
A hybrid MIP/CP approach for multi-activity
shift scheduling

Domenico Salvagnin1 and Toby Walsh2

1 DEI, University of Padova
2 UNSW, NICTA, Sydney

Abstract. We propose a hybrid MIP/CP approach for solving multi-
activity shift scheduling problems, based on regular languages that par-
tially describe the set of feasible shifts. We use an aggregated MIP re-
laxation to capture the optimization part of the problem and to get rid
of symmetry. Whenever the MIP solver generates a integer solution, we
use a CP solver to check whether it can be turned into a feasible solution
of the original problem. A MIP-based heuristic is also developed. Com-
putational results are reported, showing that the proposed method is a
promising alternative compared to the state-of-the-art.

1 Introduction

A shift scheduling problem assigns a feasible working shift to a set of employees,
in order to satisfy the demands for a given set of activities at each period in a
given time horizon. The set of feasible shifts that can be assigned to employees
is often defined by a complex set of work regulation agreements and other rules.
Assigning a shift to an employee means specify an activity for each period, which
may be a working activity or a rest activity (e.g., lunch). The objective is usually
to minimize the cost of the schedule, which is usually a linear combination of
working costs plus some penalties for undercovering/overcovering the demands
of the activities in each time period. If the set of working activities W is made
by a single activity, we talk of single-activity shift scheduling, while if there are
several working activities we talk of multi-activity shift scheduling. In this paper
we consider the latter case, with the additional constraint that all employees are
identical.

In particular, suppose we are given a planning horizon divided into a set of
periods T , a set of activities A, a subset W ⊂ A of working activities, and a set
of employees E. For each period t ∈ T and for each working activity a ∈W , we
are given a demand dat, an assignment cost cat, an undercovering cost c−at and
an overcovering cost c+at. Introducing the set of integer variables yat, which count
the number of employees assigned to activity a at period t, and integer variables
s−at, s

+
at that count the appropriate under/over covering, we can formulate the

problem as:



min
∑
a

∑
t

catyat +
∑
a

∑
t

c+ats
+
at +

∑
a

∑
t

c−ats
−
at (1)

yat − s+at + s−at = dat ∀a ∈W, ∀t ∈ T (2)∑
e

xeat = yat ∀a ∈W, ∀t ∈ T (3)

〈x define a feasible shift ∀e ∈ E〉 (4)

yat, s
+
at, s

−
at ∈ Z+ (5)

xeat ∈ {0, 1} (6)

Depending on how we formulate the constraints (4), we may end up with very
different models. A convenient way to define the set of feasible shifts that can be
assigned to a given employee is to use a regular or a context-free language, i.e., the
set of feasible shifts can be viewed as the words accepted by a finite automaton
or more generally by a push-down automaton. It has been shown in [14, 3] that
it is possible to derive a polyhedron that describes a given regular/context-free
language. Such representations are compact (in an appropriate extended space,
i.e., introducing additional variables) and thus lead directly to a MIP formulation
of the problem. In particular, the extended formulation for a regular language is
essentially a network flow formulation based on the expanded graph associated
with the accepting automaton (see [13, 3] for details). The extended formulation
for the context-free language, on the other hand, is based on an and-or graph
built by the standard CYK parser [10] for the corresponding grammar [14, 16].

Note that it is not necessary to describe completely the set of feasible shifts
by a regular/context-free language. The formal language may capture only some
of the constraints defining a feasible shift, with the remaining ones described as
linear inequalities. This may simplify the corresponding automaton considerably.
For example, regular languages are notoriously bad at handling counting argu-
ments, and an automaton describing the set of feasible shifts completely in the
presence of even a few cardinality constraints may require thousands of states.
Such large automaton are not trivial to generate. This also has a direct influence
on the size of the model and the efficiency of reasoning about it. The same holds
for context free languages. It is true that they can be enriched considerably by
adding constraints that limit the applicability of productions rules, without even
increasing the size of the model. However, certain cardinality constraints may
overly complicate the language. Finally, depending on the application, the model
derived using a context free language may be much bigger than an equivalent
one derived using a regular language.

However, describing the set of feasible shifts with formal languages alone
has some important implications. First of all, it has been proven for both the
regular and context-free languages that the derived polyhedron is integral [14],
and thus, if the are no other constraints, it is possible to optimize a linear
function over the set of feasible shifts by solving just a linear program. Even
more importantly, these results have been extended also to polyhedra describing



sets of feasible shifts [4]. It is then possible to consider an aggregated (implicit)
model and reconstruct an optimal solution of the original one with a polynomial
post-processing phase. This gives the current state-of-the-art for solving multi-
activity shift scheduling problems. Finally, if the formal language completely
describes the set of feasible shifts, then it is possible to apply some very effective
large neighborhood search heuristics to find quickly high quality solutions [17].

2 A hybrid MIP/CP approach

The explicit MIP model based on formal languages mentioned in the previous
section has two drawbacks. First of all, its size is directly proportional to the
number of employees in the instance; given that thousands of variables may
be needed to completely describe the set of feasible shifts for a single employee,
the linear programming relaxation can quickly become the bottleneck for branch-
and-cut algorithm solving the instance. Second, with interchangeable employees,
the enumeration itself explodes because of symmetry issues. In other words, the
explicit model scales very badly as the number of employees increases.

A recently developed technique in the MIP community to deal with symmet-
ric instances is called orbital shrinking [6], which is closely related to the implicit
model mentioned earlier. The basic idea behind orbital shrinking is, given an or-
bit partitioning of the variables of a problem, to aggregate the variables within
any orbit and consider the derived shrinked model on these aggregated variables,
which is at the same time smaller and symmetry free. In the case of scheduling,
where the symmetries are due to the interchangeable employees, this procedure
automatically produces the implicit model used in [4]. Note that orbital shrink-
ing is an exact reformulation only for convex optimization problems. On the one
hand, this means that the LP relaxation of the shrinked model yields the same
dual bound as the LP relaxation of the explicit model. On the other hand, given
an arbitrary MIP, such reformulation is in general only a relaxation, although it
can be tighter and/or faster to compute than the LP relaxation (more on this
in Section 3).

Interestingly, for some special cases, the orbital shrinking reformulation is
exact also for the MIP problem. This happens, for example, whenever it can be
proven that an optimal solution of the aggregated model can always be turned
into a solution of the original model of the same cost (and thus optimal). Exam-
ples of this behaviour are the assignment polytope and the regular/context-free
language polytopes.

Consider for example the regular polytope in its extended form: the optimal
solution is always a flow of integral value, say k, and basic network flow theory
guarantees that it can be decomposed into k paths of unitary flow (and since
each path in the expanded graph corresponds to a word in the language, this is
a feasible solution for the original explicit problem). Similar reasoning applies to
the grammar polytope (although it is not a flow model), as successfully shown
in [4].



Unfortunately, it is not always reasonable to describe the set of feasible shifts
completely with a formal language. While it is true that formal languages can be
extended without changing the complexity of the corresponding MIP encoding
(this is particularly true for context-free languages [16]), still some cardinality
constraints may be very awkward to express, as shown in the following example:

Example 1. Let’s consider a time horizon of 18 hours, divided into 18 periods. A
feasible shift is a word of length 18 build from the alphabet Σ = {a, b, r} (where
a denotes the only working activity, r is a rest period, while b is a break pe-
riod) that follows the pattern rest-work-break-work-break-work-break-work-rest.
Suppose that the breaks are constrained to be one period long, and the num-
ber of working periods must be between 6 and 8. Then, a very simple grammar
encoding the set of feasible shifts, ignoring the cardinality constraint, is:

S → RFR F → PBP P →WBW

R→ Rr|r W →Wa|a B → b

In this particular case, since the number of breaks in the shift is fixed (3), it
is very easy to extend the grammar to deal with the cardinality constraint by
restricting the production rule F → PBP to be applied only with substring of
length between 9 and 11. This can be handled very well by the CYK parser, and
thus the cardinality constraint can be added essentially at no cost.

However, let’s consider a slightly more complicated case. The pattern of a
feasible shift is the same, but now the length of breaks is not fixed to one. In
particular, the number of break periods is constrained to be between 4 and 6.
The best we can do keeping approximately the same grammar as before is the
following (we use the notation of [4] to indicate restrictions on production rules):

S → RFR F[10,14] → PBP P[3,10] →WBW

R→ Rr|r W →Wa|a B → Bb|b

It is easy to see that the restrictions cannot be tightened any further, otherwise
we may lose feasible shifts. However, the grammar also accepts the substring
rrabababbbbbbbaarr, which violates both cardinality constraints. ut

Of course the issues of the previous example are not theoretical. As the set of
feasible shifts is finite, there always exists a regular/context-free language that
describes that set. However, the corresponding automaton may be unreasonably
large in practice.

In order to turn the orbital shrinking approach into a complete method for
the multi-activity shift scheduling problem when the formal language does not
completely describe the set of feasible shifts, we propose a hybrid MIP/CP ap-
proach based on decomposition. In particular, whenever the MIP solver gener-
ates an integer feasible solution of the aggregated model, we must check whether
it can be turned into a feasible solution of the explicit model. Because orbital
shrinking always aggregates variables with the same costs (otherwise they would



not be on the same orbit), this is indeed a pure feasibility problem. As such,
we propose to formulate the check as a CSP problem, to be solved with a CP
solver. In this way, we not only avoid solving the LP relaxations (that would
provide no meaningful bounds), but we can explicitly state symmetry breaking
constraints. Note that this is essentially a master/slave decomposition similar to
a generalized Benders method, where the master problem is a MIP model, while
the slave is a CP model.

2.1 MIP model

The MIP model that we use is a simple modification of the general model hinted
at in Section 1. The main difference is that we partition the set of feasible
shifts Ω into k subsets Ωk, each of which is described by a potentially different
deterministic finite automaton (DFA) and cardinality constraints. This partition
can simplify a lot the structure of the DFAs, and in general makes the implicit
model more accurate, since the cardinality constraints are aggregated only within
employees of the same “kind”. This of course increases the size of the relaxation,
but since the aggregated model is quite compact, this is usually well worth it.
For each shift type Ωk, the MIP model decides how many employees are assigned
a shift in Ωk, and then computes an aggregated integer flow of the same value.
In details:

min
∑
k

∑
a

∑
t

caty
k
at +

∑
a

∑
t

c+ats
+
at +

∑
a

∑
t

c−ats
−
at (7)∑

k

ykat − s+at + s−at = dat ∀a ∈W, ∀t ∈ T (8)

regular(yk, wk,DFAk) ∀k ∈ K (9)

〈cardinality constraints for yk〉 ∀k ∈ K (10)∑
k

wk ≤ E (11)

wk, ykat, s
+
at, s

−
at ∈ Z+ (12)

Note that we use the notation of constraint (9) to refer to the extended MIP
formulation of the regular constraint involving flow variables. The constraint
ensures that variables yk can be decomposed into wk words accepted by the
automaton DFAk. Constraints (10) refers to the cardinality constraints expressed
as linear constraints that complete the description of sets Ωk. Finally, if an upper
bound E is given on the number of employees that can scheduled, it can be
imposed in constraint (11).

2.2 CP checker

The decision to partition the set of feasible shifts into k subsets Ωk has an
important consequence on the structure of the CP checker: the model actually



decomposes into k separate CP models, one for each type of shift. Given an index
k, suppose the master (MIP) model assigns wk employees, with their aggregated
shifts described by yat. Then the corresponding CP model, which is similar to
the one proposed in [5], reads:

gcc(xe, σe, A) ∀e ∈ 1, . . . , wk (13)

τe =
∑
a∈W

σe
a ∀e ∈ 1, . . . , wk (14)

〈cardinality constraints for σe, τe〉 ∀e ∈ 1, . . . , wk (15)

regular(xe,DFAk) ∀e ∈ 1, . . . , wk (16)

gcc(xt, yt, A) ∀t ∈ T (17)

xe � xe+1 ∀e ∈ 1, . . . , wk − 1 (18)

Variables xet denote the activity assigned to employee e at time t. Variables
σe
a count the number of periods assigned to each activity for employee e, while
τe gives the sum over all working activities. Both are needed to specify the
cardinality constraints (15). Constraints (17) link the variables in the CP model
to the master solution yat. Finally, we impose a lexicographic order among the
shifts of the employees with constraints (18).

The CP model above is usually extremely fast in proving whether the ag-
gregated solution can be turned into a solution of the original. However, as the
number of activities and employees increases, it can occasionally become very
time consuming. The main reason for this behavior is the weak interaction be-
tween the cardinality constraints (17) and the symmetry breaking constraints
(18). The issue can be easily explained with an example:

Example 2. Let’s consider a vector of 5 binary variables x1, . . . , x5, each with
initial domain {0, 1}, and aggregate variables y0 = 2 and y1 = 3, linked with
the x by a cardinality constraint. In addition, there are symmetry breaking
constraints of the form x1 ≤ x2 ≤ · · · ≤ x5. From the cardinality constraint
point of view, any permutation of the solution (0, 0, 1, 1, 1) is feasible, so no
reductions are possible. The same happens from the symmetry breaking point of
view, because symmetry breaking alone cannot exclude the assignments where
all x variables take the same value (0 or 1). However, it is clear that the only
solution feasible for both constraints together is indeed (0, 0, 1, 1, 1). ut

To overcome this issue, we implemented an ad-hoc propagator that imple-
ments a custom symmetry breaking strategy based on the cardinality constraints.
This propagator handles the case in which there is a matrix of variables, with
cardinality constraints in each column and symmetry on the rows (i.e., any per-
mutation of the rows is feasible). As such, although it is very related to our CP
model, it is not specific to our particular instances. The propagator works by
partitioning the rows of the matrix into sets of identical rows (given the cur-
rent domains). Then, for each set, it considers the first column with unassigned



variables. For each possible value v in the domains of this subset of variables, it
computes a lower bound lv and an upper bound uv on the number of variables
that must be assigned to v, by taking into account the cardinality constraints on
the column and the domains of the variables. Finally, it assigns, for each value v,
lv variables to v. The complexity of such propagation is linear in the size of the
matrix/domains. Note that this symmetry breaking strategy does not enforce
constraints (18) on the rows of the matrix, and is not guaranteed to remove all
possible row symmetries from the model, as shown in the following example.

Example 3. Suppose we have a cell with 5 rows and let x1, . . . , x5 be the first 5
unassigned variables (one for each row). Suppose that we have 2 possible values,
a and b, and that we can compute the following lower/upper bounds on the
number of occurrences of these 2 values in the 5 vars:

la = 1 ua = 3 lb = 2 ub = 5

Before propagation, the domains of the 5 variables are all equal to {a, b}. Af-
ter symmetry breaking we can reduce the domains to {a}, {b}, {b}, {a, b}, {a, b}.
However, since it is possible to have both abbab and abbba, the propagator does
not enforce a lexicographic order on the rows, and does not eliminates all sym-
metry. ut

Another issue with the CP model above is that the minimum/maximum
length of a working shift (i.e., the number of periods, breaks included, between
the first and last working period) is constrained only implicitly by the regular
constraints. Again, we implemented a custom propagator that deals with that.
The combined effect of these propagators is impressive: we often observed reduc-
tions of 2−3 orders of magnitude in both the number of nodes and the running
times on hard instances. On occasion, we observed even higher savings. For ex-
ample, on one instance with 9 full-time employees and 3 activities, we reduced
the running times from 6 minutes to 10−5 seconds, with a number of nodes
dropping from 765,026 to 1.

Finally, the same model could be solved repeatedly if the aggregated solutions
are too similar, i.e., if the values of the variables yk coincide for some k. So,
we implemented a “caching” mechanism that stores the last CP models and
their status, in order to avoid solving the same model twice. According to our
computational experience, the custom propagators and the cache were sufficient
to keep the time spent within the CP solver negligible.

2.3 MIP repair/improve heuristic

Finding a good quality feasible solution early in the process is often crucial to ef-
fectively solve an optimization problem. However, dual decomposition strategies
(such as generalized Benders decomposition and the hybrid approach presented
here) are usually quite weak at finding (good) feasible solutions. In order to
solve this issue, we devised an ad-hoc heuristic procedure for the shift schedul-
ing problem.



The procedure is a simple generalization of the large neighborhood search
developed in [17]. Suppose the set Ω can be completely described by a regular
language. Then every feasible shift is a path in the expanded graph associated to
the DFA and a solution to the problem is just a set of paths in this graph. Given
a solution S = {s1, . . . , sn}, let NS be the set of solutions that can obtained
by replacing a shift sk with a different shift r. Given a choice sk for the shift
to remove, searching an improving replacement shift r can be formulated as
a shortest path problem on the expanded graph, and NS can be used as a
neighborhood in the large neighborhood search heuristic (see [17] for details).

If Ω is not described completely by a regular language (the main assumption
in the present work), then the search for an improving shift r cannot be formu-
lated anymore as a shortest path. However, it can still be formulated as a MIP,
to be solved by a black box MIP solver. This is the basic step of our heuristic,
to be used in a scheme akin to the one in [17]. Note that basically the same MIP
can be used to:

– find a feasible shift r to replace another feasible shift sk.
– find a feasible shift r to replace an infeasible shift sk.
– find a feasible shift r to add to current solution S (if doing so reduces the

cost).

As such, the same heuristic can be used to (i) construct an initial feasible solu-
tion, (ii) improve a feasible solution, and (iii) repair an infeasible solution.

3 Computational Results

We tested our method on the multi-activity instances used in [3, 4, 17]. This
testbed is derived from a real-world store, and contains instances with 1 to
10 working activities (each class has 10 instances). A basic description of the
problem is as follows:

– The planning horizon of 1 day is divided into 96 slots of 15 minutes.
– A part-time employee must work a minimum of 3 hours and less than 6

hours, and is entitled to one break of 15 minutes.
– A full-time employee can work between 6 and 8 hours, and is entitled to two

breaks of 15 minutes plus a lunch break of 1 hour (in any order).
– When an employee starts working on one activity, it must do it for at least

1 hour. In addition, a break/lunch is needed before changing activity.
– A break cannot be scheduling at the beginning/end of the shift.
– At specific times of the day (e.g., when the store is closed), no employee is

allowed to work.
– Overcovering/undercovering is allowed, with an associated cost.
– The cost of a shift is the sum of the costs of all working activities performed

in the shift.

We implemented our method in C++, using IBM ILOG Cplex 12.2 [11] as
black box MIP solver, and Gecode 3.7.1 [7] as CP solver. All tests have been



performed on a PC with an Intel Core i5 CPU running at 2.66GHz, with 8GB
of RAM (only one core was used by each process). Every method was given a
time limit of 1 hour per instance. Concerning the set of feasible shifts Ω,
we simply partitioned it into full-time and part-time shifts. We could
have partitioned the full-time shifts further (depending on the relative
order of breaks and lunch), but it seemed overkill because all full-time
shifts share the same cardinality constraints (this was confirmed by
some preliminary tests). In general, disaggregating shifts depending
on the cardinality constraints seems to work well in practice.

From the implementation point of view, our hybrid method is made of the
following phases:

– First, the aggregated model is solved with Cplex, using the default settings.
The outcome of this (usually fast) first phase is a dual bound (potentially
stronger than the LP bound) and the set of aggregated solutions collected
by the MIP solver during the solution process (not necessarily feasible for
the original model).

– We apply our MIP repair/improve heuristic to each aggregated solution
which is within 20% of the aggregated model optimal solution. The out-
come of this phase is always a feasible solution for the original model, thus
a primal bound. Note that if the gap between the two is already below the
1% threshold, we are done.

– We solve the aggregated model again, this time implementing the hybrid
MIP/CP approach. This means that we disable dual reductions (otherwise
the decomposition would not be correct) and use Cplex callbacks framework
to implement the decomposition.

Here is a more detailed description of the last phase. Whenever the MIP
solver finds an integer solution, either with its own heuristics or because the LP
relaxation happens to be integer, we build the corresponding CP models and
solve them with Gecode DFS algorithm. As far as the branching strategy of the
CP solver is concerned, after some trial-and-error we found that ranking the
variables by increasing time period was the most successful policy. If the check
is successful, then we update the incumbent, otherwise the solution is rejected.
In both cases, we apply the MIP repair/improve heuristic on it to try to find
a new incumbent. If the solution was the optimal solution of an LP relaxation,
then we force a branching on a integer variable and keep going. As for branching
inside the MIP solver, we let Cplex apply its own powerful strategy whenever the
relaxation has some fractional variables. If this is not the case, we branch first
on the w variables and then, if all w variables are already fixed, on the y, again
ranking them by increasing time period. The rationale behind this strategy is
that if the w variables are not fixed to some value, then we cannot even formulate
the CP checking model, so the sooner we fix them the better. Note that as soon
as the w variables are fixed, we can build a CP model akin to (13)-(18) where
the y variables are not necessarily fixed but just take the domains of the current
node. In this case, we let the CP solver run with a strict fail limit (1000 in our
code) and, if it detects infeasibility, then we prune the node.



Table 1 reports a comparison between the proposed method and others in
the literature, for a number of activities from 1 to 10. As far as the number
of employees is concerned, we put an upper bound of 12 for instances with up
to 2 activities, of 24 for instances with 3 to 8 activities and of 30 for instances
with 9 or 10 activities. cpx-reg refers to the explicit model based on the regular
constraint in [3], while grammar refers to the implicit model based on the gram-
mar constraint in [4]. Note that for grammar we are reporting the results from
[4], which were obtained on a different machine and, more importantly, with an
older version of Cplex, so the numbers are meant to give just a reference. All
methods were run to solve the instances to near-optimality, stopping when the
final integrality gap dropped below 1%.

According to Table 1, hybrid outperforms significantly the explicit model
cpx-reg, which, as already noted, scales very poorly because of symmetry is-
sues and slow LPs. When compared to grammar, hybrid is very competitive
only for up to 2 activities, while after that threshold grammar clearly takes the
lead. This is somewhat expected: the set of feasible shifts in these instances can
indeed be described without too much effort with an extended grammar, and it
is no surprise that the pure implicit MIP model outperforms our decomposition
approach. However, hybrid is likely to be the best approach if the extended
grammar is not a viable option.

Table 1. Average computing times between the different methods to solve to near-
optimality (gap ≤ 1%) the instances with up to 10 activities.

# solved (10) time(s)
# act. cpx-reg hybrid grammar cpx-reg hybrid grammar

1 10 10 10 41.3 9.1 283.7
2 9 10 9 707.9 194.5 379.9
3 4 5 9 2957.3 1996.4 205.4
4 3 6 10 2970.2 1827.9 300.5
5 0 8 10 3600.0 1438.4 146.2
6 1 4 10 3530.6 2340.6 213.8
7 1 6 10 3438.7 2399.0 230.9
8 0 5 10 3600.0 2201.5 257.1
9 0 4 10 3600.0 2444.0 289.1

10 0 2 10 3600.0 3275.6 516.7

Table 2 reports a closer comparison between cpx-reg and hybrid, reporting
the average final gap, average number of variables in the model and average node
throughput for each category. According to the table, hybrid consistently yields
very small gaps (always below 3% on average), while for cpx-reg is always above
60% with more than 4 activities. As far as the number of variables of the models
is concerned, hybrid needs approximately 1/10 of the number of variables of
cpx-reg, which promptly turns into a much faster node throughput: hybrid is



more than two order of magnitude faster in exploring nodes than cpx-reg. Note
that, according to [4], grammar models range from 70,000 variables for instances
with 1 activity to 96,000 for instances with 10 activities, so the hybrid model
based on regular languages is significantly smaller.

Table 2. Comparison of average final gap between cpx-reg and hybrid.

gap(%) #vars node/sec
# act. cpx-reg hybrid cpx-reg hybrid cpx-reg hybrid

1 0.72 0.24 9,956 1,908 21.99 10.36
2 0.78 0.61 13,608 2,925 3.52 20.60
3 3.74 3.00 34,903 4,152 0.59 8.42
4 25.18 1.39 43,005 5,291 0.20 3.92
5 62.55 1.01 52,979 6,828 0.05 3.32
6 75.89 1.59 62,442 8,364 0.03 1.86
7 90.00 0.90 73,693 9,936 0.01 1.64
8 100.00 1.92 78,809 10,603 0.01 1.22
9 100.00 1.52 104,561 11,509 0.01 1.05
10 100.00 2.76 120,049 13,302 0.01 0.86

Finally, Table 3 shows the gap just before the beginning of the last phase
(but after the aggregated model has been solved and its solutions have been used
to feed the MIP repair/improve heuristic). On almost all categories the average
final gap is below 10%, with an average running time of 1 minute. This heuristic
alone significantly outperforms cpx-reg for a number of activities greater than
3. It is also clear from the table that solving the orbital shrinking relaxations
with a black box MIP solver is usually very fast. Interestingly, solving these MIPs
turn out to be often faster than solving the LP relaxations of the original models,
while providing better or equal dual bounds. For example, on one instance with
1 activity, the LP relaxation of the original model that 0.26 seconds to solve,
yielding a dual bound of 142.48, while the shrinked MIP takes 0.12 seconds and
yields a dual bound of 182.54 (in this case, equal to the value of the optimal
solution). On another instance with 10 activities, the LP relaxation takes 269.55,
while the shrinked MIP takes only 52.77 seconds, both yielding the same dual
bound in this case.

4 Related work

We divide the related work into two parts: previous work on using regular and
context-free languages to specify constraints, especially those constraints occur-
ing in shift scheduling problems, and previous work on hybridizations of CP and
MIP solving.

Pesant introduced the global regular constraint in which constraints are spec-
ified by regular constraints [13]. He gave a complete propagation algorithm based



Table 3. MIP repair/improve heuristics standalone results.

# act. time(s) gap(%)

1 6.2 1.5
2 46.5 6.5
3 24.7 20.3
4 30.3 7.1
5 34.5 5.9
6 33.5 10.5
7 63.2 7.1
8 69.3 7.7
9 89.8 6.7

10 65.9 8.0

on dynamic programming. Coincidently Beldiceanu, Carlsson and Petit proposed
specifying global constraints by means of finite automata augmented with coun-
ters [1]. Regular languages are precisely those accepted by (deterministic) finite
automata. Propagators for such an automaton are constructed automatically
from the specification of the automaton by means of a decomposition into sim-
pler constraints. Quimper and Walsh proposed a closely related decomposition
of the regular constraint based on transition constraints and variables intro-
duced to represent the states of the unfolded automaton which recognizes the
language [15]. They showed that such decomposition was effective and efficient
in practice. Demassay et al. [5] used a column generation technique to solve a
shift scheduling problem in which the columns are generated with a CP solver
using the cost regular constraint, a variation of the regular constraint, whilst the
optimization process is driven by the simplex method. Côté et al. [2] encoded
the regular constraint into a MIP and efficiently solved some instances of the
shift scheduling problem using the same automaton as Demassay et al.

Quimper and Walsh proposed the context-free grammar constraint in which
constraints are specified by a context free grammar [15]. They gave two different
propagators, one based on the CYK and the other on the Earley parser. At the
same time and independently, Sellmann proposed the same global constraint and
gave a similar propagator based on the CYK parser [18]. In [16, 3], context-free
grammar constraints have been used to model complex shift-scheduling prob-
lems. More recently, Côté, Gendron, Quimper and Rousseau have proposed
mixed-integer programming (MIP) encodings of the regular and context-free
grammar constraints [3]. The MIP encoding of the regular constraint introduces
linear inequalities to model the flow constructed by unfolding the automaton
into a layered transition graph. When this is the only constraint in a problem,
this can be solved with a specialized path finding algorithm. However, when
there are other constraints in the problem, it needs to be solved with a more
general 0/1 MIP solver. The MIP encoding has one significant difference with
the CYK propagator. If there is more than one parsing for a sequence, it picks



one arbitrarily whilst the CYK propagator keeps all. This simplifies the MIP en-
coding without changing the set of solutions since only one parsing is needed to
show membership in a context-free grammar. Experiments on a shift scheduling
problem show that such MIP encodings are highly effective.

The last couple of decades have seen many hybrid approaches to solving
optimization and decision problems that exploit both MIP and CP technqiues
[12, 20]. There are several different approaches to such hybridization including:

Double modeling: We use both CP and MIP models and exchange informa-
tion while solving. This may include bounds, infeasibility, nogoods, etc.

Search-inference duality [8]: We view CP and MIP methods as special cases
of a search/inference duality. Search methods can be complete methods like
branching or incomplete methods like local search. Inference methods can be
CP based methods like domain reduction or MIP based methods like cutting
plane inference.

Decomposition [9]: We decompose problems into a CP part and a MIP part
using, for example, a Benders style scheme. The master problem searches
over some of these variables. Given an instantiation for these variable, we
get a subproblem which we can, for instance, solve using CP. The MIP/CP
hybridization proposed here has this form.

Relaxation [19]: We combine CP based search methods like branching with
relaxation techniques from MIP which solve a simpler approximated form of
the problem like Langrangian relaxation.

5 Conclusions

We have proposed a hybrid MIP/CP approach for solving multi-activity shift
scheduling problems, based on regular languages that partially describe the set
of feasible shifts. This choice is justified by the fact that it may be much easier
from the modeling point of view to define the appropriate formal language, and
the corresponding MIP models may be much smaller. Computational results
show that the method is a promising alternative compared to the state-of-the-
art, being the fastest method when there are not too many activities. When the
number of activities increases, the method cannot compete, in its present state,
with an implicit formulation where the formal language completely describes the
set of feasible shifts. However, it outperforms significantly explicit MIP based
formulations, thus becoming the method of choice when it is not practical to
describe the set of feasible shifts with a formal language alone. Future work may
address the interesting question of how to derive Benders style cutting planes
from the CP model (when infeasible), in order to speed up the enumeration of
the MIP.

References

1. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) Proceedings of 10th International Confer-



ence on Principles and Practice of Constraint Programming (CP2004). pp. 107–122.
Springer (2004)

2. Côté, M.C., Gendron, B., Rousseau, L.M.: The regular constraint for integer pro-
gramming modeling. In: Proceedings of the Fourth International Conference on
Integration of AI and OR Techniques in Constraint Programming (CP-AI-OR 07)
(2007)

3. Côté, M.C., Gendron, B., Quimper, C.G., Rousseau, L.M.: Formal languages for
integer programming modeling of shift scheduling problems. Constraints 16(1),
54–76 (2011)

4. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming
models for multiactivity shift scheduling. Management Science 57(1), 151–163
(2011)

5. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column
generation approach. Constraints 11(4), 315–333 (2006)

6. Fischetti, M., Liberti, L.: Orbital shrinking. In: Proceedings of ISCO (2012)
7. Gecode Team: Gecode: Generic constraint development environment (2012), avail-

able at http://www.gecode.org

8. Hooker, J.N.: Integrated Methods for Optimization. Springer (2006)
9. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical

Programming 96(1), 33–60 (2003)
10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison Wesley (1979)
11. IBM ILOG: CPLEX 12.2 User’s Manual (2011)
12. Milano, M.: Constraint and Integer Programming: Toward a Unified Methodology.

Kluwer Academic Publishers (2003)
13. Pesant, G.: A regular language membership constraint for finite sequences of vari-

ables. In: Principles and Practice of Constraint Programming - CP 2004, 10th
International Conference, CP 2004, Toronto, Canada, September 27 - October 1,
2004, Proceedings. Lecture Notes in Computer Science, vol. 3258, pp. 482–495.
Springer (2004)

14. Pesant, G., Quimper, C.G., Rousseau, L.M., Sellmann, M.: The polytope of
context-free grammar constraints. Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems pp. 223–232 (2009)

15. Quimper, C.G., Walsh, T.: Global grammar constraints. In: 12th International
Conference on Principles and Practices of Const raint Programming (CP-2006).
Springer-Verlag (2006)

16. Quimper, C.G., Walsh, T.: Decomposing global grammar constraints. In: 13th
International Conference on Principles and Practices of Const raint Programming
(CP-2007). Springer-Verlag (2007)

17. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the
multi-activity shift scheduling problem. Journal of Heuristics 16, 373–392 (2010)

18. Sellmann, M.: The theory of grammar constraints. In: Proceedings of 12th In-
ternational Conference on Principles and Practice of Constraint Programming
(CP2006). pp. 530–544. Springer (2006)

19. Sellmann, M.: Theoretical foundations of CP-based lagrangian relaxation. In: Wal-
lace, M. (ed.) CP. vol. 3258, pp. 634–647 (2004)

20. Van Hentenryck, P., Milano, M.: Hybrid Optimization: The Ten Years of Cpaior.
Springer Optimization and Its Applications, Springer (2010)


