) is enfored. Failure to do someans that P is not SAC (SGAC). The proess of going through the variablesin the CSP ontinues while new inonsistent values are deteted and deleted. Inshort, there is an inner loop that goes through the variables and an outer loopthat keeps this proess going while new values are deleted.The worst-ase omplexity of ahieving SAC is O(en2d4), where e is thenumber of onstraints, n the number of variables, and d the domain size. Fornon-binary onstraints, if we assume that GAC-shema [BR97℄ is used to en-fore GAC then the worst ase omplexity of ahieving SGAC is O(en2d2k),where k is the arity of the onstraints. For the speialized ase of all-di�erentonstraints, taking advantage of Regin's algorithm means that SGAC an beahieved with O(n4d4) worst-ase omplexity, where is the number of all-di�erent onstraints.We an redue the average ost of the above algorithm by making just onepass, i.e., going through the variables and deleting inonsistent values only one.This deletes less values and thus ahieves a lesser level of onsisteny than SAC(SGAC), but as our experimental results show, is, in some ases, very ost-e�etive. We all this algorithm restrited SAC (SGAC).4 Theoretial resultsFollowing [DB97℄, we all a onsisteny property A stronger than B (A � B) i�in any problem in whih A holds then B holds, and stritly stronger (A > B) i�it is stronger and there is at least one problem in whih B holds but A does not.We all a loal onsisteny property A inomparable with B (A � B) i� A isnot stronger than B nor vie versa. Finally, we all a loal onsisteny propertyA equivalent to B i� A implies B and vie versa. The following relationshipssummarize the most important results from [DB97℄ and elsewhere: strong PC >SAC > PIC > RPC > AC, NIC > PIC, NIC � SAC, and NIC � strong PC.

4 Our �rst result shows that a singleton onsisteny is stronger than the or-responding loal onsisteny. A loal onsisteny property A is monotoni i�when a problem is A-onsistent then any subproblem formed by instantiating avariable is also A-onsistent. Most loal onsistenies (e.g. all those introduedso far) are monotoni.Theorem 1. If A-onsisteny is monotoni then singleton A-onsisteny � A-onsisteny.Proof. Immediate from the de�nitions of monotoni and singleton onsisteny.Note that it is possible to onstrut (admittedly bizarre) loal onsistenieswhih are not monotoni. For example, onsider a weakened form of AC whih isequivalent to AC on every ar exept the ar between variables x1 and x2 wheneither are instantiated. If we take a problem in whih the ar between x1 and x2is not AC, then this weakened form of AC will detet the ar-inonsisteny butthe singleton onsisteny will not. On this problem, the singleton onsistenyis atually weaker than the orresponding loal onsisteny. Note also that asingleton onsisteny is not neessarily stritly stronger than the orrespondingmonotoni loal onsisteny. For example, on problems whose onstraint graphsare trees, SAC is only equivalent to AC (sine ar-onsisteny is already enoughto guarantee global onsisteny).Our next result allows us to map many previous results up to singleton on-sistenies. For example, as RPC is stronger than AC, singleton RPC is strongerthan SAC.Theorem 2. If A-onsisteny � B-onsisteny then singleton A-onsisteny �singleton B-onsisteny.Proof. Consider a problem that is singleton A-onsistent, and a subproblemformed from instantiating a variable. Now this subproblem is A-onsistent. AsA � B, this subproblem is B-onsistent. Hene the original problem is singletonB-onsistent.Note that we do not need A-onsisteny or B-onsisteny to be monotoni forthis proof to work. Debruyne and Bessiere prove that SAC is stritly strongerthan PIC [DB97℄. We an generalize this proof to show that singleton (i; j)-onsisteny is stritly stronger than (i; j+1)-onsisteny. Debruyne and Bessiere'sresult is then a speial ase for i = j = 1. In addition, [DB97℄ does not give theproof of stritness, so for ompleteness we give it here for the ase i = j = 1.Theorem 3. Singleton (i; j)-onsisteny > (i; j + 1)-onsisteny.Proof. Consider a problem that is singleton (i; j)-onsistent, and the subproblemresulting from any possible instantiation. This subproblem is (i; j)-onsistent.Hene, for any onsistent instantiation for i variables in the subproblem, we anextend it to j other variables. That is, for any instantiation of i variables in theoriginal problem, we an extend it to j + 1 other variables. Hene the original

5problem is (i; j + 1)-onsistent. To show stritness, onsider i = j = 1 and aproblem in four 0-1 variables with the onstraints x1 6= x2, x2 6= x3, x2 6= x4,x3 6= x4. This is path inverse onsistent. However, enforing SAC proves thatthe problem is insoluble sine if we instantiate x1 with either of its values, theresulting subproblem annot be made ar-onsistent.Debruyne and Bessiere also prove that strong PC is stritly stronger thanSAC [DB97℄. We an also generalize this proof, showing that strong (i + 1; j)-onsisteny is stritly stronger than singleton (i; j)-onsisteny. Debruyne andBessiere's result is again a speial ase for i = j = 1. As before, [DB97℄ doesnot give the proof of stritness, so for ompleteness we give it here for the asei = j = 1.Theorem 4. Strong (i+ 1; j)-onsisteny > singleton (i; j)-onsisteny.Proof. Consider a problem that is strongly (i + 1; j)-onsistent. Any onsistentinstantiation for i + 1 variables an be extended to j other variables. As theoriginal problem was strongly (i + 1; j)-onsistent, it is (i; j)-onsistent. Henea subproblem formed by instantiating one variable is (i; j)-onsistent, and anyonsistent instantiation of i variables an be extended to j other variables. Thusthe original problem is singleton (i; j)-onsistent. To show stritness, onsideri = j = 1 and a problem in three 0-1 variables with x1 6= x2 and x1 6= x3.The problem is SAC. But it is not path-onsistent sine the onsistent partialassignment x2 = 0 and x3 = 1 annot be extended. Enforing path-onsistenyadds the onstraint x2 = x3.The last two results show that singleton (i; j)-onsisteny is sandwihed be-tween strong (i + 1; j)-onsisteny and (i; j + 1)-onsisteny. Finally, we givesome results onerning SGAC. Whilst this is a very high level of onsisteny toahieve in general, our experiments show that it an be very worthwhile providedwe have an eÆient algorithm to ahieve it (as we do for the all-di�erent on-straint). In [SW99℄, GAC was ompared against binary onsistenies (like SAC)on deomposable non-binary onstraints. These are non-binary onstraints thatan be represented by binary onstraints on the same set of variables [De90℄.For example, an all-di�erent onstraint an be deomposed into a lique of not-equals onstraints. Deomposable onstraints are a speial ase of non-binaryonstraints where omparisons between the binary and non-binary representa-tions are very diret. Constraints whih are not deomposable (like parity on-straints) require us to introdue additional variables to represent them usingbinary onstraints. These additional variables make omparisons more ompli-ated.Theorem 5. On deomposable non-binary onstraints, singleton generalized ar-onsisteny is stritly stronger than singleton ar-onsisteny on the binary de-omposition.Proof. The proof follows immediately from Theorem 1, and the result of [SW99℄that GAC is stritly stronger than AC on the binary deomposition. To show

6stritness, onsider three all-di�erent onstraints on fx1; x2; x3g, on fx1; x2; x4g,and on fx1; x3; x4g, in whih all variables have the domain f1; 2; 3g. The bi-nary deomposition is SAC. But enforing SGAC proves that the problem isunsatis�able.Though SGAC is a very high level of onsisteny to enfore, it is inomparablein general to both strong PC and NIC on the binary deomposition.Theorem 6. On deomposable non-binary onstraints, singleton generalized ar-onsisteny is inomparable to strong path-onsisteny and to neighbourhood in-verse onsisteny on the binary deomposition.Proof. Consider a problem with six all-di�erent onstraints on fx1; x2; x3g, onfx1; x3; x4g, on fx1; x4; x5g, on fx1; x2; x5g, on fx2; x3; x4g, and on fx3; x4; x5g.All variables have the domain f1; 2; 3; 4g. This problem is SGAC beause anyinstantiation of a variable results in a problem that is GAC. Enforing NIC,however, shows that the problem is insoluble. Consider a problem with threenot-equals onstraints, x1 6= x2, x1 6= x3, x2 6= x3 in whih eah variable has thesame domain of size two. This problem is SGAC but enforing strong PC provesthat it is insoluble.Consider the following 2-olouring problem. We have 5 variables, x1 to x5arranged in a ring. Eah variable has the same domain of size 2. Between eahpair of neighbouring variables in the binary deomposition, there is a not-equalsonstraint. In the non-binary representation, we post a single onstraint on all5 variables. This problem is NIC, but enforing SGAC on the non-binary repre-sentation shows that the problem is insoluble. Finally, onsider an all-di�erentonstraint on 4 variables, eah with the same domain of size 3. The binary rep-resentation of the problem is strong PC but enforing SGAC shows that it isinsoluble.5 Random problemsThese theoretial results help plae singleton onsistenies within the hierarhyof loal onsistenies. But how useful are singleton onsistenies in pratie? Toexplore this issue, we ran experiments �rst with random problems, then withproblems that ombine struture and randomness, and afterwards with morerealisti strutured problems. One of our intentions was to determine how wellresults from random problems predited behaviour on more realisti problems.Our starting point is [DB97℄ whih reports a set of experiments on randomproblems with 20 variables and 10 values. These experiments identify how wellonsisteny tehniques like SAC approximate global onsisteny, and give theratio of the number of values pruned to the CPU times at di�erent points inthe phase spae. Debruyne and Bessiere onlude that SAC is a very promisingloal onsisteny tehnique, removing most of the strong path-inonsistent valueswhile requiring less time than path inverse onsisteny.Debruyne and Bessiere's experiments su�er from two limitations. First, theirexperiments only measure the ability of singleton ar-onsisteny to approxi-mate global onsisteny. They do not tell us if SAC is useful within omplete

7searh proedures like MAC. For instane, does pre-proessing with singletonar-onsisteny redue MAC's searh enough to justify its ost? Can we a�ordto maintain SAC within (a number of levels of) searh? Seond, their experimentswere restrited to random binary problems. Do results on random problems pre-dit well behaviour on real problems? What about non-binary problems? Can itpay to enfore the singleton version of non-binary onsistenies like GAC? Ourexperiments takle both these issues.5.1 SAC and AC as a pre-proessMakworth's AC3 algorithm was enoded and used to implement the AC andSAC pre-proesses and the domain �ltering within the FC and MAC searh al-gorithms. The reason AC3 was hosen is beause it allows a standard measureof omparison between algorithms, namely the onsisteny hek. FC was imple-mented as a rippled version of MAC, i.e. propagation within AC3 was disabledbeyond the onstraints inident on the urrent variable.
1000

10000

100000

1e+06

1e+07

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
co

ns
is

te
nc

y
ch

ec
ks

constraint tightness

 SAC
 AC

(a) 0

20

40

60

80

100

120

140

160

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
de

le
tio

ns

constraint tightness

 SAC
 AC

(b)Fig. 1. SAC and AC pre-proessing for h20; 10; 0:5i: on the left (a) e�ort measured asmean onsisteny heks and on the right (b) values deletedFigure 1a shows the mean pre-proessing ost measured in onsisteny heksfor AC and SAC over h20; 10; 0:5i model-B problems with a sample size of 500(i.e. problems studied by Debruyne and Bessiere) at eah value of onstrainttightness p2. Looking at the ontours for SAC and AC we see that the two blendtogether at the ar-onsisteny phase transition (p2 � 0:65). This is expetedas the �rst phase of SAC is to make the problem ar-onsistent. If this phasedetets ar-inonsisteny the problem is also SAC inonsistent and there is nomore work to do.Figure 1b shows the average number of values removed from the problem bypre-proessing. Again, we see the SAC and AC ontours blend together at theAC phase transition. About 80% of values are deleted in order to show SACinsolubility (p2 � 0:41), and about 70% for AC insolubility. The solubility phasetransition for this problem is round about p2 � 0:37, and we see next to no values

8being deleted by SAC until p2 � 0:38. This does not bode well for redution insearh e�ort for this problem.5.2 Searh after SAC
1000

10000

100000

1e+06

1e+07

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
co

ns
is

te
nc

y
ch

ec
ks

constraint tightness

SAC-MAC
 SAC-FC

 AC-MAC
 MAC
 AC-FC

 FC

(a) 1

10

100

1000

10000

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
no

de
s

vi
si

te
d

constraint tightness

search cost in nodes

 FC
 AC-FC

 SAC-FC
 MAC

 AC-MAC
SAC-MAC

(b)Fig. 2. Searh ost for MAC and FC over h20; 10; 0:5i with and without pre-proessing:on the left (a) e�ort measured as mean onsisteny heks and on the right (b) e�ortmeasured as nodes visitedFigure 2a shows the total ost of determining if a h20; 10; 0:5i problem issoluble using the MAC and FC algorithm with various pre-proessing steps,both algorithms using the MRV dvo heuristi. Constraint tightness p2 was in-remented in steps of 0.01, and at eah value of p2 100 problems were analyzed.Cost is measured as average onsisteny heks, whih also diretly orrespondsto pu times. The ost of SAC pre-proessing dominates searh ost. SAC-MACand SAC-FC ompare poorly with their AC and null pre-proessing equivalents.At the solubility phase transition, p2 � 0:37, the average ost of SAC-MACis 605K heks whereas MAC without any pre-proess osts 198K heks. Theost of SAC pre-proessing from Figure 1 is 432K heks at p2 = 0:37. Thissuggests that in these problems SAC is an uneonomial overhead. In fat wesee the solubility omplexity peak dominated to suh a degree that it appearsshifted right to the higher value of onstrainedness assoiated with the SACphase transition. Around the solubility phase transition it was observed thatfor all algorithms studied soluble problems were easier than insoluble problems.This was most notable for SAC-FC, the reason being that SAC pre-proessingfrequently deteted insolubility, but this was at the ost of deleting many valuesfrom variables, hanging the problem and this in turn initiates more iterationsof the outermost loop of the SAC algorithm. As an aside it should be noted thatAC-FC exhibits a twin peaked omplexity ontour, the seond (and lower) peakdue to the AC phase transition.Figure 2b shows ost measured in median nodes visited. SAC pre-proessingmakes no impat on the size of the searh tree explored until it starts to delete

9values. As noted in Figure 1a, this does not begin to our until just after thesolubility phase transition. Consequently we see a redution in nodes visited onlyas we approah the SAC phase transition, i.e. values of p2 > 0:4.5.3 Dense problems and large sparse problemsWe investigated denser problems and large sparse problems. For the denseh20; 10; 1:0i problems searh osts dominate pre-proessing when problems arehard. At the solubility omplexity peak p2 = 0:21 the ost of SAC pre-proessingwas about 680K heks whereas SAC-MAC took 1835K heks, MAC alone took1163K heks, SAC-FC took 931K heks, and FC alone took 258K heks.Therefore, although SAC pre-proessing shows no advantage it is now substan-tially less e�ort than the searh proess on hard problems.In the sparse h50; 10; 0:1i problems MAC and FC ompete with eah otherover hard problems. Although the SAC pre-proess ontinues to be uneonomi,it is just beginning to break even. In partiular, on 100 (hard) instanes ofh50; 10; 0:1; 0:55i of the 26 insoluble instanes 22 were deteted by the SAC pre-proess, and 23 of the 74 soluble instanes were disovered without baktraking.In total 43 of the soluble instanes took less than 100 searh nodes. A studyof h50; 10; 0:2i problems, i.e large but slightly denser, showed that SAC pre-proessing was again uneonomial.These experiments suggest that SAC pre-proessing may be worthwhile onlarger sparse problems with tight onstraints, but uneonomial on dense prob-lems with relatively loose onstraints.6 Small-world problemsTo test the eÆieny of singleton onsisteny tehniques on problems with stru-ture, we �rst studied \small-world" problems. These are problems that ombinestruture and randomness. In graphs with \small world" topology, nodes arehighly lustered, whilst the path length between them is small. Reently, Wattsand Strogatz have shown suh graphs our in many biologial, soial and man-made systems that are often neither ompletely regular nor ompletely random[WS98℄. Walsh has argued that suh a topology an make searh problems hardsine loal deisions quikly propagate globally [Wal99℄. To onstrut graphs withsuh a topology, we start from the onstraint graph of a strutured problem likea quasigroup. Note that a quasigroup an be modelled using either all-di�erentonstraints for eah row and olumn or liques of binary \not-equals" onstraints.To introdue randomness, we add edges at random in the binary representation.Small world problems reated in this way quikly beome very hard when theorder of the quasigroup is inreased.Figures 3a and 3b show the median number of branhes explored and the putime used when GAC and SGAC are used for preproessing small-world problemsreated by randomly adding edges to an order 6 quasigroup. GAC on the all-di�erent onstraints is maintained during searh. The x-axis gives the perentageof added edges in the total number of edges left to turn the quasigroup into a

10omplete graph. 100 problems were generated at eah data point. We do notinlude SAC and AC preproessing in Figures 3a and 3b beause they have noimpat as they do no pruning at all. This is not surprising, beause of the natureof the onstraints. AC on a binary \not-equals" onstraint may delete a valuefrom one of the variables only if the other one has a singleton domain. Likewise,when SAC redues a variable x to a singleton value v then v is removed from thedomain of all variables onstrained with x, but no more �ltering an be made.As a result, there an be no singleton ar-inonsistent values in problems withdomain size 6.
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60

GAC
SGAC

(a) 0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

GAC
SGAC

(b)Fig. 3. Searh ost for GAC and SGAC. On the left (a) e�ort measured as branhesexplored and on the right (b) e�ort measured as pu time used (in seonds).Preproessing with SGAC is very eÆient espeially at the solubility om-plexity peak and in the insoluble region, where insolubility is deteted withoutsearh for most insoluble instanes. SGAC preproessing is also ost-e�etive forsoluble instanes, espeially for hard ones near the omplexity peak, as it utsdown the number of branhes explored signi�antly. CPU times are also redueddespite the ost of preproessing. The presene of struture in the problemsmakes SGAC muh more eÆient than on purely random problems.7 Problems of distaneTo test singleton onsisteny tehniques on a lass of strutured, and non-binaryproblems, we ran experiments on a variety of problems of distane. This generallass of problems is introdued in [SSW00℄, and models several hallenging om-binatorial problems inluding Golomb rulers and all-interval series. A problemof distanes is de�ned by a graph in whih nodes are labelled with integers, theedges are labelled by the di�erene between the node labels at either end of eahedge, and there are onstraints that all edge labels are di�erent. As in [SSW00℄,we model suh problems with variables for both the nodes and edges, ternaryonstraints of the form dij = jxi � xj j that limit the values given to the edges,and a single all-di�erent onstraint on the edges.

117.1 Golomb rulersPeter van Beek has proposed the Golomb ruler problem as a hallenging on-straint satisfation problem for the CSPLib benhmark library (available asprob006 at http://splib.s.strath.a.uk).The problem spei�ation giventhere is:\A Golomb ruler may be de�ned as a set of m integers 0 = x1 < x2 <::: < xm, suh that the m(m � 1)=2 di�erenes xj � xi, 1 � i < j � m,are distint. Suh a ruler is said to ontain m marks and is of lengthxm. The objetive is to �nd optimal (minimum length) or near optimalrulers."Golomb rulers are problems of distane in whih the underlying graph is om-plete. To turn optimization into satisfation, we build a sequene of deisionproblems, reduing am until the problem beomes unsatis�able. The longesturrently known optimal ruler has 21 marks and length 333. Peter van Beekreports that even quite small problems (with fewer than �fteen marks) are verydiÆult for omplete methods suh as baktraking searh, and that their diÆ-ulty lies both in proving optimality and in �nding a solution, sine the problemshave either a unique solution or just a handful of solutions.Marks Branhes CPU timeAC SAC restrited SAC AC SAC restrited SAC7-F 10 10 10 0.15 1.27 0.637-P 87 65 65 0.20 1.25 0.838-F 26 26 26 0.22 2.98 1.5648-P 506 461 461 1.55 3.52 2.269-F 309 282 282 1.28 8.00 4.049-P 2489 2318 2318 8.44 13.73 10.3010-F 1703 1692 1692 6.05 27.45 13.4110-P 11684 9658 9665 56.18 68.16 54.1711-F 7007 6584 6584 26.98 87.74 48.7211-P 202137 193419 193498 1240.90 1170.77 1151.70Table 1. Branhes explored and pu time in seonds when trying to �nd a ruler ofoptimal length (F) or prove that no shorter exists (P). Preproessing was done withAC, SAC and restrited SAC.Table 1 shows the searh ost in branhes and pu time for algorithms thatpreproess with AC, SAC and restrited SAC, and maintain GAC during searh.Although preproessing with SAC deletes onsiderably more values than prepro-essing with AC, this is not reeted in the searh e�ort.Table 2 shows the searh e�ort for algorithms that preproess with GAC,SGAC, and restrited SGAC, and maintain GAC on the all-di�erent onstraintduring searh. SGAC deletes a large number of values during preproessing (morethan 60% in some ases) and that has a notable e�et on searh. The number

12 Marks Branhes CPU timeGAC SGAC restrited SGAC GAC SGAC restrited SGAC7-F 10 5 6 0.15 1.06 0.587-P 87 0 0 0.18 0.34 0.328-F 26 22 22 0.21 2.49 1.298-P 506 265 339 1.57 3.21 1.559-F 309 261 262 1.30 5.14 2.909-P 2489 1844 1862 8.64 8.56 5.9210-F 1703 1592 1592 6.16 14.61 9.1510-P 11684 7823 7924 56.35 37.65 30.7711-F 7007 6464 6464 27.04 65.53 37.9611-P 202137 98967 99602 1239.81 491.58 442.96Table 2. Branhes explored and pu time in seonds when preproessing with GAC,SGAC and restrited SGAC.of explored branhes is ut down, espeially when trying to prove optimality,and despite the ost of preproessing, there is a gain in pu times for the harderinstanes. Restrited SGAC seems a better option than full SGAC sine it deletesalmost the same number of values and is more eÆient in pu times.Given the good results obtained by preproessing with SGAC, we investigatedwhether maintaining suh a high level of onsisteny during searh is worthwhile.Our results showed that maintaining SGAC even for depth 1 in searh (i.e., atthe �rst variable) is too expensive. When trying to �nd an optimal ruler, weenfored SGAC after instantiating the �rst variable. As a result, the numberof branhes was ut down (though not signi�antly), but runtimes were higher.When trying to prove optimality, we enfored SGAC after eah value of the �rstvariable was tried. Again there was a gain in branhes, but runtimes were muhhigher than before.7.2 2-d Golomb rulers and all-interval seriesA Golomb ruler is a problem of distane in whih the underlying graph is om-plete (i.e. a lique). Our results with random problems suggest that singletononsistenies will show more promise on sparser problems. What happens thenwith problems of distane in whih the underlying graph (and hene the assoi-ated onstraint graph) is sparser? For example, in a 2-d Golomb ruler we have(2 or more) layers of liques, with edges between node i in lique j and node iin lique j + 1. A 2-d Golomb ruler with k layers has a onstraint graph withapproximately 1=k the edges of that of a 1-d Golomb ruler of the same size.Table 3 shows the searh e�ort for algorithms that preproess with GAC,SGAC, and restrited SGAC, and maintain GAC on the all-di�erent onstraintduring searh. SGAC preproessing redues the number of branhes, and thepu times in the harder instanes (rulers with 6 marks), but the e�et is not assigni�ant as in the 1-d ase.

13Marks Branhes CPU timeGAC SGAC restrited SGAC GAC SGAC restrited SGAC3-F 1 0 0 0.051 0.120 0.0683-P 6 0 0 0.048 0.052 0.0504-F 32 26 26 0.27 0.693 0.4074-P 210 74 191 0.389 1.228 0.5985-F 1404 1276 1276 2.552 3.767 3.1115-P 8177 7521 7521 14.764 14.389 13.5546-F 133010 113723 113723 376.23 321.553 317.0336-P 433087 357320 357320 1420.63 1071.82 1067.32Table 3. Branhes explored, and pu time in seonds when GAC, SGAC and restritedSGAC are used for preproessing 2-d Golmb rulers.An even sparser problem of distane is the all-interval series problem. Thisproblem was proposed by Holger Hoos as a hallenging onstraint satisfationproblem for the CSPLib benhmark library (available as prob007 athttp://splib.s.strath.a.uk). All-interval series are problems of distanein whih the underlying graph is a simple ring. They therefore have an asso-iated onstraint graph whih is very sparse ompared to 1-d and 2-d Golombrulers. In the ase of all-interval series, preproessing with SAC and SGAC hadno e�et as no values were pruned. Also, enforing SAC (SGAC) at depth 1 hadvery little impat on the number of branhes explored and inreased runtimes.8 Related workAs mentioned briey before, Debruyne and Bessiere ompared the ability of avariety of di�erent loal onsistenies (e.g. AC, RPC, PIC, SAC, strong PC,and NIC) at approximating global onsisteny on randomly generated binaryproblems with 20 variables and 10 values. [DB97℄. In addition, they omputedthe ratio of CPU time to number of values pruned. They onluded that SACand RPC are both promising, the �rst having a good CPU time to number ofvalues pruned, and the seond requiring little additional CPU time to AC butpruning most of the values of path inverse onsisteny. Debruyne and Bessierealso studied singleton restrited path-onsisteny (SRPC) but onluded that itis too expensive despite its ability to prune many values.Closely related inferene tehniques have shown promise in the neighbour-ing �eld of propositional satis�ability (SAT). One of the best proedures tosolve the SAT problem is the Davis-Putnam (DP) proedure [DLL62℄. The DPproedure onsists of three main rules: the empty rule (whih fails and bak-traks when an empty lause is generated), the unit propagation rule (whihdeterministially assigns any unit literal), and the branhing or split rule (whihnon-deterministially assigns a truth value to a hosen variable). The e�etive-ness of DP is in large part due to the power of unit propagation. Note thatthe unit propagation rule is e�etively the \singleton" empty rule. That is, ifwe assign the omplement of an unit lause, the empty rule will show that the

14resulting problem is unsatis�able; we an therefore delete this assignment. Other\singleton" onsistenies (spei�ally that provided by the \singleton" unit rule)might therefore be of value. Indeed, some of the best urrent implementationsof DP already perform a limited amount of \singleton" unit reasoning, havingheuristis that hoose between a set of literals to branh upon by the amount ofunit propagation that they ause [LA97℄.Smith, Stergiou and Walsh performed an extensive theoretial and empirialanalysis of the use of auxiliary variables and implied onstraints in models ofproblems of distane [SSW00℄. They identi�ed a large number of di�erent models,both binary and non-binary, and ompared theoretially the level of onsistenyahieved by GAC on them. Their experiments on 1-d, 2-d and irular Golombrulers showed that the introdution of auxiliary variables and implied onstraintssigni�antly redues the size of the searh spae. For instane, their �nal modelsredued the time to �nd an optimal 10-mark Golomb ruler 50-fold.9 ConlusionsWe have performed a omprehensive theoretial and empirial study of the ben-e�ts of singleton onsistenies. For example, we proved that singleton (i; j)-onsisteny is sandwihed between strong (i + 1; j)-onsisteny and (i; j + 1)-onsisteny. We also proved that, on non-binary onstraints, singleton gener-alized ar-onsisteny (the singleton extension of generalized ar-onsisteny)is stritly stronger than both generalized ar-onsisteny and singleton ar-onsisteny (on the binary deomposition). Singleton generalized ar-onsistenyis, however, inomparable to neighbourhood inverse onsisteny and strong path-onsisteny (on the binary deomposition). Singleton generalized ar-onsistenyis a very high level of onsisteny to ahieve. Nevertheless our experimentsshowed that it an be worthwhile if we have an eÆient algorithm (as we dofor all-di�erent onstraints). We ran experiments on both random and stru-tured problems. On random problems, singleton ar-onsisteny was rarely ost-e�etive as a pre-proessing tehnique. However, it did best on sparse problems.Results on problems with struture were quite di�erent. On small-world prob-lems, 1-d and 2-d Golomb rulers, singleton generalized ar-onsisteny was oftenost-e�etive as a pre-proessing tehnique, espeially on large and insolubleproblems. Unlike random problems, more bene�ts were seen on dense prob-lems than on sparse problems. Our experiments also showed that restritingalgorithms that enfore singleton onsistenies to one pass only gave a smallredution in the amount of pruning.What general lessons an be learned from this study? First, singleton onsis-tenies an be useful for pre-proessing but an be too expensive for maintain-ing, even during the initial parts of searh only. Seond, singleton onsisteniesappear to be most bene�ial on large, unsatis�able and strutured problems.Third, limiting algorithms that enfore singleton onsistenies to a single passmakes a small dent on their ability to prune values, and an thus improve theirost-e�etiveness. Fourth, provided we have an eÆient algorithm, it an payto enfore onsistenies as high as singleton generalized ar-onsisteny. And�nally, random problems an be very misleading. Our experiments on random

15problems suggested that pre-proessing with singleton onsistenies was rarelyost-e�etive and that it was most bene�ial on sparse problems. The results ofour experiments on strutured problems ould hardly be more ontraditory.AknowledgementsThe third author is supported by an EPSRC advaned researh fellowship. Theauthors are members of the APES (http://www.s.strath.a.uk/~apes) researhgroup and thank the other members for their omments and feedbak.Referenes[BR97℄ C. Bessi�ere and J.C. R�egin. Ar onsisteny for general onstraint networks:Preliminary results. In Proeedings IJCAI-97, pages 398{404, 1997.[DB97℄ R. Debruyne and C. Bessi�ere. Some pratiable �ltering tehniques for theonstraint satisfation problem. In Proeedings of the 15th IJCAI, pages412{417. International Joint Conferene on Arti�ial Intelligene, 1997.[De90℄ R. Dehter. On the expressiveness of networks with hidden variables. InProeedings of the 8th National Conferene on AI, pages 555{562. AmerianAssoiation for Arti�ial Intelligene, 1990.[DLL62℄ M. Davis, G. Logemann, and D. Loveland. A mahine program for theorem-proving. Communiations of the ACM, 5:394{397, 1962.[FE96℄ E. Freuder and C.D. Elfe. Neighborhood inverse onsisteny preproess-ing. In Proeedings of the 12th National Conferene on AI, pages 202{208.Amerian Assoiation for Arti�ial Intelligene, 1996.[Fre85℄ E. Freuder. A suÆient ondition for baktrak-bounded searh. Journal ofthe Assoiation for Computing Mahinery, 32(4):755{761, 1985.[Gas79℄ J. Gashnig. Performane measurement and analysis of ertain searh al-gorithms. Tehnial report CMU-CS-79-124, Carnegie-Mellon University,1979. PhD thesis.[LA97℄ C.M. Li and Anbulagan. Heuristis based on unit propagation for satis�abil-ity problems. In Proeedings of the 15th IJCAI, pages 366{371. InternationalJoint Conferene on Arti�ial Intelligene, 1997.[MM88℄ R. Mohr and G. Masini. Good old disrete relaxation. In Proeedings of theEuropean Conferene on Arti�ial Intelligene (ECAI-88), pages 651{656,1988.[Reg94℄ J-C. R�egin. A �ltering algorithm for onstraints of di�erene in CSPs. InProeedings of the 12th National Conferene on AI, pages 362{367. AmerianAssoiation for Arti�ial Intelligene, 1994.[SRGV96℄ T. Shiex, J.C. R�egin, C. Gaspin, and G. Verfaillie. Lazy ar onsisteny.In Proeedings of the 12th National Conferene on Arti�ial Intelligene(AAAI-96), pages 216{221, Portland, Oregon, 1996.[SSW00℄ B. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and impliedonstraints to model non-binary problems. In To appear in Proeedings of the17th National Conferene on Arti�ial Intelligene (AAAI-2000), Austin,Texas, 2000.[SW99℄ K. Stergiou and T. Walsh. The di�erene all-di�erene makes. In Proeedingsof 16th IJCAI. International Joint Conferene on Arti�ial Intelligene, 1999.[Wal99℄ T. Walsh. Searh in a small world. In Proeedings of IJCAI-99, 1999.[WS98℄ D.J. Watts and S.H. Strogatz. Colletive dynamis of 'small-world' networks.Nature, 393:440{442, 1998.

