
Exploiting Constraints

Toby Walsh

NICTA and UNSW, Sydney, Australia

Abstract. Constraints can be exploited in paradigms outside of constraint pro-
gramming. In particular, powerful global constraints can often be decomposed
into small primitives and these decompositions can simulate complex propaga-
tion algorithms that perform sophisticated inference about a problem. We illustrate
this approach with examples of exploiting constraints in propositional satisfiabil-
ity (SAT), pseudo-Boolean (PB) solving, integer linear programming (ILP) and
answer set programming (ASP).

1 Introduction

Constraint programming is a successful technology used to solve a wide range of com-
binatorial optimisation problems involing scarce or expensive resources like routing
and scheduling [1]. Central to this success are global constraints. These capture com-
mon modelling patterns [2] (e.g. “all these activities occur on the same machine so must
take place at different times”) and take advantage of powerful and efficient propagation
algorithms to reason about possible solutions (e.g. “we have five activities taking plac-
ing on four machines so, by a pigeonhole argument, we must take at least two time
periods”). However, there are other programming paradigms that have other strengths.
For example, satisfiability solvers typically provide sophisticated methods for recover-
ing from branching mistakes like nogood learning and restarts. As a second example,
answer set programming provides an even richer modelling language for modelling and
reasoning about concepts like the transitive closure of a relation. It is therefore useful
to develop methods for exploiting global constraints in these other paradigms. In this
paper, we survey recent work in this area which shows that global constraints can often
be exploiting in these other paradigms by means of carefully designed decompositions.
On the other hand, we also describe recent work in this area which clearly identifies
the limits of this approach, demonstrating that there are certain global constraints that
cannot be replaced by any polynomial sized decomposition.

2 An Example

One of the oldest and most useful global constraint is the ALLDIFFERENT constraint
[3, 4]. This ensures that a set of variables are pairwise different. A simple decomposition
of the ALLDIFFERENT constraint is into a clique of binary inequalities. However, this
decomposition usually hinders inference. Consider the following running example: we
have three variables, X1 ∈ {0, 1, 2} and X2, X3 ∈ {1, 2} that must take different
values to each other. Then any binary inequality, say X1 �= X3 is domain consistent

S.H. Muggleton, A. Tamaddoni-Nezhad, F.A. Lisi (Eds.): ILP 2011, LNAI 7207, pp. 7–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



8 T. Walsh

(that is, for every value in the domain of X1 there is a value available in the domain
of X3 that satisfies the constraint and vice versa). A more complex decomposition [5]
will provide a more “global” view that simulates the efficient propagation algorithms
that have been developed for the global ALLDIFFERENT constraint [6–9]. We introduce
0/1 variables, Ailu which by means of the following channeling constraints represent
whether Xi takes a value in the interval [l, u]:

Ailu = 1 ⇔ Xi ∈ [l, u]

To ensure that Xi �= Xj for any i < j, we add constraints that enforce the Hall interval
property that the total number of variables taking values within any interval is no more
than the size of that interval:

n∑

i=1

Ailu ≤ u− l + 1

Consider our running example again and the interval [1, 2]. Now A212 and A312 are both
1 as X2 and X3 must take their value from within this interval. Since

∑3
i=1 Ai12 ≤ 2, it

follows that A112 = 0. That is, X1 cannot take a value from the interval [1, 2] and must
instead be set to 0. In fact, bound consistency on this decomposition will ensure bound
consistency on the global ALLDIFFERENT constraint [5], simulating the actions of a
complex propagation algorithm. This decomposition can be readily used in a pseudo-
Boolean solver.

3 Encoding Domains

In many decompositions, we reduce the problem to one on 0/1 variables. This allows
us both to reason about individual assignments (e.g. “is X3 set to 2 or not?”) and to use
the decomposition in a different type of solver (e.g. in a satisfiability solver). There are
several encodings used to map multi-valued domains onto 0/1 variables depending on
the inference we want to simulate in the decomposition.

Direct encoding: We set Bij = 1 iff Xi = j [10]. This gives access to the individual
values to be assigned to each variable but often hinders propagation.

Order encoding: We set Bij = 1 iff Xi ≤ j. This looks superficially similar to the
direct encoding (e.g. it requires the same number of 0/1 variables) but can offer
important inferential advantages. For instance, this encoding is used in the decom-
position of the domain consistency propagator for the lexicographical ordering con-
straint [11].

Interval encoding: We set Ailu = 1 iff Xi ∈ [l, u]. Such an encoding is used in de-
compositions of many counting and occurrence constraints (e.g. ALLDIFFERENT,
GCC, NVALUE [5, 12]).

4 Encoding into ASP

One paradigm in which we have had considerable success in exploiting constraints is
answer set programming (ASP). This is a powerful modelling and solving paradigm



Exploiting Constraints 9

that offers a number of advantages. For instance, ASP supports recursive defintions
which permits us to model easily concepts like the transitive closure of a relation. As
a second example, ASP supports default negation which permits us to model easily
a range of real world problems. By using suitable decompositions, we can add global
constraints to this list of advantages of ASP [13–15]. For instance, we have added global
constraints to ASP which allow for the specification of constraints in terms of automata
which accept just valid assignments for sequences of variables [16]. Such constraints
are useful in a wide range of scheduling, rostering and sequencing problems to ensure
certain patterns do or do not occur over time. For example, we may wish to ensure that
anyone working three night shifts then has two or more days off. Such a constraint can
easily be expressed using a regular language.

5 Advantages of Decomposition

There are several advantages to modelling global constraints by sophisticated decom-
positions like these.

Exporting constraints: These decompositions can often be easily used in a different
solving paradigm. For example, we have used such decomposition in both state of
the art pseudo-Boolean and answer set solvers. However, we could also have used
them in an ILP solver.

Combining constraints: These decompositions often introduce new variables that de-
scribe internal state. When multiple constraints are posted, we can often share such
variables to increase propagation [17].

Extending constraints: These decompositions may enable or suggest interesting ex-
tensions of our solver. For instance, our decompositions of the ALLDIFFERENT

constraint suggest learning nogoods based on small Hall intervals.
Branching: These decompositions open out the constraint propagation algorithm. Pre-

viously such algorithms were black boxes to the rest of the solver. However, the
internal state of the propgagator may be useful to guide branching and other deci-
sions.

Incremental propagation: Decompositions are naturally incremental. When a prob-
lem changes (e.g. we assign a variable), only those parts of the decomposition
touched need wake up.

On the other hand, there are two features of decompositions that may limit their useful-
ness:

Space complexity: By their nature, the space complexity of a decomposition tends to
equal the time complexity. This is because we use techniques like unit propagation
on the decomposition which are linear in the size of the problem. This may be
problematic when, for example, domains are large and the propagator for the global
constraint takes quadratic or cubic time in the domain size.

Time complexity: By their nature, the time complexity of reasoning with the decom-
position tends to be the same in the best case as in the worst case. This is because the
decomposition must anticipate all possible inferences. This means that decomposi-
tions tend to perform well when they are simulating propagators that use dynamic
programming which naturally have this property.



10 T. Walsh

6 Limits of Decomposition

These concerns about the time and space complexity of decompositions can be made
rather concrete. There are certain global inferences that cannot be simulated effectively
using decompositions. In particular, we have proved that there is no polynomial sized
decomposition of the global ALLDIFFERENT constraints into conjunctive normal form
(CNF) with the property that unit propagation on the decomposition enforces domain
consistency on the original global constraint [18]. The proof uses lower bounds on
the size of monotone Boolean circuits. We show that there is a polynomial sized de-
composition of a constraint propagator into CNF if and only if the propagator can be
computed by a polynomial size monotone Boolean circuit. The super-polynomial lower
bound on the size of a Boolean circuit for computing a perfect matching in a bipartite
graph thus gives a super-polynomial lower bound on the size of a CNF decomposi-
tion of the domain consistency propagator for the global ALLDIFFERENT constraint. It
follows that domain consistency propagators for other global constraints which gener-
alize ALLDIFFERENT like GCC and NVALUE also can be effectively simulated using
decompositions.

7 Other Decompositions

There are several other global constraints that have been shown to be effectively de-
composable.

SEQUENCE: The global SEQUENCE constraint is used in modelling car sequencing,
rostering, scheduling and related problems. Several decompositions for this con-
straint have been introduced, two of which successively improved the best known
asymptotic bound for propagating the constraint [19, 20]. Some of these decom-
positions are based on mapping the problem into a linear program that represent a
network flow.

PRECEDENCE: The global PRECEDENCE constraint [21] is used to break value sym-
metry [22–24]. A simple, linear decomposition into ternary constraints simulates
the domain consistency propagator [25].

ROOTS, RANGE: Many global constraints dealing with counting and occurrences can
be decomposed into two primitives, ROOTS and RANGE [26]. A simple flow-based
decomposition can be used to propagate the RANGE constraint [27]. Whilst prop-
agating the ROOTS constraint completely is NP-hard in general [28], many of the
cases needed in practice are polynomial based on a simple decomposition [29].

SLIDE: The global SLIDE constraint is a “meta-constraint” that slides a given con-
straint down a sequence of variables [30, 31]. It can be used to model many other
global constraints and is useful to specify rostering and other problems (e.g. in any
7 day time window, I must have 2 days off). As with ROOTS, propagating the con-
straint completely is NP-hard in general [32]. However, there are many cases met in
practice (e.g. when the constraint being slid is of fixed arity), when decomposition
is able to propagate the global constraint completely.



Exploiting Constraints 11

TABLE: The TABLE constraint can model any arbitrary relation. It is useful in con-
figuration and related problems for expressing product compatability. Bacchus has
given a decomposition into CNF on which unit propagation achieves domain con-
sistency [33].

8 Conclusion

We have surveyed recent work in decomposing global constraints. Such decompositions
permit us to exploit global constraints in paradigms outside of constraint programming
like ASP and SAT. On the other hand, there also exists limits to what can be achieved
with decompositions. For instance, we cannot effectively simulate a domain consistency
propagators for a global constraint like ALLDIFFERENT. There are many interesting
open questions in this area. For example, we have not been able to design a decompo-
sition that effectively simulates the doman consistency propagator for the LEXCHAIN

constraint [34]. However, we have not been able to prove that no such decomposition
exists. We conjecture that the latter holds.

Acknowledgements. Toby Walsh is supported by the Australian Department of Broad-
band, Communications and the Digital Economy, the ARC, and the Asian Office of
Aerospace Research and Development (AOARD-104123).

References

1. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Foundations
of Artificial Intelligence. Elsevier (2006)

2. Walsh, T.: Constraint Patterns. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 53–64.
Springer, Heidelberg (2003)

3. Lauriere, J.: Alice: A language and a program for solving combinatorial problems. Artificial
Intelligence 10, 29–127 (1978)

4. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proc. of the 12th
National Conf. on AI, AAAI, pp. 362–367 (1994)

5. Bessière, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompositions of
all different, global cardinality and related constraints. In: Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (2009)

6. Leconte, M.: A bounds-based reduction scheme for constraints of difference. In: Proc. of
Second Int. Workshop on Constraint-based Reasoning (Constraint 1996) (1996)

7. Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: 15th National
Conf. on Artificial Intelligence, AAAI, pp. 359–366 (1998)

8. Mehlhorn, K., Thiel, S.: Faster Algorithms for Bound-Consistency of the Sortedness and
the Alldifferent Constraint. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 306–319.
Springer, Heidelberg (2000)

9. Lopez-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm for
bounds consistency of the alldifferent constraint. In: Proc. of the 18th Int. Joint Conf. on
AI, IJCAI (2003)

10. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456.
Springer, Heidelberg (2000)



12 T. Walsh

11. Gent, I., Prosser, P., Smith, B.: A 0/1 encoding of the GACLex constraint for pairs of vectors.
In: Proc. of ECAI 2002 Workshop on Modelling and Solving Problems with Constraints
(2002)

12. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Decomposition
of the NVALUE Constraint. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 114–128.
Springer, Heidelberg (2010)

13. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory
and Practice of Logic Programming 10(4-6), 465–480 (2010)

14. Drescher, C., Walsh, T.: Modelling GRAMMAR constraints with answer set programming.
In: Proc. of the 27th Int. Conf. on Logic Programming, ICLP 2011 (2011)

15. Drescher, C., Walsh, T.: Translation-based constraint answer set solving. In: Proc. of the
22nd Int. Joint Conf. on Artificial Intelligence, IJCAI (2011)

16. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Variables.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

17. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Propagating con-
junctions of alldifferent constraints. In: Proc. of the Twenty-Fourth AAAI Conf. on Artificial
Intelligence (AAAI 2010). AAAI (2010)

18. Bessière, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decomposi-
tions of global constraints. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence,
IJCAI (2009)

19. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the SE-
QUENCE Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer,
Heidelberg (2007)

20. Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-Based Propagators for the SE-
QUENCE and Related Global Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202,
pp. 159–174. Springer, Heidelberg (2008)

21. Law, Y.C., Lee, J.H.M.: Global Constraints for Integer and Set Value Precedence. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg (2004)

22. Walsh, T.: General Symmetry Breaking Constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 650–664. Springer, Heidelberg (2006)

23. Walsh, T.: Breaking Value Symmetry. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 880–887. Springer, Heidelberg (2007)

24. Walsh, T.: Breaking value symmetry. In: Proc. of the 23rd National Conf. on AI, AAAI,
pp. 1585–1588 (2008)

25. Walsh, T.: Symmetry breaking using value precedence. In: Proc. of the 17th European Conf.
on Artificial Intelligence (ECAI 2006). IOS Press (2006)

26. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The range and roots constraints:
Specifying counting and occurrence problems. In: Proc. of the 19th Int. Joint Conf. on Arti-
ficial Intelligence, IJCAI, pp. 60–65 (2005)

27. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The Range Constraint: Al-
gorithms and Implementation. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, pp. 59–73. Springer, Heidelberg (2006)

28. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In:
Proc. of the 19th National Conf. on AI, AAAI (2004)

29. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The ROOTS Constraint. In:
Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 75–90. Springer, Heidelberg (2006)

30. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: Reformulating
Global Constraints: The SLIDE and REGULAR Constraints. In: Miguel, I., Ruml, W. (eds.)
SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer, Heidelberg (2007)



Exploiting Constraints 13

31. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: a useful special case
of the CardPath constraint. In: Proc. of the 18th European Conf. on Artificial Intelligence
(ECAI 2008). IOS Press (2008)

32. Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. Con-
straints 12(2), 239–259 (2007)

33. Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 133–147. Springer, Heidelberg (2007)

34. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering con-
straints. Tech. rep. T2002-18, Swedish Institute of Computer Science (2002)


	Exploiting Constraints
	Introduction
	An Example
	Encoding Domains
	Encoding into ASP
	Advantages of Decomposition
	Limits of Decomposition
	Other Decompositions
	Conclusion
	References




