
Permutation Problems and Channelling Constraints

Toby Walsh
�

University of York, York, England. tw@cs.york.ac.uk

Abstract. When writing a constraint program, we have to decide what to make
the decision variable, and how to represent the constraints on these variables. In
many cases, there is considerable choice for the decision variables. For example,
with permutation problems, we can choose between a primal and a dual represen-
tation. In the dual representation, dual variables stand for the primal values, whilst
dual values stand for the primal variables. By means of channelling constraints,
a combined model can have both primal and dual variables. In this paper, we
perform an extensive theoretical and empirical study of these different models.
Our results will aid constraint programmers to choose a model for a permuta-
tion problem. They also illustrate a general methodology for comparing different
constraint models.

1 Introduction

Constraint programming is a highly successful technology for solving a wide variety of
combinatorial problems like resource allocation, transportation, and scheduling. A con-
straint program consists of a set of decision variables, each with an associated domain
of values, and a set of constraints defining allowed values for subsets of these variables.
The efficiency of a constraint program depends on a good choice for the decision vari-
ables, and a careful modelling of the constraints on these variables. Unfortunately, there
is often considerable choice as to what to make the variables, and what to make the val-
ues. For example, in an exam timetabling problem, the variables could be the exams,
and the values could be the times. Alternatively, the variables could be the times, and
the values could be the exams. This choice is especially difficult in permutation prob-
lems. In a permutation problem, we have as many values as variables, and each variable
takes an unique value. We can therefore easily exchange variables for values. Many
assignment, scheduling and routing problems are permutation problems. For example,
sports tournament scheduling can be modeled as finding a permutation of the games to
fit into the time slots, or a permutation of the time slots to fit into the games. The aim
of this paper is to compare such different models both theoretically and empirically.

2 Formal background

A constraint satisfaction problem (CSP) is a set of variables, each with a finite domain
of values, and a set of constraints. A (binary) constraint is a (binary) relation defining
the allowed values for a (binary) subset of variables. A solution is an assignment of
values to variables consistent with all constraints. Many lesser levels of consistency

have been defined (see [DB97]). A problem is
���������

-consistent iff it has non-empty
domains and any consistent instantiation of

�
variables can be consistently extended

to
�

additional variables. A problem is arc-consistent (AC) iff it is
�
	���	�

-consistent.
A problem is path-consistent (PC) iff it is

������	��
-consistent. A problem is strong path-

consistent (ACPC) iff it is AC and PC. A problem is path inverse consistent (PIC) iff it
is

��	������
-consistent. A problem is restricted path-consistent (RPC) iff it is AC and if a

value assigned to a variable is consistent with just one value for an adjoining variable
then for any other variable there is a compatible value. A problem is singleton arc-
consistent (SAC) iff it has non-empty domains and for any instantiation of a variable,
the resulting subproblem can be made AC. A CSP with binary or non-binary constraints
is generalized arc-consistent (GAC) iff for any value for a variable in a constraint, there
exist compatible values for all the other variables in the constraint. For ordered domains,
a problem is bounds consistent (BC) iff it has non-empty domains and the minimum and
maximum values for any variable in a constraint can be consistently extended.

Backtracking algorithms are often used to find solutions to CSPs. Such algorithms
try to extend partial assignments, enforcing a local consistency after each extension and
backtracking when this local consistency no longer holds. For example, the forward
checking algorithm (FC) maintains a restricted form of AC that ensures that the most
recently instantiated variable and any uninstantiated variables are AC. FC has been
generalized to non-binary constraints [BMFL99]. nFC0 makes every � -ary constraint
with ��� 	

variables instantiated AC. nFC1 applies (one pass of) AC to each constraint
or constraint projection involving the current and exactly one future variable. nFC2
applies (one pass of) GAC to each constraint involving the current and at least one
future variable. Three other generalizations of FC to non-binary constraints, nFC3 to
nFC5 degenerate to nFC2 on the single non-binary constraint describing a permutation,
so are not considered here. Finally, the maintaining arc-consistency algorithm (MAC)
maintains AC during search, whilst MGAC maintains GAC.

3 Permutation problems

A permutation problem is a constraint satisfaction problem with the same number of
variables as values, in which each variable takes an unique value. We also consider
multiple permutation problems in which the variables divide into a number of (possi-
bly overlapping) sets, each of which is a permutation problem. Smith has proposed a
number of different models for permutation problems [Smi00]. The primal not-equals
model has not-equals constraints between the variables in each permutation. The pri-
mal all-different model has an all-different constraint between the variables in each
permutation. In a dual model, we swop variables for values. Primal and dual models
have primal and dual variables, and channelling constraints linking them of the form:����� �

iff ��� � �
where ��� is a primal variable and � � is a dual variable. Primal and

dual models can also have not-equals and all-different constraints on the primal and/or
dual variables. There will, of course, typically be other constraints which depend on
the nature of the permutation problem. In what follows, we do not consider directly the
contribution of such additional constraints to pruning. However, the ease with which we
can specify and reason with these additional constraints may have a large impact on our

choice of the primal, dual or primal and dual models. We will use the following sub-
scripts: “ �� ” for the primal not-equals constraints, “ � ” for channelling constraints, “ �� � ”
for the primal not-equals and channelling constraints, “ �� ���� ” for the primal not-equals,
dual not-equals and channelling constraints, “ � ” for the primal all-different constraint,
“ ��� ” for the primal all-different and channelling constraints, and “ ����� ” for the primal all-
different, dual all-different and channelling constraints. Thus SAC �� � is SAC applied to
the primal not-equals and channelling constraints.

4 Constraint tightness

To compare how different models of permutation problems prune the search tree, we
define a new measure of constraint tightness. Our definition assumes constraints are
defined over the same variables and values or, as in the case of primal and dual models,
variables and values which are bijectively related. An interesting extension would be
to compare two sets of constraints up to permutation of their variables and values. Our
definition of constraint tightness is strongly influenced by the way local consistency
properties are compared in [DB97]. Indeed, the definition is parameterized by a local
consistency property since, as we show later, the amount of pruning provided by a set of
constraints depends upon the level of local consistency being enforced. This measure
of constraint tightness would also be useful in a number of other applications (e.g.
reasoning about the value of implied constraints).

We say that a set of constraints � is at least as tight as a set � with respect to	
-consistency (written

	�
��	��
) iff, given any domains for their variables, if � is	

-consistent then � is also
	

-consistent. By considering all possible domains for the
variables, this ordering measures the potential for domains to be pruned during search
as variables are instantiated and domains pruned (possibly by other constraints in the
problem). We say that a set of constraints � is tighter than a set � wrt

	
-consistency

(written
	
�� 	 �

) iff
	
 ��	 �

but not
	 � ��	

, � is incomparable to � wrt
	

-
consistency (written

	
�� 	 �
) iff neither

	
 ��	 �
nor
	 � ��	

, and � is equivalent
to � wrt

	
-consistency (written

	
�� 	 �
) iff both

	
 ��	 �
and

	 � ��	

. We can

easily generalize these definitions to compare
	

-consistency on � with � -consistency
on � . This definition of constraint tightness has some nice monotonicity and fixed-point
properties which we will use extensively throughout this paper.

Theorem 1 (monotonicity and fixed-point).

1. ���
���� � ���
 � ���
� ��
2. ���
 � ��� � implies ���
���� � ���

Similar monotonicity and fixed-point results hold for BC, RPC, PIC, SAC, ACPC,
and GAC. We also extend these definitions to compare constraint tightness wrt search
algorithms like MAC that maintain some local consistency. For example, we say that
� is at least as tight as � wrt algorithm ! (written !
 � ! �) iff, given any fixed
variable and value ordering and any domains for their variables, ! visits no more nodes
on � than on � , whilst � is tighter than � wrt algorithm ! (written !
"� ! �) iff
!
 � ! � but not ! � � !
 .

5 Theoretical comparison

5.1 Arc-consistency

We first prove that, with respect to AC, channelling constraints are tighter than the
primal not-equals constraints, but less tight than the primal all-different constraint.

Theorem 2. On a permutation problem:

GAC ������
GAC � � AC �� � �� � AC �� � � AC � � AC ���
GAC ���
Proof. In this and following proofs, we just prove the most important results. Others
follow quickly, often using transitivity, monotonicity and the fixed-point theorems.

To show GAC � � AC � , consider a permutation problem whose primal all-different
constraint is GAC. Suppose the channelling constraint between � � and � � was not AC.
Then either � � is set to

�
and � � has

�
eliminated from its domain, or � � is set to

�
and ��� has

�
eliminated from its domain. But neither of these two cases is possible

by the construction of the primal and dual model. Hence the channelling constraints
are all AC. To show strictness, consider a 5 variable permutation problem in which� � � ����� ������� 	 ����� and �	��� ��
������ �� ����� . This is AC � but not GAC � .

To show AC � � AC �� , suppose that the channelling constraints are AC. Consider
a not-equals constraint, � ���� � � (

� �� �
) that is not AC. Now, � � and � � must have the

same singleton domain, � � � . Consider the channelling constraint between � � and ��� .
The only AC value for ��� is

�
. Similarly, the only AC value for ��� in the channelling

constraint between � � and ��� is
�
. But

� �� �
. Hence, ��� has no AC values. This is

a contradiction as the channelling constraints are AC. Hence all not-equals constraints
are AC. To show strictness, consider a 3 variable permutation problem with � � � ��� �
� 	������ and ������� 	������ � � . This is AC �� but is not AC � .

To show AC �� � �� � AC � , by monotonicity, AC �� � �� � AC � . To show the reverse,
consider a permutation problem which is AC � but not AC �� � �� . Then there exists at least
one not-equals constraints that is not AC. Without loss of generality, let this be on two
dual variables (a symmetric argument can be made for two primal variables). So both
the associated (dual) variables, call them � � and � � must have the same unitary domain,
say � � � . Hence, the domain of the primal variable � � includes

�
and

�
. Consider the

channelling constraint between � � and � � . Now this is not AC as the value � � � �
has

no support. This is a contradiction.
To show GAC ����� � GAC � , consider a permutation problem that is GAC � . For ev-

ery possible assignment of a value to a variable, there exist a consistent extension to the
other variables, � � � ����� ������� ��� � ����� with � � �� � � for all

� �� �
. As this is a per-

mutation, this corresponds to the assignment of unique variables to values. Hence, the
corresponding dual all-different constraint is GAC. Finally, the channelling constraints
are trivially AC. !"

5.2 Maintaining arc-consistency

These results can be lifted to algorithms that maintain (generalized) arc-consistency
during search. Indeed, the gaps between the primal all-different and the channelling
constraints, and between the channelling constraints and the primal not-equals con-
straints can be exponentially large1. We write !
�� ! � iff !
 � ! � and there is
a problem on which algorithm ! visits exponentially fewer branches with � than � .
Note that GAC � and AC are both polynomial to enforce so an exponential reduction in
branches translates to an exponential reduction in runtime.

Theorem 3. On a permutation problem:

MGAC � � MAC �� � �� � MAC �� � � MAC � � MAC ��
Proof. We give proofs for the most important identities. Other results follow immedi-
ately from the last theorem. To show GMAC � � MAC � , consider a ��� � variable
permutation problem with � � � � 	 ������� � � � for

��� ��� 	
and ���	� � � ���	� � �

� �
� 	�� �
� � � ��� � � . Then, given a lexicographical variable ordering, GMAC � im-
mediately fails, whilst MAC � takes �� branches. To show MAC � � MAC �� , consider
a ��� �

variable permutation problem with � � � � 	������ , and � � � ��� ������� � ��� ���
for��� �

. Then, given a lexicographical variable ordering, MAC � takes 2 branches to show
insolubility, whist MAC �� takes

��� � � � 	�� � branches. !"

5.3 Forward checking

Maintaining (generalized) arc-consistency on large permutation problems can be ex-
pensive. We may therefore decide to use a cheaper local consistency property like that
maintained by forward checking. For example, the Choco finite-domain toolkit in Claire
uses just nFC0 on all-different constraints. The channelling constraint remain tighter
than the primal not-equals constraints wrt FC.

Theorem 4. On a permutation problem:

nFC2 � � FC �� � �� � FC �� � � FC � � FC �� � nFC0 ��
nFC2 � � nFC1 �

Proof. [GSW00] proves FC �� implies nFC0 � . To show strictness on permutation prob-
lems (as opposed to the more general class of decomposable constraints studied in
[GSW00]), consider a 5 variable permutation problem with � � � ��� � ��� � ��� �
� 	������ � � and ��
���� �� ��� . FC shows the problem is unsatisfiable in at most 12 branches.
nFC0 by comparison takes at least 18 branches.

To show FC � � FC �� , consider assigning the value
�

to the primal variable � � .
FC �� removes

�
from the domain of all other primal variables. FC � instantiates the dual

variable � � with the value
�
, and then removes

�
from the domain of all other primal

1 Note that not all difference in constraint tightness result in exponentially reductions in search
(e.g. [Che00] identifies some differences which are only polynomial).

variables. Hence, FC � prunes all the values that FC �� does. To show strictness, consider
a 4 variable permutation problem with � � ��� 	������ and � � � � � � � � ����� ��	� . Given
a lexicographical variable and numerical value ordering, FC �� shows the problem is
unsatisfiable in 4 branches. FC � by comparison takes just 2 branches.

[GSW00] proves nFC1 � implies FC �� . To show the reverse, consider assigning the
value

�
to the primal variable � � . FC �� removes

�
from the domain of all primal vari-

ables except � � . However, nFC1 � also removes
�

from the domain of all primal vari-
ables except � � since each occurs in a binary not-equals constraint with � � obtained by
projecting out the all-different constraint. Hence, nFC1 � � FC �� .

To show nFC2 � � FC �� � �� , consider instantiating the primal variable � � with the
value

�
. FC �� � �� removes

�
from the domain of all primal variables except � � , � from

the domain of all dual variables except � � , instantiate � � with the value
�
, and then

remove
�

from the domain of all dual variables except � � . nFC2 � also removes
�

from
the domain of all primal variables except � � . The only possible difference is if one
of the other dual variables, say ��� has a domain wipeout. If this happens, � � has one
value in its domain,

�
that is in the domain of no other primal variable. Enforcing GAC

immediately detects that � � cannot take the value
�
, and must instead take the value

� . Hence nFC2 � has a domain wipeout whenever FC �� � �� does. To show strictness,
consider a 7 variable permutation problem with � � � ����� ����� ��� � � 	 ����� � � and�
 � ����� ����� � �� � ��� �	��� FC �� � �� takes at least 6 branches to show the problem is
unsatisfiable. nFC2 � by comparison takes no more than 4 branches.

[BMFL99] proves nFC2 � implies nFC1 � . To show strictness on permutation prob-
lems, consider a 5 variable permutation problem with � � � ��� � ��� � �	� � � 	 ����� � �
and ��
 � � �� ��� . nFC1 shows the problem is unsatisfiable in at least 6 branches. nFC2
by comparison takes no more than 3 branches. !"

5.4 Bounds consistency

Another common method to reduce costs is to enforce just bounds consistency. For
example, [RR00] use bounds consistency to prune a global constraint involving a sum
of variables and a set of inequalities. As a second example, some of the experiments on
permutation problems in [Smi00] used bounds consistency on certain of the constraints.
With bounds consistency on permutation problems, we obtain a very similar ordering
of the models as with AC.

Theorem 5. On a permutation problem:

BC � � BC �� � �� � BC �� � � BC � � BC ���
 AC ���
AC ��

Proof. To show BC � � BC �� , consider a permutation problem which is BC � but one
of the primal not-equals constraints is not BC. Then, it would involve two variables, � �
and � � both with identical interval domains, � � � �� . Enforcing BC on the channelling
constraint between � � and ��� would reduce ��� to the domain � ���
� . Enforcing BC on
the channelling constraint between � � and ��� would then cause a domain wipeout. But

this contradicts the channelling constraints being BC. Hence, all the primal not-equals
constraints must be BC. To show strictness. consider a 3 variable permutation problem
with � � � � � � � 	���� and � � � � 	�� � . This is BC �� but not BC � .

To show BC � � BC �� � �� , consider a permutation probem which is BC � . Suppose
we assign a boundary value

�
to a primal variable, � � (or equivalently, a boundary value�

to a dual variable, � �). As the all-different constraint is BC, this can be extended to
all the other primal variables using each of the values once. This gives us a consistent
assignment for any other primal or dual variable. Hence, it is BC �� � �� . To show strict-
ness, consider a 5 variable permutation problem with � � � ��� � ��� � � 	 ��� and�	� � ��
�� � � � � . This is BC �� � �� but not BC � .

To show BC � � AC �� , consider a permutation problem which is BC � but not AC �� .
Then they must be one constraint, � � �� � � with � � and � � having the same singleton
domain, � � � . But, if this is the case, enforcing BC on the channelling constraint between��� and � � and between � � and � � would prove that the problem is unsatisfiable. Hence,
it is AC �� . To show strictness, consider a 3 variable permutation problem with � � �
����� � 	 ��� and ����� � 	�� � . This is AC �� but not BC � . !"

5.5 Restricted path consistency

Debruyne and Bessière have shown that RPC is a promising filtering technique above
AC [DB97]. It prunes many of the PIC values at little extra cost to AC. Surprisingly,
channelling constraints are incomparable to the primal not-equals constraints wrt RPC.
Channelling constraints can increase the amount of propagation (for example, when
a dual variable has only one value left in its domain). However, RPC is hindered by
the bipartite constraint graph between primal and dual variables. Additional not-equals
constraints on primal and/or dual variables can therefore help propagation.

Theorem 6. On a permutation problem;

GAC � � RPC �� � �� � RPC �� � � RPC � � RPC �� � AC �
Proof. To show RPC � � RPC �� , consider a 4 variable permutation problem with � � �
� � � � � ��� 	 ����� � � and � � � � 	���� � � �� � . This is RPC �� but not RPC � . For the reverse
direction, consider a 5 variable permutation problem with � � � � � � � � � � 	 ����� and� � � �
 ����� �� ����� . This is RPC � but not RPC �� .

To show RPC �� � � RPC � , consider again the last example. This is RPC � but not
RPC �� � .

To show RPC �� � �� � RPC �� � , consider a 6 variable permutation problem with � � �
� � � � 	������ � ���� � ����� and � � � � � � �
 � ��� � � � � ��� � . This is RPC �� � but not
RPC �� � �� .

To show GAC � � RPC �� � �� , consider a permutation problem which is GAC � . Sup-
pose we assign a value

�
to a primal variable, � � (or equivalently, a value

�
to a dual

variable, � �). As the all-different constraint is GAC, this can be extended to all the
other primal variables using up all the other values. This gives us a consistent as-
signment for any two other primal or dual variables. Hence, the problem is PIC �� � ��
and thus RPC �� � �� . To show strictness, consider a 7 variable permutation problem with

� � � � � � � � � � � ��� 	������ � � and �
 � � ��� � ����� �� � ��� �	��� . This is RPC �� � �� but
not GAC � .

To show AC � � RPC �� , consider a 4 variable permutation problem with � � � � � �
��� � � 	������ � � and ��� � � 	������ � ��	� . This is RPC �� but not AC � . For the reverse di-
rection, consider a 5 variable permutation problem with � � � ��� � ��� � � 	������ and�	� � ��
������ �� ����� . This is AC � but not RPC �� . !"

5.6 Path inverse consistency

The incomparability of channelling constraints and primal not-equals constraints re-
mains when we move up the local consistency hierarchy from RPC to PIC.

Theorem 7. On a permutation problem:

GAC � � PIC �� � �� � PIC �� � � PIC � � PIC �� � AC �
Proof. To show PIC � � PIC �� , consider a 4 variable permutation problem with � � �
� � � � � � � 	���� � � � and � � � � 	���� � � �� � . This is PIC �� but not PIC � . Enforcing PIC
on the channelling constraints reduces � � to the singleton domain � 	� . For the reverse
direction, consider a 5 variable permutation problem with � � � ��� � ��� � � 	 ����� and�	� � ��
������ �� ����� . This is PIC � but not PIC �� .

To show PIC �� � � PIC � , consider a 5 variable permutation problem with � � � ��� �
������� 	������ and ��� � ��
������ �� ����� . This is PIC � but not PIC �� � .

To show PIC �� � �� � PIC �� � , consider a 6 variable permutation problem with � � �
� � � � 	������ � ���� ��� ��� and � � � � � � �
 � � � � � �� ��� ��� . This is PIC �� � but not
PIC �� � �� .

To show GAC � � PIC �� � �� , consider a permutation problem in which the all-different
constraint is GAC. Suppose we assign a value

�
to a primal variable, � � (or equivalently,

a value
�

to a dual variable, � �). As the all-different constraint is GAC, this can be ex-
tended to all the other primal variables using up all the other values. This gives us a
consistent assignment for any two other primal or dual variables. Hence, the not-equals
and channelling constraints are PIC. To show strictness, consider a 7 variable permuta-
tion problem with � � � ����� ��� � �	��� � 	 ����� � � and ��
 � � � � � � � � �� ��� � �	��� .
This is PIC �� � �� but not GAC � .

To show PIC �� � AC � , consider a 4 variable permutation problem with � � � ��� �
��� � � 	������ � � and �	� � � 	������ � ��	� . This is PIC �� but not AC � . Enforcing AC on
the channelling constraints reduces � � to the singleton domain � � . For the reverse
direction, consider a 5 variable permutation problem with � � � � � � � � � � 	 ����� and� � � �
 ����� �� ����� . This is AC � but not PIC �� . !"

5.7 Singleton arc-consistency

Debruyne and Bessière also showed that SAC is a promising filtering technique above
both AC, RPC and PIC, pruning many values for its CPU time [DB97]. Prosser et al.
reported promising experimental results with SAC on quasigroup problems, a multiple
permutation problem [PSW00]. Interestingly, as with AC (but unlike RPC and PIC
which lie between AC and SAC), channelling constraints are tighter than the primal
not-equals constraints wrt SAC.

Theorem 8. On a permutation problem:

GAC � � SAC �� � �� � SAC �� � � SAC � � SAC �� � AC �
Proof. To show SAC � � SAC �� , consider a permutation problem that is SAC � and any
instantiation for a primal variable � � . Suppose that the primal not-equals model of the
resulting problem cannot be made AC. Then there must exist two other primal variables,
say � � and � � which have at most one other value. Consider the dual variable associated
with this value. Then under this instantiation of the primal variable � � , enforcing AC
on the channelling constraint between the primal variable � � and the dual variable,
and between the dual variable and � � and � � results in a domain wipeout on the dual
variable. Hence the problem is not SAC � . This is a contradiction. The primal not-equals
model can therefore be made AC following the instantiation of � � . That is, the problem
is SAC �� . To show strictness, consider a 5 variable permutation problem with domain� � � � � � � � � � � ��� � ��	 ����� and �
 ����� � � . This is SAC �� but not SAC � .

To show GAC � � SAC � , consider a permutation problem that is GAC � . Consider
any instantiation for a primal variable. This can be consistently extended to all vari-
ables in the primal model. But this means that it can be consistently extended to all
variables in the primal and dual model, satisfying any (combination of) permutation or
channelling constraints. As the channelling constraints are satisfiable, they can be made
AC. Consider any instantiation for a dual variable. By a similar argument, taking the
appropriate instantiation for the associated primal variable, the resulting problem can
be made AC. Hence, given any instantiation for a primal or dual variable, the chan-
nelling constraints can be made AC. That is, the problem is SAC � , To show strictness,
consider a 7 variable permutation problem with � � � � � � � � � � � � � � ��	������ and�
 � � ��� � ������� �� ����� ��� . This SAC � but is not GAC � .

To show SAC �� � AC � , consider a four variable permutation problem in which � �

to � � have the � 	 ��� � � � and � � has the domain � � ��	������ � � . This is SAC �� but not AC � .
For the reverse, consider a 4 variable permutation problem with � � � � � � � � ��	 � and� � � � � ��� � ����� � � . This is AC � but not SAC �� . !"

5.8 Strong path-consistency

Adding primal or dual not-equals constraints to channelling constraints does not help
AC or SAC. The following result shows that their addition does not help higher levels
of local consistency like strong path-consistency (ACPC).

Theorem 9. On a permutation problem:

GAC � � ACPC �� � �� � ACPC �� � � ACPC � � ACPC �� � AC �
Proof. To show ACPC � � ACPC �� , consider some channelling constraints that are
ACPC. Now AC � � AC �� , so we just need to show PC � � PC �� . Consider a consistent
pair of values,

�
and � for a pair of primal variables, � � and � � . Take any third primal

variable, � � . As the constraint between � � , ��� and � � is PC, we can find a value for� � consistent with the channelling constraints. But this also satisfies the not-equals
constraint between primal variables. Hence, the problem is PC �� . To show strictness,

consider a 4 variable permutation problem with � � � � � � � � � � � � � 	������ � � . This
is ACPC �� but not ACPC � .

To show ACPC �� � �� � ACPC �� � � ACPC � , we recall that AC �� � � AC �� � � AC � .
Hence we need just show that PC �� � � PC �� � � PC � . Consider a permutation problem.
Enforcing PC on the channelling constraints alone infers both the primal and the dual
not-equals constraints. Hence, PC �� � � PC �� � � PC � .

To show GAC � � ACPC �� � �� , consider a 6 variable permutation problem with � � �
� � � � � � � � ��� 	������ � � , and �
 � � � ��� ������� � . This is ACPC �� � �� but not GAC � .
For the reverse direction, consider a 3 variable permutation problem with the additional
binary constraint ����� � � � � � � � � . Enforcing GAC � . prunes the to � � � � � � � 	�� � � ,
and � � � � ��� . However, these domains are not ACPC �� � �� . Enforcing ACPC tightens
the constraint between � � and � � from not-equals to � � � 	 � � � � � or � � � � � � � � 	

.
To show ACPC �� � AC � , consider a 5 variable permutation problem with � � �

� � � � � � � 	������ , and � � � �
 � ��� �� ����� . This is AC � but not ACPC �� . For the
reverse direction, consider again the 4 variable permutation problem with � � � � � �
� � � � � ��� 	 ����� � � . This is ACPC �� but not AC � . !"

5.9 Multiple permutation problems

These results extend to multiple permutation problems under a simple restriction that
the problem is triangle preserving [SW99] (that is, any triple of variables which are all-
different must occur together in at least one permutation). For example, all-diff(� �

� � � � � �),
all-diff(� �

� ��� � ��
), and all-diff(��� � ��� � � �) are not triangle preserving as � � , ��� and ���
are all-different but are not in the same permutation. The following theorem collects
together and generalizes many of the previous results.

Theorem 10. On a multiple permutation problem:

GAC � � ACPC �� � �� � ACPC �� � � ACPC � � ACPC �� � AC �� � � �

GAC � � SAC �� � �� �
SAC �� � �

SAC � �
SAC �� �

AC �� � � �

GAC � � PIC �� � �� �
PIC �� � �

PIC � �
PIC �� �

AC �� � � �

GAC � � RPC �� � �� �
RPC �� � �

RPC � �
RPC �� �

AC �� � � �

GAC � � AC �� � �� �
AC �� � �

AC � �
AC ��
 BC �� � � � �

BC � �
BC �� � �� �

BC �� � �
BC � �

BC ��
Proof. The proofs lift in a straight forward manner from the single permutation case.
Local consistencies like ACPC, SAC, PIC and RPC consider triples of variables. If
these are linked together, we use the fact that the probem is triangle preserving and
a permutation is therefore defined over them. If these are not linked together, we can
decompose the argument into AC on pairs of variables. Without triangle preservation,
GAC � , may only achieve as high a level of consistency as AC �� . For example, consider

again the non-triangle preserving constraints in the last paragraph. If � � � � � � � � �
� 	������ and � � � �
 � � � � � 	������ � � then the problem is GAC � , but it is not RPC �� ,
and hence neither PIC �� , SAC �� nor ACPC �� . !"

6 SAT models

Another solution strategy is to encode permutation problems into SAT and use a fast
Davis-Putnam (DP) or local search procedure. For example, [BM00] report promising
results for propositional encodings of round robin problems, which include permuta-
tion constraints. We consider just “direct” encodings into SAT (see [Wal00] for more
details). We have a Boolean variable ! � � which is ����� � iff the primal variable � � takes
the value

�
. In the primal SAT model, there are � clauses to ensure that each primal

variable takes at least one value, �
� � � � clauses to ensure that no primal variable gets

two values, and �
� � � � clauses to ensure that no two primal variables take the same

value. Interestingly the channelling SAT model has the same number of Boolean vari-
ables as the primal SAT model (as we can use ! � � to represent both the

�
th value of

the primal variable � � and the
�
th value for the dual variable � �), and just � additional

clauses to ensure each dual variable takes a value. The �
� � � � clauses to ensure that no

dual variable gets two values are equivalent to the clauses that ensure no two primal
variables get the same value. The following result show that MAC is tighter than DP,
and DP is equivalent to FC on these different models.

Theorem 11. On a permutation problem:

MGAC � � MAC �� � �� � MAC �� � � MAC � � MAC ��� � � �

MGAC � � DP �� � �� �
DP �� � �

DP � �
DP ��� � � �

MGAC � � FC �� � �� �
FC �� � �

FC � �
FC ��

Proof. DP �� � FC �� is a special case of Theorem 14 in [Wal00], whilst MAC �� � FC ��
is a special case of Theorem 15. To show DP � � FC � suppose unit propagation sets a
literal

�
. There are four cases. In the first case, a clause of the form ! � ��� ����� � ! � � has

been reduced to an unit. That is, we have one value left for a primal variable. A fail first
heuristic in FC picks this last value to instantiate. In the second case, a clause of the
form � ! � � � � ! � � for

� �� � has been reduced to an unit. This ensures that no primal
variable gets two values. The FC algorithm trivially never tries two simultaneous values
for a primal variable. In the third case, a clause of the form � ! � � � � ! � � for

� �� �
has been reduced to an unit. This ensures that no dual variable gets two values. Again,
the FC algorithm trivially never tries two simultaneous values for a dual variable. In the
fourth case, ! � � � ����� � ! � � has been reduced to an unit. That is, we have one value left
for a dual variable. A fail first heuristic in FC picks this last value to instantiate. Hence,
given a suitable branching heuristic, the FC algorithm tracks the DP algorithm. To show
the reverse, suppose forward checking removes a value. There are two cases. In the first
case, the value

�
is removed from a dual variable � � due to some channelling constraint.

This means that there is a primal variable � � which has been set to some value
� �� �

.

Unit propagation on � ! � � � � ! � � sets ! � � to false, and then on � ! � � � � ! � � sets
! � � to false as required. In the second case, the value

�
is removed from a dual variable

� � , again due to a channelling constraint. The proof is now dual to the first case.
To show MAC � � DP � , we use the fact that MAC dominates FC and FC � � DP � .

To show strictness, consider a 3 variable permutation problem with additional binary
constraints that rule out the same value for all 3 primal variables. Enforcing AC on the
channelling constraints causes a domain wipeout on the dual variable associated with
this value. As there are no unit clauses, DP does not immediately solve the problem.

To show DP � � DP �� , we note that the channelling SAT model contains more
clauses. To show strictness, consider a four variable permutation problem with three
additional binary constraints that if � � � 	

then � � � �
, � � � �

and � � � �
are all

ruled out. Consider branching on � � � 	
. Unit propagation on both models sets ! � � ,

! � � , ! � � , ! ��� , ! � � , ! � � and ! � � to false. On the channelling SAT model, unit prop-
agation against the clause ! � � � ! � � � ! � � � ! ��� then generates an empty clause. By
comparison, unit propagation on the primal SAT model does no more work. !"

7 Asymptotic comparison

The previous results tell us nothing about the relative cost of achieving these local con-
sistencies. Asymptotic analysis adds detail to the results. Regin’s algorithm achieves
GAC � in �

� � � � [R9́4]. AC on binary constraints can be achieved in �
�
�� � � where � is

the number of constraints and � is their domain size. As there are �
� � � � channelling

constraints, AC � naively takes �
� � � � time. However, by taking advantage of the func-

tional nature of channelling constraints, we can reduce this to �
� � � � using the AC-5

algorithm of [HDT92]. AC �� also naively takes �
� � � � time as there are �

� � � � binary
not-equals constraints. However, we can take advantage of the special nature of a binary
not-equals constraint to reduce this to �

� � � � as each not-equals constraint needs to be
made AC just once. Asymptotic analysis thus offers no great surprises: we proved that
GAC � � AC � � AC �� and this is reflected in their �

� � � � , � � � � � , � � � � � respective
costs. Thus, GAC � achieves the greatest pruning but at the greatest cost. We need to run
experiments to see if this cost is worth the additional pruning.

8 Experimental comparison

On Langford’s problem, a permutation problem from CSPLib, Smith found that MAC
on the channelling and other problem constraints is often the most competitive model
for finding all solutions [Smi00]. MAC � (which takes �

� � � � time at each node in the
search tree if carefully implemented) explores a similar number of branches to the more
powerful MGAC � (which takes �

� � � � time at each node in the search tree). This sug-
gests that MAC � may offer a good tradeoff between the amount of constraint propaga-
tion and the amount of search required. For finding single solutions, Smith’s results are
somewhat confused by the heuristic accuracy. She predicts that these results will trans-
fer over to other permutation problems. To confirm this, we ran experiments in three
other domains, each of which is combinatorially challenging.

8.1 All-interval series

Hoos has proposed the all-interval series problem from musical composition as a bench-
mark for CSPLib. The � ��� � � � problem is to find a permutation of the numbers 1 to
� , such that the differences between adjacent numbers form a permutation from 1 to
� � 	

. Computing all solutions is a difficult combinatorial problem. As on Langford’s
problem [Smi00], MAC � visits only a few more branches than MGAC � . Efficiently
implemented, MAC � is therefore the quickest solution method.

� MAC �� MAC � MGAC �
6 135 34 34
7 569 153 152
8 2608 627 626
9 12137 2493 2482

10 60588 10552 10476
11 318961 47548 47052

Table 1. Branches to compute all solutions to �
	��� ��� .

8.2 Circular Golomb rulers

A perfect circular Golomb ruler consists of � marks arranged on the circumference of
a circle of length � � � � 	�

such that the distances between any pair of marks, in either
direction along the circumference, form a permutation. Computing all solutions is again
a difficult combinatorial problem. Table 2 shows that MGAC � is very competitive with
MAC � . Indeed, MGAC � has the smallest runtimes. We conjecture that this is due to
circular Golomb rulers being more constrained than all-interval series.

� MAC �� MAC � MGAC �
6 202 93 53
7 1658 667 356
8 15773 5148 2499
9 166424 43261 19901

Table 2. Branches to compute all order � perfect circular Golomb rulers.

8.3 Quasigroups

Achlioptas et al have proposed completing a partial filled quasigroup as a benchmark
for SAT and CSP algorithms [AGKS00]. This can be modeled as a multiple permutation
problem with

� � intersecting permutation constraints. A complexity peak is observed
when approximately 40% of the quasigroup is replaced by “holes”. Table 3 shows the
increase in problem difficulty with � . Median behavior for MAC � is competitive with
MGAC � . However, mean performance is not due to a few expensive outliers. A ran-
domization and restart strategy reduces the size of this heavy-tailed distribution.

median mean�
MAC �� MAC � MGAC � MAC �� MAC � MGAC �

5 1 1 1 1 1 1
10 1 1 1 1.03 1.00 1.01
15 3 1 1 7.17 1.17 1.10
20 23313 7 4 312554 21.76 12.49
25 - 249 53 - 8782.4 579.7
30 - 5812 398 - 2371418 19375

Table 3. Branches to complete 100 order � quasigroup problems with 40% holes.

9 Related work

Chen et al. studied modeling and solving the � -queens problem, and a nurse rostering
problem using channelling constraints [CCLW99]. They show that channelling con-
straints increase the amount of constraint propagation. They conjecture that the over-
heads associated with channelling constraints will pay off on problems which require
large amounts of search, or lead to thrashing behavior. They also show that channelling
constraints open the door to interesting value ordering heuristics.

As mentioned before, Smith studied a number of different models for Langford’s
problem, a permutation problem in CSPLib [Smi00]. Smith argues that channelling con-
straints make primal not-equals constraints redundant. She also observes that MAC on
the model of Langford’s problem using channelling constraints explores more branches
than MGAC on the model using a primal all-different constraint, and the same number
of branches as MAC on the model using channelling and primal not-equals constraints.
We prove these results hold in general for (multiple) permutation problems and that the
gap can be exponential. However, we also show that they do not extend to algorithms
that maintain certain other levels of local consistency like restricted path-consistency.
Smith also shows the benefits of being able to branch on dual variables.

10 Conclusions

We have performed an extensive study of a number of different models of permuta-
tion problems. To compare models, we defined a measure of constraint tightness pa-
rameterized by the level of local consistency being enforced. We used this to prove
that, with respect to arc-consistency, a single primal all-different constraint is tighter
than channelling constraints, but that channelling constraints are tighter than primal
not-equals constraints. Both these gaps can lead to an exponential reduction in search
cost. For lower levels of local consistency (e.g. that maintained by forward checking),
channelling constraints remain tighter than primal not-equals constraints. However, for
certain higher levels of local consistency like path inverse consistency, channelling con-
straints are incomparable to primal not-equals constraints.

Experimental results on three different and challenging permutation problems con-
firmed that MAC on channelling constraints outperformed MAC on primal not-equals
constraints, and could be competitive with maintaining GAC on a primal all-different

constraint. However, on more constrained problems, the additional constraint propaga-
tion provided by maintaining GAC on the primal all-different constraint was beneficial.
We believe that these results will aid users of constraints to choose a model for a permu-
tation problem, and a local consistency property to enforce on it. They also illustrate a
methodology, as well as a measure of constraint tightness, that can be used to compare
different constraint models in other problem domains.

Acknowledgements

The author is an EPSRC advanced research fellow. He thanks the other members of
the APES research group, especially Barbara Smith for helpful discussions, and Carla
Gomes and her colleagues for providing code to generate quasigroups with holes.

References

[AGKS00] Dimitris Achlioptas, Carla P. Gomes, Henry A. Kautz, and Bart Selman. Generating
satisfiable problems instances. In Proc. of 17th National Conference on Artificial
Intelligence, pages 256–261. 2000.

[BM00] R. Bejar and F. Manya. Solving the round robin problem using propositional logic.
In Proc. of 17th National Conference on Artificial Intelligence, pages 262–266. 2000.

[BMFL99] C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward checking for non-
binary constraint satisfaction. In Proc. of 5th Int. Conf. on Principles and Practice of
Constraint Programming (CP99), pages 88–102. 1999.

[CCLW99] B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4:167–192,
1999.

[Che00] Xinguang Chen. A Theoretical Comparison of Selected CSP Solving and Modelling
Techniques. PhD thesis, Dept. of Computing Science, University of Alberta, 2000.

[DB97] R. Debruyne and C. Bessière. Some practicable filtering techniques for the constraint
satisfaction problem. In Proc. of the 15th IJCAI, pages 412–417. 1997.

[GSW00] I.P. Gent, K. Stergiou, and T. Walsh. Decomposable constraints. Artificial Intelli-
gence, 123(1-2):133–156, 2000.

[HDT92] P. Van Hentenryck, Y. Deville, and C. Teng. A Generic Arc Consistency Algorithm
and its Specializations. Artificial Intelligence, 57:291–321, 1992.

[PSW00] P. Prosser, K. Stergiou, and T. Walsh. Singelton consistencies. In Proc of 6th Int. Conf.
on Principles and Practices of Constraint Programming (CP-2000), pages 353–368.
2000.

[R9́4] J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proc. of the
12th National Conference on AI, pages 362–367. 1994.

[RR00] J.C. Régin and M. Rueher. A global constraint combining a sum constraint and differ-
ence constraints. In Proc. of 6th Int. Conf. on Principles and Practice of Constraint
Programming (CP2000), pages 384–395. 2000.

[Smi00] B.M. Smith. Modelling a Permutation Problem. In Proc. of ECAI’2000 Workshop on
Modelling and Solving Problems with Constraints, 2000.

[SW99] K. Stergiou and T. Walsh. The difference all-difference makes. In Proceedings of
16th IJCAI. 1999.

[Wal00] T. Walsh. SAT v CSP. In Proc. of 6th Int. Conf. on Principles and Practices of
Constraint Programming (CP-2000), pages 441–456. 2000.

