
The Constrainedness Knife-EdgeToby WalshAPES GroupDepartment of Computer ScienceUniversity of StrathclydeGlasgow, Scotlandtw@cs.strath.ac.ukAbstractA general rule of thumb is to tackle the hardestpart of a search problem �rst. Many heuristicstherefore try to branch on the most constrainedvariable. To test their e�ectiveness at this, wemeasure the constrainedness of a problem dur-ing search. We run experiments in several di�er-ent domains, using both random and non-randomproblems. In each case, we observe a constrained-ness \knife-edge" in which critically constrainedproblems tend to remain critically constrained.We show that this knife-edge is predicted by atheoretical lower-bound calculation. We also ob-serve a very simple scaling with problem sizefor various properties measured during search in-cluding the ratio of clauses to variables, and theaverage clause size. Finally, we use this picture ofsearch to propose some branching heuristics forpropositional satis�ability.IntroductionEmpirical studies of search procedures usually focus onstatistics like the run-time or the total number of nodesvisited. It can also be productive to use the computeras a \microscope", looking closely at the running of thesearch procedure. To illustrate this approach, we mea-sure the constrainedness of problems during search. Ageneral purpose heuristic in many domains is to branchon the most constrained variable. For example, ingraph coloring, the Brelaz heuristic colors a node withthe fewest available colors, tie-breaking on the num-ber of uncolored neighbours (Brelaz 1979). How e�ec-tive are heuristics at identifying the most constrainedvariable? How constrained are the resulting subprob-lems? To answer such questions, we measured the con-strainedness of problems during search in several dif-ferent domains using both random and non-randomproblems.We obtained similar results with a wide variety ofalgorithms and heuristics. In each case, we observeda constrainedness \knife-edge". Under-constrainedproblems tend to become less constrained as searchdeepens, over-constrained problems tend to becomemore constrained, but critically constrained problems

from the region inbetween tend to remain criticallyconstrained. We also observe a simple scaling withproblem size for various properties measured duringsearch including the ratio of clauses to variables, andthe average clause size. The existence of a con-strainedness knife-edge helps to explain the hardnessof problems from the phase transition. It also suggestssome branching heuristics for propositional satis�abil-ity. Similar microscopic studies that look closely insidesearch may be useful in other domains.Constrainedness within satis�abilityThere has been considerable interest recently in en-coding problems into satis�ability and solving themeither with local search procedures like Gsat (Selman,Levesque, & Mitchell 1992) or with the Davis-Putnamdecision procedure (Bayardo & Schrag 1997). Wetherefore began our experiments by looking at how theconstrainedness of satis�ability problems varies duringsearch. The constrainedness of a satis�ability problemdepends on several factors including the clause length(longer clauses are less constraining than shorter ones)and the number of clauses mentioning a variable (in-creasing the number of clauses makes the variable moreconstrained). We decided therefore to measure boththe ratio of clauses to variables, and the average clauselength during search for the popular random 3-satproblem class (Mitchell, Selman, & Levesque 1992).We use the Davis-Putnam procedure with unit prop-agation but no pure literal deletion. We branch withMom's heuristic, picking the literal that occurs mostoften in the minimal size clauses. Depth is measuredby the number of assignments. Similar results areobtained when depth is measured by the number ofbranch points, and with other branching heuristics in-cluding random branching. In each experiment, wesimply follow the heuristic down the �rst branch, aver-aging over 1000 di�erent problems. To reduce variance,we use the same ensemble of problems in all experi-ments. We adopt the convention that initial param-eters are in capital italics and that values measuredduring search are in lower case italics.
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N=500Figure 1: Ratio of clauses to variables, l=n on theheuristic branch against the depth.In Figure 1, we plot the ratio of clauses to variablesdown the heuristic branch for random 3-sat problemsfrom the middle of the phase transition with an initialclause to variable ratio, L=N = 4:3. As search pro-gresses, this ratio drops approximately linearly. How-ever, it drops less rapidly for larger problems. Sincenot all heuristic branches extend to large depths, thereis some noise at the end of each graph. Other exper-iments show that the rate of decay of l=n increasesas we increase the initial ratio of clauses to variables,L=N . In Figure 2, we rescale the x-axis linearly withproblem size, N . This rescaling shows that the gradi-ent of l=n is inversely proportional to N . Such a simplescaling result is very unexpected. It may be useful ina theoretical analysis of the Davis Putnam procedure.
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N=100Figure 2: Ratio of clauses to variables, l=n on theheuristic branch against the fractional depth.As the ratio of clauses to variables drops duringsearch, we might expect that problems become lessconstrained. However, the average clause length alsodecreases as search deepens, tightening the constraintson variables. In Figure 3, we show that, just like theratio of clauses to variables, the average clause length

is invariant if depths are scaled linearly with problemsize, N . This simple scaling result may also be useful ina theoretical analysis of the Davis Putnam procedure.Other experiments show that the average clause lengthdecreases as we decrease the initial ratio of clauses tovariables, L=N . Which of these two factors wins? Doesthe decrease in clause size tighten the constrainednessfaster than the decrease in the ratio of clauses to vari-ables loosens it? To answer such questions, we need amore precise measure of constrainedness.
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N=100Figure 3: Average clause length, m on the heuristicbranch against the fractional depth.An approximate theory(Gent et al. 1996) proposes an approximate theory forestimating the constrainedness of an ensemble of prob-lems. This theory focuses on just two factors: the sizeof the problems, and the expected number of solutions.Problems which are large but which have a small num-ber of solutions tend to be over-constrained. On theother hand, problems which are small but which have alarge number of solutions tend to be under-constrained.Whilst this theory ignores important factors like prob-lem structure and symmetries, its predictions are oftensurprisingly accurate. For instance, the theory predictsthe location of a phase transition in number partition-ing with just a 4% error (Gent & Walsh 1996).If each problem in an ensemble has a state space with2N states, of which hSol i are expected to be solutions,then the constrainedness, � of the ensemble is de�nedby, � =def 1� log2(hSol i)NThis parameter lies within the interval [0;1). If� = 0, problems in the ensemble are completelyunder-constrained and every state is a solution. If� =1, problems in the ensemble are completely over-constrained and no states are solutions. If � < 1, prob-lems are under-constrained and are typically soluble. If



� > 1, problems are over-constrained and are typicallysoluble. Around � � 1, there tends to be a phase tran-sition as problems can be both soluble and insoluble.The hardest problems to solve often occur around suchtransitions (Cheeseman, Kanefsky, & Taylor 1991).Constrainedness knife-edgeWe can use this de�nition of constrainedness to de-termine whether the decrease in average clause sizeoutweighs the decrease in the ratio of clauses to vari-ables. To estimate � during search, we assume thatthe current subproblem is taken from an ensemble inwhich problems have the same number of clauses, thesame number of variables, and the same distribution ofclause lengths. If there are li clauses of length i, thenas each clause of length i rules out the fraction (1� 12i )of the 2n possible truth assignments,hSoli � 2n:Yi (1� 12i )liHence, � � �Xi lin: log2(1� 12i )Note that for a random 3-sat problem, � is directlyproportional to L=N , the ratio of clauses to variables.In Figure 4, we plot the estimated constrainednessdown the heuristic branch for random 3-sat problems.For L=N < 4:3, problems are under-constrained andsoluble. As search progresses, � decreases as problemsbecome more under-constrained and obviously soluble.For L=N > 4:3, problems are over-constrained and in-soluble. As search progresses, � increases as problemsbecome more over-constrained and obviously insoluble.At L=N � 4:3 problems are on the knife-edge betweensolubility and insolubility. As search progresses, � isroughly constant. Each successive branching decisiongives a subproblem which has the same constrainednessas the original problem, neither more obviously satis-�able, nor more obviously unsatis�able. Only deep insearch does � eventually break one way or the other.As with the ratio of clauses to variables, and the av-erage clause length, graphs of the constrainedness dur-ing search coincide if depths are scaled linearly withproblem size, N . We have also observed similar knife-edge behaviour with a random heuristic, and withan anti-heuristic (that is, one which always branch-ing against the heuristic) except that values of � areslightly greater.Figure 4 suggests an interesting analogy with sta-tistical mechanics. At the phase boundary in physicalsystems, problems tend to be \self-similar". That is,
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L/N=1Figure 4: The estimated constrainedness, � down theheuristic branch for random 3-sat problems with 100variables and varying initial ratio of clauses to variable.they look similar at every length scale. At the phaseboundary in computational systems, problems also dis-play a form of self-similarity. Branching decisions givesubproblems that look neither more or less constrained.This helps to explain why such problems are di�cultto solve. Branching decisions tell us very little aboutthe problem, giving subproblems that are neither moreobviously soluble nor more obviously insoluble. Wewill often have to search to a large depth either for asolution or for a refutation. By comparison, branch-ing on an over-constrained problem gives a subproblemthat is often even more constrained and hopefully eas-ier to show insoluble, whilst branching on an under-constrained problem gives a subproblem that is ofeneven less constrained and hopefully easier to solve.Lower bound on constrainednessWhen we branch into a subproblem, the number of so-lutions remaining cannot increase. The expected num-ber of solutions, hSoli cannot therefore increase. Thisprovides a lower bound on � that is a good qualitativeestimate for how the constrainedness actually variesduring search. Let �i be the value of � at depth i.Then, �0 = 1� log2(hSoli)NHence, log2(hSoli) = N (1� �0)Thus, �i � 1� log2(hSoli)N � i= 1� N (1� �0)N � i= N�0 � iN � i



We can improve this bound slightly by noting that �is bounded below by zero. Hence,�i � max(0; N�0 � iN � i )In Figure 5, we plot this bound on � for random 3-satproblems with 100 variables and varying initial ratio ofclauses to variable, L=N . We see that the behaviour of� during search observed in Figure 4 is similar to thatpredicted by the bound.
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L/N=1Figure 5: Lower-bound on the constrainedness, � downa branch for random 3-sat problems with 100 variablesand varying initial ratio of clauses to variable.Non-random problemsThe existence of a constrainedness knife-edge helps toexplain the di�culty of solving random problems atthe phase transition in solubility. Branching decisionsgive subproblems which are neither more obviously sol-uble or insoluble. We are forced therefore to searchto a large depth either for a solution or for a refu-tation. Phase transition behaviour has also been ob-served in problems which are not purely random. Forinstance, (Gent & Walsh 1995) identi�es phase transi-tion behaviour in traveling salesperson problems usingreal geographical data, in graph coloring problems de-rived from university exam time-tables, and in Booleaninduction and synthesis problem. As a fourth exam-ple, (Gomes & Selman 1997) demonstrate phase tran-sition behaviour in the quasi-group completion prob-lem. Does the existence of a constrainedness knife-edgehelp to explain the di�culty of solving problems at thephase boundary in such non-random problems?To answer this question, we ran some experimentswith graph coloring problems from the DIMACSbenchmark library. We used the register allocationproblems as these are based on real code. To color thegraphs, we use a forward checking algorithm with theBrelaz heuristic to pick the next node to color (Brelaz

1979), and Geelen's promise heuristic to choose one ofthe m possible colors (Geelen 1992). To estimate �,we assume that the graph is drawn from an ensemblein which graphs have the same number of nodes, thesame available colors, and the same number of edges asin the current subproblem. If V is the set of uncolorednodes, E is the set of edges between uncolored nodes,and mi is the set of colors remaining for node i thenthere areQi2V jmij possible colorings of the nodes, andeach edge hi; ji 2 E rules out jmi\mjj of the jmij:jmjjpairs of colors between nodes, i and j. Thus,N = log2(Yi2V jmij) = Xi2V log2(jmij)hSoli � Yi2V jmij: Yhi;ji2E(1� jmi \mj jjmij:jmjj )Hence, � � �Phi;ji2E log2(1 � jmi\mj jjmij:jmjj )Pi2V log2(jmij)In Figure 6, we plot the estimated constrainednessdown the heuristic branch for a typical register al-location problem. Despite the fact that this plot is
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Each branching decision gives a subproblem that is ofsimilar constrainedness and di�culty to solve. Simi-lar behaviour is seen with the other register allocationproblems in the DIMACS library.Constrainedness within optimizationPhase transition behaviour is not restricted to decisionproblems like propositional satis�ability. Certain op-timization problems like number partitioning and thetraveling salesperson problem also exhibit phase tran-sitions (Gent & Walsh 1996; Zhang & Korf 1996). Dowe observe a constrainedness knife-edge when solvingsuch optimization problems?To explore this question, we ran some experimentswith the Ckk optimization procedure for number par-titioning (Korf 1995). Given a bag of N number, wewish to �nd a partition into two bags that minimizes �,the di�erence between the sum of the two bag. (Gent& Walsh 1996) shows that for partitioning n numbersdrawn uniformly at random from (0; l], � � log2(l)=n.To estimate � during search, we assume that the num-bers left are taken from such an ensemble and thattheir size, l is twice the sample average. In Figure 7,we plot this estimate for the constrainedness duringsearch. For comparison, we also plot the lower boundon � using the same scales. We again observe a con-strainedness knife-edge. Although there is not a tran-sition between soluble and insoluble problems (sincethere is always an optimal partition), there is now atransition between optimization problems with perfectpartitions (that is, in which � � 1) and those without,and verifying the optimality of a partition with � > 1can be costly.Constrainedness as a heuristicKnowledge about the existence of a constrainednessknife-edge may help us design more e�ective searchprocedures. For instance, for soluble problems, it sug-gests that we should try to get o� the knife-edge asquickly as possible by branching into the subproblemthat is as under-constrained as possible. That is, assuggested in (Gent et al. 1996), we should branch intothe subproblem that minimizes �. To test this thesis,we implemented a branching heuristic for the Davis-Putnam procedure that branches on the literal whichgives the subproblem with smallest �. In Table 1, weshow that this heuristic performs well on hard and sat-is�able random 3-sat problems.For insoluble problems, the existence of a con-strainedness knife-edge suggests that we should branchinto the sub-problem that is as over-constrained as pos-sible. That is, we should branch into the subprob-lem that maximizes �. Initial experiments suggest
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log2(L)/N=0.2 (B)Figure 7: The constrainedness, � down the heuristicbranch for number partitioning problems with N =30 numbers, and varying L. (A) estimated �. (B)theoretical lower-bound to same scale.that this heuristic is e�ective on hard and unsatis-�able random 3-sat problems. For instance, for 50variable unsatis�able problems at L=N = 4:3, the me-dian nodes searched using this heuristic is 2,575 com-pared to 3,331 nodes for Mom's heuristic, and 7,419nodes for the heuristic that minimizes �. On the otherhand, maximizing � is less e�ective on hard and sat-is�able problems. For 50 variable satis�able problemsat L=N = 4:3, the median nodes searched when maxi-mizing � is 1,487 compared to 164 nodes with Mom'sheuristic, and 104 nodes with the heuristic that mini-mizes �. An adaptive heuristic that switches betweenminimizing and maximizing � depending on an esti-mate of the solubility of the problem may thereforeo�er good performance.Related workMost theoretical studies of the Davis-Putnam pro-cedure have used the easier constant probabilitymodel. One notable exception is (Yugami 1995) whichcomputes the average-case complexity of the Davis-Putnam procedure for the random 3-sat problem class.Freeman has studied experimentally the running of the



N Mom Kappa25 11 150 164 10475 1129 580100 3903 1174Table 1: Median nodes searched by the Davis-Putnamprocedure for satis�able random 3-sat problems atL=N = 4:3, branching either with Mom's heuristic,or to minimize the constrainedness (Kappa).Davis-Putnam procedure on random 3-sat problems(Freeman 1996). Unlike here, where the focus is on theheuristic branch, Freeman computes averages across allbranches in the search tree. He identi�es an \unit cas-cade", a depth in the search tree where unit propaga-tion greatly simpli�es the problem. The ine�ectivenessof unit propagation above this depth helps to explainthe hardness of problems at the phase transition.Gent and Walsh have studied experimentally therunning of local search procedures for satis�ability(Gent & Walsh 1993). They show that various proper-ties like the percentage of clauses satis�ed, and thenumber of variables o�ered to ip are invariant ifdepths are scaled linearly with problem size. This mir-rors the result here on the scaling of the constrained-ness, the ratio of clauses to variables and the averageclause size. Such simple scaling results may be usefulin the theoretical analysis of these search procedures.ConclusionsWe have measured how the constrainedness of prob-lems varies during search in several di�erent prob-lem domains: both decision problems like proposi-tional satis�ability and graph coloring, and optimiza-tion problems like number partitioning. Our experi-ments have used both random and non-random prob-lems. In each case, we observed a constrainedness\knife-edge" in which critically constrained problemstended to remain critically constrained. The existenceof a constrainedness knife-edge helps to explain thehardness of problems from the phase transition. Wehave shown that a lower-bound calculation predictsthis knife-edge theoretically. We have also observeda very simple scaling with problem size for variousproperties measured during search like the constrained-ness, the ratio of clauses to variables, and the averageclause size. Finally, we have used the existence of aconstrainedness knife-edge to propose some branchingheuristics for propositional satis�ability. We conjec-ture that similar microscopic studies that look closelyinside search may be useful in other domains.
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