
The VLDB Journal manuscript No.
(will be inserted by the editor)

Efficiently Processing Snapshot and Continuous Reverse k
Nearest Neighbors Queries

Muhammad Aamir Cheema ⋅ Wenjie Zhang ⋅ Xuemin Lin∗
⋅ Ying Zhang

Received: date / Accepted: date

Abstract Given a set of objects and a query q, a point
p is called the reverse k nearest neighbor (RkNN) of q if

q is one of the k closest objects of p. In this paper, we in-

troduce the concept of influence zone which is the area

such that every point inside this area is the RkNN of q
and every point outside this area is not the RkNN. The

influence zone has several applications in location based

services, marketing and decision support systems. It can

also be used to efficiently process RkNN queries. First,

we present efficient algorithm to compute the influence
zone. Then, based on the influence zone, we present

efficient algorithms to process RkNN queries that sig-

nificantly outperform existing best known techniques

for both the snapshot and continuous RkNN queries.
We also present a detailed theoretical analysis to anal-

yse the area of the influence zone and IO costs of our

RkNN processing algorithms. Our experiments demon-

strate the accuracy of our theoretical analysis. This pa-

per is an extended version of our previous work [9]. We
make the following new contributions in this extended

version: 1) we conduct a rigorous complexity analysis

and show that the complexity of one of our proposed

algorithms in [9] can be reduced from O(m2) to O(km)
where m > k is the number of objects used to compute

the influence zone ; 2) we show that our techniques can

Muhammad Aamir Cheema, Wenjie Zhang, Ying Zhang
School of Computer Science and Engineering,
The University of New South Wales, Australia
E-mail: {macheema,zhangw,yingz}@cse.unsw.edu.au

Xuemin Lin
Software College, East China Normal University, China
and
School of Computer Science and Engineering,
The University of New South Wales, Australia
E-mail: lxue@cse.unsw.edu.au
∗ corresponding author

be applied to dimensionality higher than two; and 3)
we present efficient techniques to handle data updates.

1 Introduction

The reverse k nearest neighbors (RkNN) query [24,45,

28,33,36,41,34,23] has received significant research at-

tention ever since it was introduced in [24]. A RkNN
query finds every data point for which the query point q

is one of its k nearest neighbors. Since q is close to such

data points, q is said to have high influence on these

points. Hence, the set of points that are the RkNNs of
a query is called its influence set [24]. Consider the ex-

ample of a gas station. The drivers for which this gas

station is one of the k nearest gas stations are its poten-

tial customers. In this paper, the objects that provide a

facility or service (e.g., gas stations) are called facilities
and the objects (e.g., the drivers) that use the facility

are called users. The influence set of a given facility q is

then the set consisting of every user for which q is one

of its k closest facilities.

In this paper, we first introduce a more generic con-
cept called influence zone and then we show that the

influence zone can be used to efficiently compute the

influence set (i.e., RkNNs). Consider a set of facilities

F = {f1, f2, ⋅ ⋅ ⋅ , fn} where fi represents a point in Eu-

clidean space and denotes the location of the itℎ facility.
Given a query q ∈ F , the influence zone Zk is the area

such that for every point p ∈ Zk, q is one of its k closest

facilities and for every point p′ /∈ Zk, q is not one of its

k closest facilities.

The influence zone has various applications in lo-
cation based services, marketing and decision support

systems. Consider the example of a coffee shop. Its in-

fluence zone may be used for market analysis as well

2

as targeted marketing. For instance, the demographics

of its influence zone may be used by the market re-

searchers to analyse its business. The influence zone can

also be used for marketing, e.g., advertising bill boards

or posters may be placed in its influence zone because
the people in this area are more likely to be influenced

by the marketing. Similarly, the people in its influence

zone may be sent SMS advertisements.

Note that the concept of the influence zone is more
generic than the influence set, i.e., the RkNNs of q can

be computed by finding the set of users that are lo-

cated in its influence zone. In this paper, we show that

our influence zone based RkNN algorithms significantly

outperform existing best known algorithms for both the
snapshot and continuous RkNN queries (formally de-

fined in Section 2).

Existing RkNN processing techniques [33,36,41,10,

23] require a verification phase to answer the queries.
Initially, the space is pruned by using the locations of

the facility points. Then, the users that are located in

the unpruned space are retrieved. These users are the

possible RkNNs and are called candidates. Finally, in

the verification phase, a range query is issued for every
candidate to check if it is a RkNN or not.

In contrast to the existing approaches, our influence

zone based algorithm does not require the verification

phase. Initially, we use our algorithm to efficiently com-

pute the influence zone. Then, every user that is located
in the influence zone is reported as RkNN. This is be-

cause a user can be the RkNN if and only if it is located

in the influence zone. Similarly, to continuously mon-

itor RkNNs, initially the influence zone is computed.
Then, to update the results, we only need to monitor

the users that enter or leave the influence zone (i.e.,

the users that enter in the influence zone become the

RkNNs and the users that leave the influence zone are

no more the RkNNs). To further improve the perfor-
mance, we present efficient methods to check whether

a point lies in the influence zone or not.

It is important to note that the influence zone of a

query is the same as the Voronoi cell of the query when
k = 1 [34]. For arbitrary value of k, there does not exist

an equivalent representation in literature (i.e., order k

Voronoi cell is different from the influence zone). Nev-

ertheless, we show that a precomputed order k Voronoi

diagram can be used to compute the influence zone (see
Section 5.1). However, using the precomputed Voronoi

diagrams is not a good approach to process spatial

queries as mentioned in [49]. For instance, the value

of k is not known in advance and precomputing several
Voronoi diagrams for different values of k is expensive

and incurs high space requirement. In Section 5.1, we

state several other limitations of this approach.

Below, we summarize our contributions.

– We present an efficient algorithm to compute the in-

fluence zone. Based on the influence zone computa-

tion algorithm, we present efficient algorithms that
outperform best known techniques for both snap-

shot and continuous RkNN queries.

– Our main algorithm uses an algorithm similar to the

one proposed in [41]. It was shown that the complex-

ity of that algorithm is O(m2) [41] where m is the
number of facilities used to prune the search space.

In this extended version, we conduct a rigorous com-

plexity analysis and show that the complexity of

the algorithm can be reduced to O(km) when k is
smaller than m.

– We demonstrate that the influence zone computa-

tion technique can be extended for dimensionality

higher than two. We also present techniques to ef-

ficiently update the influence zone when the under-
lying data sets issue updates.

– We provide a detailed theoretical analysis to analyse

the IO costs of our influence zone and RkNN com-

putation algorithms, the area of the influence zone
and the number of RkNNs. The analysis is applica-

ble to arbitrary dimensionality and the experiment

results demonstrate the accuracy of our theoretical

analysis.

– Our extensive experiments on real and synthetic
data demonstrate that our proposed algorithms are

several times faster than the existing best known

algorithms for two dimensional snapshot and con-

tinuous RkNN queries.

This paper is an extended version of our previous

work [9]. In this extended version, we conduct a rigor-

ous complexity analysis and show that the complexity

of one important algorithm (Algorithm 2) can be re-
duced from O(m2) to O(km) when k is smaller than m

(see Section 5.4). In this version, we also demonstrate

that our influence zone computation technique can be

extended for the dimensionality higher than two (see

Section 3.4). We also present a theoretical analysis that
is applicable to arbitrary dimensionality and its accu-

racy is verified by experimental results. In Section 6,

we extend our techniques to efficiently update the in-

fluence zone when the underlying data set is updated
by insertions or deletions.

The rest of the paper is organized as follows. In Sec-

tion 2, we define the problem and describe the related

work. Section 3 presents our technique to efficiently

compute the influence zone. In Section 4, we present
efficient techniques to answer RkNN queries by using

the influence zone. A detailed theoretical analysis is

presented in Section 5. The techniques to handle data

3

updates are presented in Section 6 followed by the ex-

periment results in Section 7. Section 8 concludes the

paper.

2 Preliminaries

2.1 Problem Definition

First, we define a few terms and notations. Consider a

set of facilities F = {f1, f2, ⋅ ⋅ ⋅ fn} and a query q ∈ F

in a Euclidean space1. Given a point p, Cp denotes a

circle centered at p with radius equal to dist(p, q) where

dist(p, q) is the distance between p and q. ∣Cp∣ denotes
the number of facilities that lie within the circle Cp

(i.e., the count of facilities such that for each facility f ,

dist(p, f) < dist(p, q)). Please note that the query q can

be one of the k closest facilities of a point p iff ∣Cp∣ < k.
Now, we define influence zone and RkNN queries.

Influence zone Zk. Given a set of facilities F and a

query q ∈ F , the influence zone Zk is the area such
that for every point p ∈ Zk, ∣Cp∣ < k and for every

point p′ /∈ Zk, ∣Cp′ ∣ ≥ k.

Now, we define the reverse k nearest neighbor (RkNN)

queries. RkNN queries are classified [24] into bichro-

matic and monochromatic RkNN queries. Below, we

define both.

Bichromatic RkNN queries. Given a set of facilities

F , a set of users U and a query q ∈ F , a bichromatic

RkNN query is to retrieve every user u ∈ U for which
∣Cu∣ < k.

Consider that the supermarkets and the houses in

a city correspond to the set of facilities and users, re-
spectively. A bichromatic RkNN query may be used to

find every house for which a given supermarket is one

of the k closest supermarkets.

Monochromatic RkNN queries. Given a set of fa-

cilities F and a query q ∈ F , a monochromatic RkNN

query is to retrieve every facility f ∈ F for which

∣Cf ∣ < k + 1.

Please note that for every f , Cf contains the facil-

ity f . Hence we have condition ∣Cf ∣ < k + 1 instead of
∣Cf ∣ < k. Consider a set of police stations. For a given

police station q, its monochromatic RkNNs are the po-

lice stations for which q is one of the k nearest police

stations. Such police stations may seek assistance (e.g.,

extra policemen) from q in case of an emergency event.

Snapshot vs continuous RkNN queries. In a snap-

shot query, the results of the query are computed only
once. In contrast, in a continuous query, the results are

1 Although, like existing techniques [41,10], the focus of this
paper is two dimensional location data, in Section 3.4, we show
that the techniques can be extended to higher dimensionality.

to be continuously updated as the objects in the un-

derlying data sets change their locations. In this paper,

we focus on a special case of continuous RkNN queries

where only the users change their locations.

Given a set of facilities F , a query q ∈ F and a set

of users U , a continuous RkNN query is to continuously
update the bichromatic RkNNs of q when one or more

users change their locations.

A gas station may want to continuously monitor the

vehicles for which it is one of the k closest gas stations.

It may issue a continuous RkNN query to do so.

Throughout this paper, we use RNN query to refer

to the RkNN query for which k = 1. Table 1 defines
other notations used throughout this paper.

Table 1 Notations

Notation Definition

q the query point

Cp a circle centered at p with radius dist(p, q)

∣Cp∣ the number of facilities located inside Cp

Bx:q a perpendicular bisector between point x and q

Hx:q a half-plane defined by Bx:q containing point x

Hq:x a half-plane defined by Bx:q containing point q

2.2 Related work

2.2.1 Snapshot RkNN Queries

Korn et al. [24] were first to study RNN queries. They

answer the RNN query by pre-calculating a circle for
each data object p such that the nearest neighbor of p

lies on the perimeter of the circle. RNN of a query q is

every point that contains q in its circle. Techniques to

improve their work were proposed in [45,28].

Now, we briefly describe the existing techniques that

do not require preprocessing. These techniques have
three phases namely pruning, containment and veri-

fication. In the pruning phase, the space that cannot

contain any RkNN is pruned by using the set of facili-

ties. In the containment phase, the users that lie within

the unpruned space are retrieved. These are the possible
RkNNs and are called the candidates. In the verifica-

tion phase, a range query is issued for each candidate

object to check if q is one of its k nearest facility or not.

First technique that does not need any preprocess-

ing was proposed by Stanoi et al. [33]. They solve RNN

queries by partitioning the whole space centred at the
query q into six equal regions of 60∘ each (S1 to S6 in

Fig. 1(a)). It can be proved that the nearest facility to

q in each region defines the area that can be pruned.

In other words, assume that f is the nearest facility to
q in a region Si. Then any user that lies in Si and lies

at a distance greater than dist(q, f) from q cannot be

the RNN of q. Fig. 1(a) shows nearest neighbors of q

4

in each region and the white area can be pruned. Only

the users that lie in the shaded area can be the RNNs.

The RkNN queries can be solved in a similar way, i.e.,

in each region, the k-th nearest facility of q defines the

pruned area.

Tao et al. [36] proposed TPL that uses the property

of perpendicular bisectors to prune the search space.

Consider the example of Fig. 1(b), where a bisector
between q and a is shown as Ba:q which divides the

space into two half-spaces. The half-space that contains

a is denoted as Ha:q and the half-space that contains q

is denoted as Hq:a. Any point that lies in the half-space

Ha:q is always closer to a than to q and cannot be the
RNN for this reason. Similarly, any point p that lies in

k such half-spaces cannot be the RkNN. TPL algorithm

prunes the space by the bisectors drawn between q and

its neighbors in the unpruned area. Fig. 1(b) shows the
example where the bisectors between q and a, b and c

are drawn (Ba:q, Bb:q and Bc:q, respectively). If k = 2,

the white area can be pruned because every point in it

lies in at least two half-spaces.

S
1

c

60o

S
2S

3

S
4 S

5
S
6

d

q 60o

a

b

e

f

g

(a) Six-regions pruning

b

a

B
a:q

B
b:q

B
c:q

qc

M

N

O P

(b) TPL and FINCH

Fig. 1 Related techniques

In the containment phase, TPL retrieves the users

that lie in the unpruned area by traversing an R-tree

that indexes the locations of the users. Let m be the

number of facility points for which the bisectors are con-
sidered. An area that is the intersection of any combi-

nation of k half-spaces can be pruned. The total pruned

area corresponds to the union of pruned regions by all

such possible combinations of k bisectors (a total of

m!/k!(m−k)! combinations). Since the number of com-
binations is too large, TPL uses an alternative approach

which has less pruning power but is cheaper. First, TPL

sorts the m facility points by their Hilbert values. Then,

only the combination of k consecutive facility points are
considered to prune the space (total m combinations).

Achtert et al. [1] and Emrich et al. [13] propose

pruning techniques that can be applied on the rect-

angles. They use these pruning techniques to prune the
intermediate entries of the R-tree that indexes the facil-

ities. It was demonstrated that the proposed techniques

reduce the number of accessed pages. Moreover, prun-

ing techniques proposed in [13] are more effective than

the pruning techniques of [1].

Wu et al. [41] propose an algorithm called FINCH.

Instead of using bisectors to prune the objects, they use

a convex polygon that approximates the unpruned area.

Any object that lies outside the polygon can be pruned.
Fig. 1(b) shows an example where the shaded area is

the unpruned area. FINCH approximates the unpruned

area by a polygon MNOP . The algorithm can prune

the intermediate nodes of the R-tree and the objects

that lie outside this polygon. Clearly, the containment
checking is cheaper than TPL (e.g., point containment

can be done in logarithmic time for convex polygons).

FINCH was shown to be superior to TPL [36].

It is worth mentioning that some of the existing

work focus on computing Voronoi cell (or order k Voronoi

cell) on the fly. More specifically, Stanoi et al. [34] com-
pute Voronoi cell to answer RNN queries. On fly com-

putation of order k Voronoi cell was presented in [49,

18] to monitor kNN queries. Yiu et al. [46] study the

problem of common influence join and propose tech-
niques for computing order k Voronoi cell on the fly.

Unfortunately, none of the above mentioned approaches

is applicable for RkNN queries. A straight forward ex-

tension is to compute several order k Voronoi cells and

join them to construct the influence zone. However, this
is computationally expensive because it requires con-

structing every order k Voronoi cell that contains q (see

Section 5.1). The pre-processing based approach is also

not suitable as discussed later in Section 5.1.

2.2.2 Continuous RNN Queries

Computation-efficient monitoring of continuous range
queries [14,25,7], nearest neighbor queries [29,48,44,

21,37] and reverse nearest neighbor queries [2,42,23,

40] has received significant attention. Below, we briefly

describe the algorithms that monitor continuous RNN
queries.

Benetis et al. [2] presented the first continuous RNN
monitoring algorithm. However, they assume that ve-

locities of the objects are known. First work that does

not assume any knowledge of objects’ motion patterns

was presented by Xia et al. [42]. Their proposed so-
lution is based on the six 60o regions based approach

described earlier in this section. Kang et al. [23] pro-

posed a continuous monitoring RNN algorithm based

on the bisector based (TPL) pruning approach. Both

of these algorithms continuously monitor RNN queries
by monitoring the unpruned area.

Wu et al. [40] propose the first technique to moni-

tor RkNNs. Their technique is based on the six-regions

based RNN monitoring presented in [42]. More specif-

5

ically, they issue k nearest neighbor (kNN) queries in

each region instead of the single nearest neighbor queries.

The users that are closer than the k-th NN in each re-

gion are the candidate objects and they are verified if q

is one of their k closest facilities. To monitor the results,
for each candidate object, they continuously monitor

the circle around it that contains k nearest facilities.

Cheema et al. [10] propose Lazy Updates that is the

best known algorithm to continuously monitor RkNN

queries. Emrich et al. [12] independently proposed an
approach similar to Lazy Updates [10]. Lazy Updates

not only reduces the computation cost but also signif-

icantly reduces the communication cost. The existing

approaches call the expensive pruning phase whenever
the query or a candidate object changes the location.

Lazy Updates saves the computation time by reduc-

ing the number of calls to the expensive pruning phase.

They assign each moving object a safe region and pro-

pose the pruning techniques to prune the space based
on the safe regions. The pruning phase is not needed to

be called as long as the related objects remain inside

their safe regions.

It is worth mentioning that all of the existing tech-

niques solve the general problem where every data point
including the query point is moving. In this paper, we

solve a special case of the problem where the facilities

do not move and the users are moving.

2.2.3 RNN queries under other settings

In this section, we provide an overview of the RNN

queries studied in other popular problem settings.

RNN queries in road networks. Yiu at al. [47] are

the first to study RNN queries in large graphs. They

present an interesting observation that is used to prune

the search space while traversing the graph in search
of RNN. Safar et al. [32] use Network Voronoi Diagram

(NVD) [30] to efficiently process the RNN queries in

spatial networks. In a following work [39], they extend

their technique to answer snapshot RkNN queries and
reverse k furthest neighbor queries in spatial network.

Sun et al. [35] study the continuous monitoring of

RNN queries in spatial networks. The main idea is that

for each query a multi-way tree is created that helps in

defining the monitoring region. Only the updates in the
monitoring region affect the results.

Li et al. [26] present a technique to continuously

monitor RkNN queries in spatial networks. They pro-

pose a novel data structure called dual layer multiway

tree (DLM tree) which is used to represent the mon-
itoring region of RkNN queries. They present several

observations to reduce the size of the region that is to

be monitored for a RkNN query.

Cheema et al. [11] propose Lazy Updates that an-

swers continuous RkNN queries in Euclidean space as

well as in spatial networks. Each object and query is as-

signed a safe region and the expensive pruning phase is

not required as long as the query and relevant objects
remain in their respective safe regions. The proposed

technique reduces the computation cost as well as the

communication cost.

RNN queries on uncertain data. Probabilistic RNN
queries [8,27,3,4] has also received significant attention

from the research community. The basic idea behind

these techniques is as follows. Each uncertain object

and query is approximated by a rectangular [8,4] or a

circular [27] region. Pruning techniques are developed
to prune the space based on these regions. Then, each

object that cannot be pruned is treated as a candidate

object and its probability of being the RNN is com-

puted.

3 Computing Influence Zone

3.1 Problem Characteristics

Given two facility points a and q, a perpendicular bi-

sector Ba:q between these two points divides the space

into two halves as shown in Fig 2(a). The half plane

that contains a is denoted as Ha:q and the half plane

that contains q is denoted as Hq:a. The perpendicular
bisector has the property that any point p (depicted by

a star in Fig. 2(a)) that lies in Ha:q is closer to a than q

(i.e., dist(p, a) ≤ dist(p, q)) and any point y that lies in

Hq:a is closer to q than a (i.e., dist(y, q) ≤ dist(y, a)).
Hence, q cannot be the closest facility of any point p

that lies in Ha:q, i.e., Cp contains at least one facility a.

We say that the point p is pruned by the bisector Ba:q

if p lies in Ha:q. Alternatively, we say that the point a

prunes the point p. In general, if a point p is pruned by
at least k bisectors then Cp contains at least k facilities

(i.e., ∣Cp∣ ≥ k).

Existing work [36,41,10] use this observation to prune

the space that cannot contain any RkNN of q. More
specifically, an area can be pruned if at least k bisec-

tors prune it. In Fig. 2, five facility points (q, a, b, c

and d) are shown. In Fig. 2(a) the bisectors between

q and two facility points a and b are drawn (see Ba:q

and Bb:q). If k is 2, then the white area can be pruned
because it lies in two half-planes (Ha:q and Hb:q) and

∣Cp′ ∣ ≥ 2 for any point p′ in it. The area that is not

pruned is called unpruned area and is shown shaded.

Although it can be guaranteed that for every point
p′ in the pruned area ∣Cp′ ∣ ≥ k, it cannot be guaranteed

that for every point p in the unpruned area ∣Cp∣ < k if

we only consider a subset of the bisectors instead of all

6

q

a

b

c
p

B
a:q

B
b:q

d

(a) Unpruned area is not influ-
ence zone

q

a

b

c

B
a:q

B
b:q

B
c:q

d

B
d:q

(b) Unpruned area is influence
zone

Fig. 2 Computing influence zone Zk (k = 2)

bisectors. In other words, the unpruned area is not the

influence zone. For example, in Fig. 2(a), the point p
lies in the unpruned area but ∣Cp∣ = 2 (i.e., Cp contains

a and c). Hence, the shaded area of Fig. 2(a) is not the

influence zone.

One straight forward approach to compute the in-

fluence zone is to consider the bisectors of q with every

facility point f . If the bisectors of q and all facilities
are considered, then the unpruned area is the area that

is pruned by less than k bisectors. Fig. 2(b) shows the

unpruned area (the shaded polygon) after the bisectors

Bc:q and Bd:q are also considered. It can be verified that
the shaded area is the influence zone (i.e., for every p

in the shaded area ∣Cp∣ < 2 and for every p′ outside it

∣Cp′ ∣ ≥ 2).

However, this straight forward approach is too ex-

pensive because it requires computing the bisectors be-

tween q and all facility points. We note that for some

facilities, we do not need to consider their bisectors. In
Fig. 2(b), it can be seen that the bisector Bd:q (shown in

broken line) does not affect the unpruned area (shown

shaded). In other words, if the bisectors of a, b and c

are considered then the bisector Bd:q does not prune
more area. Hence, even if Bd:q is ignored, the influence

zone can be computed.

Next, we present some lemmas that help us in iden-

tifying the facilities that can be ignored. Without loss of

generality, we assume that the data universe is bounded

by a square. Since we use bisectors to prune the space,
the unpruned area is always a polygon and is inter-

changeably called unpruned polygon hereafter. Below

we present several lemmas that not only guide us to

the final lemma but also help us in few other proofs in

the paper.

Lemma 1 A facility f can be ignored if, for every

point p of the unpruned polygon, the facility f lies out-
side Cp.

Proof As described earlier, a point p can be pruned

by the bisector Bf :q iff dist(p, f) < dist(p, q). In other

words, the point p can be pruned iff Cp contains f .

Hence, if f lies outside Cp, it cannot prune p. If f lies

outside Cp for every point p, it cannot prune any point

of the unpruned polygon and can be ignored for this

reason. ⊓⊔

Checking containment of f in Cp for every point
p is not feasible. In next few lemmas, we simplify the

procedure to check if a facility point can be ignored.

p

p'

q

(a) Lemma 2 and 3

qA

B

p

(b) Lemma 4

Fig. 3

Lemma 2 Let pq be a line segment between two points

q and p. Let p′ be a point on pq. The circle Cp′ is con-
tained by the circle Cp.

Fig. 3(a) shows an example where the circle Cp′ (the

shaded circle) is contained by Cp (the large circle). The

proof is straight forward and is omitted. Based on this

lemma, we present our next lemma.

Lemma 3 A facility f can be ignored if, for every

point p on the boundary of the unpruned polygon, f

lies outside Cp.

Proof We prove the lemma by showing that we do not

need to check containment of f in Cp′ for any point p′

that lies within the polygon. Let p′ be a point that

lies within the polygon. We draw a line that passes

through q and p′ and cuts the polygon at a point p

(see Fig. 3(a)). From Lemma 2, we know that Cp con-
tains Cp′ . Hence, if f lies outside Cp, then it also lies

outside Cp′ . Hence, it suffices to check the containment

of f in Cp for every point p on the boundary of the

polygon. ⊓⊔

The next two lemmas show that we can check if a

facility f can be ignored or not by only checking the
containment of f in Cv for every vertex v of the un-

pruned polygon.

Lemma 4 Given a line segment AB and a point p on

AB. The circle Cp is contained by CA ∪CB, i.e., every
point in the circle Cp is either contained by CA or by

CB (see Fig. 3(b)).

7

Proof Fig. 4 shows the line segmentAB and the point p.

It suffices to show that the boundary of Cp is contained

by CA∪CB . If q lies on AB, the lemma can be proved by

Lemma 2. Otherwise, we identify a point D such that

AB is a segment of the perpendicular bisector between
D and q. Then, we draw a line L that passes through

pointsD and q. First, we show that the part of the circle

Cp that lies on the right side of L (i.e., the shaded part

in Fig. 4(a)) is contained by CB . Then, we show that
the part of the circle Cp that lies on the left side of L

(i.e., the shaded part in Fig. 4(b)) is contained by CA.

q

X

A

B

Ep
D

L

(a) For right side of L

q

X

A

B

p
D

L

(b) For left side of L

Fig. 4 Illustration of Lemma 4

We can find the length of qB (denoted as qB) by

using the triangle△qpB and applying the law of cosines
(see Fig. 4(a)).

qB =

√

(pB)2 + (pq)2 − 2 ⋅ pB ⋅ pq(Cos∡Bpq) (1)

For any point X that lies on the boundary of Cp and

is on the right side of L (i.e., the boundary of the shaded

circle in Fig. 4(a)), consider the triangle △ pXB. The
length of BX can be computed using the law of cosines.

BX =

√

(pB)2 + (pX)2 − 2 ⋅ pB ⋅ pX(Cos∡BpX) (2)

Please note that the triangles△qpB and △DpB are

similar because Dp = qp and DB = qB (any point on a
perpendicular bisector Bu:v is equi-distant from u and

v). Due to similarity of triangles △qpB and △DpB,

∡Bpq = ∡BpD.

It can be shown thatBX ≤ qB by comparing Eq. (1)

and Eq. (2). This is because pX = pq and ∡BpX ≤

(∡Bpq = ∡BpD). Since cosine monotonically decreases
as the angle increases from 0∘ to 180∘, BX ≤ qB. This

means the point X lies within the circle CB.

Similarly, for any X that lies on the part of circle Cp

that is on left side of the line L (see Fig. 4(b)) it can be

shown that AX ≤ (AD = Aq). This can be achieved by

considering the triangles △pXA and △pDA and using
law of cosines to obtain AX and AD (the key observa-

tion is that ∡XpA ≤ ∡DpA). ⊓⊔

Lemma 5 A facility f can be ignored if, for every ver-

tex v of the unpruned polygon, the facility f lies outside

Cv.

Proof Let AB be an edge of the polygon. From Lemma 4,

we know that if a facility f lies outside CA and CB, then
it lies outside Cp for every point p on the edge AB. This

implies that if f lies outside Cv for every vertex v of the

polygon then it lies outside Cp for every point p that

lies on the boundary of the polygon. Such facility f can
be ignored as stated in Lemma 3. ⊓⊔

Next lemma shows that we only need to check this

condition for convex vertices. First, we define the con-

vex vertices.

Definition 1 Consider a polygon P where V is the
set of its vertices. Let Hcon be the convex hull of V .

The vertices of Hcon are called convex vertices of the

polygon P and the set of the convex vertices is denoted

as Vcon.

Fig. 5 shows an example where a polygon with ver-

tices A to J is shown in broken lines. Its convex hull is

shown in solid lines which contains the vertices A, C,

E, G and I and these vertices are the convex vertices.

Note that Vcon ⊆ V .

Lemma 6 A facility f can be ignored if it lies outside

Cv for every convex vertex v of the unpruned polygon

P .

Proof By definition of a convex hull, the convex hull
Hcon contains the polygon P . If a facility point f does

not prune any point of the convex polygon Hcon, it

cannot prune any point of the polygon P because P ⊆

Hcon. Hence, it suffices to check if f prunes any point

of Hcon or not. From Lemma 5, we know that f does
not prune any point of Hcon if it lies outside Cv for

every vertex v of Hcon. Hence, f can be ignored if it

lies outside every Cv where v is a vertex of the convex

polygon (i.e., v is a convex vertex). ⊓⊔

The above lemma identifies a condition for a facility

f to be ignored. Next lemma shows that any facility

that does not satisfy this condition prunes at least one

point of the unpruned area. In other words, next lemma

shows that the above condition is tight.

Lemma 7 If a facility f lies in any Cv for any convex

vertex v of the unpruned polygon P then there exists at

least one point p in the polygon P that is pruned by f .

Proof If f lies in Cv for any v ∈ Vcon, it means that
dist(f, v) < dist(f, q). Hence, f prunes the vertex v.

Since Vcon ⊆ V , the vertex v is a point in the polygon

P . ⊓⊔

8

3.2 Algorithm

Based on the problem characteristics we described ear-

lier in this section, we propose an algorithm to effi-

ciently compute the influence zone. We assume that the

facilities are indexed by an R-tree [15]. The main idea

is that the facilities are iteratively retrieved and the
space is iteratively pruned by considering their bisec-

tors with q. The facilities that are close to the query q

are expected to prune larger area and are given priority.

Algorithm 1 presents the details. Initially, the whole
data space is considered as the influence zone and the

root of the R-tree is inserted in a min-heap ℎ. The en-

tries are iteratively de-heaped from the heap. The en-

tries in the heap may be rectangles (e.g., intermediate

nodes) or points. If a de-heaped entry e completely lies
outside Cv of all convex vertices of the current influ-

ence zone (e.g., the current unpruned area), it can be

ignored. Otherwise, it is considered valid (lines 5 to 7).

If the entry is valid and is an intermediate node or a
leaf node, its children are inserted in the heap (lines 8

to 10). Otherwise, if the entry e is valid and is a data

object (e.g., a facility point), it is used to prune the

space. The current influence zone is also updated ac-

cordingly (line 12). The algorithm stops when the heap
becomes empty.

Algorithm 1 Compute Influence Zone
Input: a set of objects O, a query q ∈ O, k
Output: Influence Zone Zk

1: initialize Zk to the boundary of data universe
2: insert root of R-tree in a min-heap ℎ
3: while ℎ is not empty do

4: deheap an entry e
5: for each convex vertex v of Zk do

6: if mindist(v, e) < dist(v, q) then

7: mark e as valid; break
8: if e is valid then

9: if e is an intermediate node or leaf then

10: insert every child c in ℎ with key mindist(q, c)
11: else if e is an object then

12: update the influence zone Zk using e (Algorithm 2)

The proof of correctness follows from the lemmas

presented in the previous section because only the ob-

jects that do not affect the unpruned area are ignored.
It is also important to note that the entries of R-tree are

accessed in ascending order of their minimum distances

to the query. The nearby facility points are accessed

and the unpruned area keeps shrinking which results
in a greater number of upcoming entries being pruned.

Hence, the entries that are far from the query are never

accessed.

3.2.1 Updating unpruned polygon

Now, we briefly describe how to update the unpruned

polygon (or current influence zone) when a new facility

point f is considered (line 12 of Algorithm 1). The main
idea is similar to [41]. The intersection points between

all the bisectors are maintained. Each intersection point

is assigned a counter that denotes the number of bisec-

tors that prune it. Fig. 6 shows an example (k = 2)

where three bisectors Ba:q, Bb:q and Bc:q have been
considered. The counter of intersection point v11 is 2

because it is pruned by Bb:q and Bc:q. The counter of

v8 is 1 because it is pruned only by Bc:q. It can be imme-

diately verified that the unpruned area can be defined
by only the intersection points with counters less than

k [41] (see the shaded area of Fig. 6). Hence, we can

discard the intersection points with counters at least

equal to k.

q
A

B

C

D

E

F

G

H

I

J

Fig. 5 Convex Polygon

q

v
1
 = 3

B
a:q

B
b:q

B
c:q

v
2
 = 1

v
3
 = 0v

6
 = 2 v

5
 = 1 v

4
 = 0

v
7
 = 0

v
8
 = 1

v
9
 = 0

v
10
 = 0

v
11
 = 2

v
12
 = 2

Fig. 6 Computing counters

Algorithm 2 shows the details of updating the influ-
ence zone when a new facility f is considered. Firstly,

the algorithm computes the new intersection points be-

tween Bf :q and the existing bisectors. The counters of

these new intersection points are also computed (line 1).
Then, the algorithm updates the counters of all exist-

ing intersection points (line 2). More specifically, the

counter of an existing intersection point p is incremented

by one if Bf :q prunes p. Otherwise, the counter re-

mains unchanged. The algorithm discards the intersec-
tion points with counters at least equal to k (line 3).

Then, the algorithm determines the convex vertices and

computes the current unpruned polygon (lines 4 and 5).

Recall that determining the convex vertices is impor-
tant in order to apply Lemma 6.

Algorithm 2 update influence zone
Input: current influence zone Zk, a new facility f
Output: updated influence zone Zk

1: compute new intersection points and their counters
2: update the counters of existing intersection points
3: discard intersection points with counters at least equal to k
4: find the convex vertices
5: compute the unpruned polygon

We remark that the first three lines of Algorithm 2

are the same as used in the technique proposed by Wu

9

et. al [41]. They showed that the complexity of these

lines is O(m2) where m is the number of existing bi-

sectors contributing to the unpruned polygon. Later

in Section 5.4, we conduct a more rigorous complexity

analysis and show that the overall complexity of Algo-
rithm 2 can be reduced to O(km) when k is smaller

than m.

3.2.2 Optimizations

In this section, we present few optimizations to improve

the efficiency of Algorithm 1. It can be shown that the

number of convex vertices is O(m) where m is the num-
ber of bisectors considered so far [41] (i.e., m is the

number of facilities used to update the current influ-

ence zone at line 12 of Algorithm 1). Hence, checking

whether an entry of the R-tree is valid or not requires

O(m) distance computations (see lines 5 to 7 of Algo-
rithm 1). Next, we present few observations and show

that we can determine the validity of some entries by a

single distance computation.

q
A

B

C
D

E

F

G
H

I

r
min

r
max

p

e

(a) Lemma 8

q

r
max

p

e

(b) Lemma 9

Fig. 7 Optimizations

Lemma 8 Let rmin be the minimum distance of q to

the boundary of the unpruned polygon. Then, an entry

e is a valid entry if mindist(q, e) < 2rmin (Fig. 7(a)
shows rmin).

Proof To prove that e is a valid entry, we show that

there exists at least one point p in the unpruned poly-
gon such that Cp contains e. If e lies inside the un-

pruned polygon then e is a valid entry because Ce con-

tains e and e is a point in the unpruned polygon. Now,

we prove the lemma for the case when e lies outside

the unpruned polygon. Fig. 7(a) shows an entry e for
which dist(q, e) < 2rmin. We draw a line that passes

through e and q and intersects the boundary of the

unpruned polygon at a point p. Clearly, dist(p, e) =

dist(q, e)− dist(p, q). We know that dist(q, e) < 2rmin

and dist(p, q) ≥ rmin. Hence, dist(p, e) ≤ rmin which

implies that dist(p, e) ≤ dist(p, q). Hence, e lies in Cp.

⊓⊔

Lemma 9 Let rmax be the distance of q to the furthest

vertex of the unpruned polygon. Then, an entry e of the

R-tree is an invalid entry if mindist(e, q) > 2rmax.

Proof Fig. 7(b) shows rmax and a point e such that

dist(e, q) > 2rmax. Consider a point p on the bound-

ary of the unpruned polygon. By the definition of rmax,

dist(p, q) ≤ rmax. Clearly, dist(p, q)+dist(p, e) ≥ dist(q, e)
(this covers both the cases when p lies on the line qe

and when △qpe is a triangle). Since, dist(p, q) ≤ rmax

and dist(e, q) > 2rmax, dist(p, e) must be greater than

rmax. Hence, dist(p, e) > dist(p, q) which means e lies
outside Cp. This holds true for every point p on the

boundary of the unpruned polygon. Hence, e can be ig-

nored (i.e., e is invalid). ⊓⊔

If an entry of the R-tree satisfies one of the above

two lemmas, we can determine its validity without com-

puting its distances from the convex vertices. Note that

rmax and rmin can be computed in linear time to the
number of edges of the unpruned polygon and are only

computed when the influence zone is updated at line 12

of Algorithm 1.

3.3 Checking containment in the influence zone

The applications that use influence zone may require

to frequently check if a point or a shape lies within

the influence zone or not. Although the suitability of

a method to check the containment depends on the
nature of the application, we briefly describe few ap-

proaches.

One simple approach is to record all the objects that

were accessed during the construction of the influence
zone (the objects for which the bisectors were consid-

ered). If a shape is pruned by less than k of these bisec-

tors then the shape lies inside the influence zone oth-

erwise it lies outside the influence zone. This approach
takes linear time in number of the accessed objects.

Moreover, checking whether a point is pruned by a bi-

sector Bf :q is easy (e.g., if dist(p, f) < dist(p, q) then

the point p is pruned otherwise not). Hence, a point con-

tainment check requires O(m) distance computations
where m is the number of the accessed objects.

Before we show that the point containment can be

done in logarithmic time, we define a star-shaped poly-
gon [31]. A polygon is a star-shaped polygon if there

exists a point z in it such that for each point p in the

polygon the segment zp lies entirely in the polygon. The

point z is called a kernel point. The polygon shown in
Fig. 7(a) is a star-shaped polygon and q is its kernel

point. Fig. 8(a) shows a polygon that is not star-shaped

(the segment qp does not lie entirely in the polygon).

10

Let n be the number of vertices of a star-shaped poly-

gon. After a linear time pre-processing, every point con-

tainment check can be done in O(log n) if a kernel point

of the polygon is known [31]. Please see [31] for more

details.

Lemma 10 The influence zone is always a star-shaped

polygon and q is its kernel point.

Proof We prove this by contradiction. Assume that there

is a point p in the influence zone such that the segment
pq does not lie completely within the influence zone.

Fig. 8(a) shows an example, where a point p′ lies on

the segment pq but does not lie within the influence

zone. From Lemma 2, we know that Cp contains Cp′ .

Since p′ is a point outside the influence zone, ∣Cp′ ∣ ≥ k.
As Cp′ is contained by Cp, ∣Cp∣ ≥ k. Hence, p cannot

be a point inside the influence zone which contradicts

the assumption. ⊓⊔

Since the maximum number of vertices of the influ-
ence zone is O(m2), the point containment check can be

done in O(log m). Next, we present two simple checks

to reduce the cost of containment check in certain cases

by using rmax and rmin we introduced earlier.

Let rmin and rmax be as defined in Lemma 8 and 9,
respectively. Then, the circle centered at q with radius

rmax (the big circle in Fig. 7(a)) completely contains the

influence zone. Similarly, the circle centered at q with

radius rmin (the shaded circle in Fig. 7(a)) is completely
contained by the influence zone. Hence, any point p that

has a distance greater than rmax from q is not contained

by the influence zone and any point p′ that lies within

distance rmin of q is contained by the influence zone.

For the applications that allow relatively expensive
pre-processing, the influence zone can be indexed (e.g.,

by a grid or a quad-tree) to efficiently check the con-

tainment. For example, for the continuous monitoring

of RkNN queries, we use a grid to index the influence
zone. The details are presented in next section.

3.4 Extension to higher dimensions

RkNN queries have various applications in higher di-

mensional space such as in classification, profile based

advertisement, and document repositories [24]. For in-

stance, in classification, the RkNN query is commonly
used to select a suitable classifier. More specifically, an

object o is a good classifier if its RkNNs also belong

to the same cluster as of o [43]. Due to their impor-

tance, several approaches have been presented to com-
pute RkNN in arbitrary dimensionality [36,1,13]. Al-

though the focus of this paper is on developing tech-

niques for two-dimensional data, we show that our pro-

posed techniques can be extended for arbitrary dimen-

sionality.

In dimensions higher than two, the bisectors are

called half-spaces and the unpruned region is a poly-

tope instead of a polygon [30]. The circle Cp centered

at p with radius dist(p, q) is called a hypersphere. It can

be shown that Lemma 4 holds for higher dimensions.
This can be proved by a projection on a two dimen-

sional space for each point of the hypersphere.

The space is pruned in a similar way as in two di-

mensional space, i.e., the space that is pruned by at

least k half-spaces is pruned. The following lemma holds

for the unpruned region which is a polytope.

p

p'

q

(a) Lemma 10

q

A

B

C

D

p
M

N

L

(b) Lemma 11

Fig. 8

Lemma 11 A facility point f can be ignored if, for
every vertex v of the unpruned polytope, f lies outside

Cv.

Proof We prove the lemma for a 3-dimensional poly-
hedron and the proof for the arbitrary dimensionality

is similar. Let p be any point inside the polyhedron as

shown in Fig. 8(b). We draw a line that passes through

p and q and crosses a face (the shaded face ABCD) of
the polyhedron at a point M . For such point M , we

can always draw a line on this face of the polyhedron

such that it passes through M and intersects the edges

of the face at points L and N as shown in Fig 8(b).

From Lemma 4, CA and CB contain CN . Similarly, CC

and CD contain CL. Again, from Lemma 4, CN and

CL contain CM . Lastly, CM contains Cp (Lemma 2).

Hence, Cp is contained by the hyperspheres of the ver-

tices of the face ABCD (CA, CB , CC and CD). This
holds for any arbitrary point p inside the polyhedron.

Hence, we only need to check the containment in Cv for

every vertex v of the polyhedron. ⊓⊔

Given Lemma 11, it can be immediately verified

that Lemmas 6 and 7 also hold in dimensions higher

than two.

11

4 Applications in RkNN Processing

4.1 Snapshot Bichromatic RkNN Queries

Our algorithm consists of two phases namely pruning

phase and containment phase.

Pruning Phase. In this phase, the influence zone Zk

is computed using the given set of facilities.

Containment Phase. By the definition of influence

zone Zk, a user u can be the bichromatic RkNN if and

only if it lies within the influence zone Zk. We assume

that the set of users are indexed by an R-tree. The
R-tree is traversed and the entries that lie outside the

influence zone are pruned. The objects that lie in the

influence zone are RkNNs.

4.2 Snapshot Monochromatic RkNN Queries

By definition of a monochromatic RkNN query (see Sec-

tion 2.1), a facility f is the RkNN iff ∣Cf ∣ < k+1. Hence,

a facility that lies in Zk+1 is the monochromatic RkNN

of q where Zk+1 is the influence zone computed by set-
ting k to k + 1. Below, we highlight our technique.

Pruning Phase. In this phase, we compute the influ-

ence zone Zk+1 using the given set of facilities F . We

also record the facility points that are accessed during
the construction of the influence zone and call them the

candidate objects.

Containment Phase. Please note that every facility

point that is contained in the influence zone Zk+1 will
be accessed during the pruning phase. This is because

every facility that lies in the influence zone cannot be

ignored during the construction of the influence zone

(inferred from Lemma 1). Hence, the set of candidate
object contains all possible RkNNs. For each of the can-

didate object, we report it as RkNN if it lies within the

influence zone Zk+1.

4.3 Continuous monitoring of RkNNs

In this section, we present our technique to continuously

monitor bichromatic RkNN queries (see the problem

definition in Section 2.1). The basic idea is to index

the influence zone by a grid. Then, the RkNNs can be
monitored by tracking the users that enter or leave the

influence zone.

Initially, the influence zone Zk of a query q is com-

puted by using the set of facility points. We use a grid
based data structure to index the influence zone. More

specifically, a cell c of the grid is marked as an inte-

rior cell if it is completely contained by the influence

zone. A cell c′ is marked as a border cell if it over-

laps with the boundary of the influence zone. Fig. 9(a)

shows an example where the influence zone is the poly-

gon ABCDFEGHI, interior cells are shown in dark

shade and the border cells are the light shaded cells.

For each border cell, we record the edges of the poly-
gon that intersect it. For example, in c1, we record the

edge AI and in c2 we record the edges AI and HI. If a

user u ∈ U is in an interior cell, we report it as RkNN

of the query. If a user lies in a border cell, we check if
it lies outside the polygon by checking the edges stored

in this cell. For example, if a user lies in c1 and it lies

inside AI, we report it as RkNN.

5 Theoretical Analysis

We assume that the facilities and the users are uni-

formly distributed in a unit space. The number of fa-

cilities is ∣F ∣. For bichromatic queries, the number of

users is ∣U ∣.

5.1 Size of Influence Zone

Before we analyse the size of the influence zone, we

show the relationship between an order k Voronoi cell

and the influence zone. We utilize this relationship to
analyse the area/volume of the influence zone.

Relationship with order k Voronoi cell: An order k

Voronoi diagram divides the space into cells and we

refer to each cell as a k-Voronoi cell. Each k-Voronoi

cell is related to a set of k facility points (denoted as
Fk) such that for any point p in this cell, the k closest

facilities are Fk. Fig. 9(b) shows an order 2 Voronoi

diagram computed on the facility points a to i. Each

cell c is related to two facility points (shown as {fi, fj}

in Fig. 9(b)) and these are the two closest facilities for
any point p in c. For example, for any point p in the

cell marked as {a, e} the two closest facilities are a and

e.

q A

B

C
DE

F

G

H

I

c
1

c
2

(a) Continuous Monitoring

a

c
b

d

e
f

i

g

h{a,b}

{a,h}

{a,g}

{a,f}

{a,e}

{a,d}

{a,c}
{b,h}

{h,i}

{g,h}

{g,f}
{e,f}

{d,e}

{c,d}

{b,i}
{b,c}

(b) Order 2 Voronoi diagram

Fig. 9

12

Clearly, when k = 1 the k-Voronoi cell related to q

is exactly the same as the influence zone. For k > 1, the

influence zone corresponds to the union of all k-Voronoi

cells that are related to q (i.e., have q in their Fk). For

example, in Fig. 9(b), the influence zone of the facility
a is shown in bold boundary and it corresponds to the

union of the cells related to a.

Now, we analyse the area of the influence zone.

Consider the influence zones of all the facilities in

the data set. Every point in the unit space lies in a cell

that is related to k facilities. This implies that every

point lies in exactly k influence zones (e.g., in Fig. 9(b),
every point in the cell marked as {a, f} lies in the influ-

ence zone of a as well as the influence zone of f). Hence,

the sum of the areas of all the influence zones is k. Since

the total number of facility points is ∣F ∣, the expected

area of a randomly chosen facility point is k/∣F ∣.

Note that the above discussion does not depend on

the dimensionality. Hence, the volume of the influence

zone is k/∣F ∣ regardless of the dimensionality.

Remark: The above discussion shows that the influ-
ence zone can be computed by using a pre-computed or-

der k Voronoi diagram. However, as mentioned in [49],

a technique that uses a pre-computed order k Voronoi

diagram may not be practical for the following reasons :

i) the value of k may not be known in advance; ii) even
if k is known in advance, order k Voronoi diagrams are

very expensive to compute and incur high space require-

ment; iii) spatial indexes are useful for all query types

and pre-computed Voronoi diagrams may not be used
for all queries. In contrast, R-tree based indexes used

by our algorithm are used for many important queries.

5.2 Result size of RkNN queries

First, we analyse the result size for bichromatic RkNNs

queries. We assume that the users are uniformly dis-

tributed in the space. Recall that every user that lies

in the influence zone is a bichromatic RkNN object.
Hence, the expected result size (i.e., number of bichro-

matic RkNNs) can be obtained by multiplying ∣U ∣ with

the expected area (volume for higher dimensionality)

of the influence zone. Hence, the expected number of

bichromatic RkNNs is ∣U ∣.k/∣F ∣ (regardless of the di-
mensionality).

Now, we analyse the result size for monochromatic

RkNN queries. The area/volume of the influence zone

Zk+1 for a monochromatic RkNN query is (k+ 1)/∣F ∣.
The number of facilities in this zone is (k+1) which in-

cludes the query. Hence the expected number of monochro-

matic RkNNs is k (regardless of the dimensionality).

5.3 IO cost of our algorithms

In this section, we present IO cost analysis for our algo-

rithms which is applicable to arbitrary dimensionality.

Before we analyse the IO costs of our proposed algo-

rithms, we analyse the cost of a circular range query in
d-dimensional space. Then, we analyse the costs of our

algorithms by using the IO cost of the circular range

queries.

5.3.1 IO cost of a circular range query

A circular range query [6] finds the objects that lie

within distance r of the query location. We assume that

the objects are indexed by an R-tree and analyse the
number of nodes that lie within the range of the query.

The approach to analyse the IO cost of the circular

range query is similar to the IO cost analysis of window

queries presented in [38]. Assume a hypersphere in a d-
dimensional space that has a radius R. Let VR denote

the volume of this hypersphere. Let Nl be the number

of rectangles at level l of the R-tree. We assume that the

centers of the rectangles at each level follow a uniform

distribution. The expected number of rectangles at a
level l that have their centers in the hypersphere is VR×

Nl.

Fig. 10 Range query

Fig. 10 shows a two dimensional range query q with
range r (the shaded circle). We first analyse the number

of rectangles at level l that lie within the range r. Let

sl be the side length of each rectangle at level l (the

rectangles of a good R-tree have similar sizes [22]). Let

gl be the diagonal length of each rectangle at level l.
As shown in Fig. 10, any rectangle that has its center c

further than r+ gl/2 from q cannot intersect the range

query and should not be accessed. In other words, at

a level l, the number of rectangles (nodes) that are to
be accessed is the number of centers c falling in the

hypersphere centered at q with radius R = r + gl/2

(the large circle in Fig. 10). Hence, the number of nodes

accessed at level l is VR × Nl where R = r + gl/2 and

VR denotes the volume of the hypersphere.

The total IO cost (the total number of nodes ac-

cessed) is obtained by adding the number of accessed

13

nodes for each level l. The total number of levels ex-

cluding the root is ⌊log
f
S⌋ where f is the fanout of

R-tree and S is the total number of objects indexed

by the R-tree. The root is accessed anyway, so one is

added to this cost. Hence, the total IO cost is obtained
by Eq. (3).

Range query cost = 1 +

⌊logfS⌋
∑

l=1

VR ×Nl (3)

Now, we need to compute VR, and Nl for each level

l. To compute VR, we need to compute gl. The number
of rectangles Nl at level l of the R-tree is S/f

l (e.g., leaf

nodes are at level 1 and the number of leaf level rect-

angles is S/f). Since we assume uniform distribution of

points, each rectangle at level l contains f l points. In
other words, the area/volume of each node (rectangle)

is f l/S. Assuming that the side length of a rectangle

on each dimension is the same, the side length sl is

(f l/S)1/d. Given sl of a rectangle, the diagonal length

gl can be computed by using Eq. (4).

gl =

√

√

√

⎷

d
∑

i=1

s2l =

√

√

√

⎷

d
∑

i=1

(
f l

S
)

2
d =

√

d× (
f l

S
)

2
d (4)

Finally, we need to compute VR. Let R be the radius

of a hypersphere. The volume VR of the hypersphere is
VR = Cd × Rd where d denotes the dimensionality of

the hypersphere2. Cd for even dimensionality is �d/2

(d/2)!

where x! denotes the factorial of a number x. Cd for

odd dimensionality is 2(d+1)/2�(d−1)/2

d!! where x!! denotes

the double factorial of x. The double factorial of x is

the multiplication of all odd numbers from 1 to x.

By using gl shown in Eq. (4), we can compute R
(and VR). Plugging the values of VR and Nl in Eq. (3)

gives us the IO cost of the range query. Based on the

IO cost of the range query, first we analyse the cost of

computing the influence zone and then we analyse the
costs of our RkNN algorithms.

5.3.2 IO cost of computing the influence zone

We approximate the influence zone to a hyperspherical

region that has the same area/volume as that of the in-

fluence zone (we noted that as k gets larger the shape of

the influence zone has more resemblance with a hyper-

sphere). Since the area/volume of the influence zone Zk

is k/∣F ∣, the radius rk of the hypersphere can be com-

puted. More specifically, Vrk = k/∣F ∣ = Cd × rdk which

implies that rk = (k
∣F ∣×Cd

)1/d. As implied by Lemma 5,

2 http://www.en.wikipedia.org/wiki/N-sphere

an object can be ignored if it lies at a distance greater

than dist(q, v) from every vertex v of the unpruned re-

gion. Since we assume that each vertex is at the same

distance rk from the query (i.e., influence zone is a hy-

persphere), an object can be ignored if it lies at a dis-
tance greater than 2rk from q. Hence, the objects within

the range 2rk of the query are accessed during the com-

putation of the influence zone. The IO cost is then the

cost of a range query with range 2rk = 2(k
∣F ∣×Cd

)1/d.

5.3.3 IO cost of a monochromatic RkNN query

The IO cost for a monochromatic RkNN query is the

same as the IO cost of computing the influence zone

Zk+1. This is because the R-tree is traversed only dur-

ing the construction of the influence zone (i.e., the con-

tainment phase does not access R-tree). Hence, IO cost
of a monochromatic query is the IO cost of a range

query with range set as 2rk+1 = 2(k+1
∣F ∣×Cd

)1/d.

5.3.4 IO cost of a bichromatic RkNN query

The cost of the pruning phase is the same as the cost of

computing the influence zone Zk which we have anal-

ysed earlier. The cost of the containment phase is the
cost of accessing the users that lie within the influence

zone which can be computed in a similar way. More

specifically, only the users that lie within distance rk
(the radius of the influence zone) of q are accessed.
Hence, the cost of the containment phase is the IO cost

of the range query with range set to rk = 2(k
∣F ∣×Cd

)1/d.

5.4 Complexity Analysis

The complexity of Algorithm 2 for arbitrarily dimen-

sionality d is exponential in d because the number of

intersection points of m half-spaces in d dimensional
space is O(md). Nevertheless, our experimental results

demonstrate that the performance of our algorithms is

reasonable as compared to other approaches (for di-

mensionality up to 4). In this section, we show that the

complexity of Algorithm 2 in two dimensional space
can be reduced from O(m2) to O(km) where m is the

number of facilities (or bisectors) considered so far. In

the rest of the paper, our discussion is based on two

dimensional space unless specifically mentioned other-
wise. Below, we define a few terms and notations and

present a lemma that helps us in analysing the com-

plexity.

14

5.4.1 Preliminaries

Valid intersection point. An intersection point that

has a counter less than k is called a valid intersection
point.

Left/right pruning intersection. Consider the ex-
ample of Fig. 11 where two bisectors B2 and B3 inter-

sect a bisector B1 at points l1 and r2, respectively. The

bisector B2 prunes every point on B1 that lies on the

left side of l1 (as shown with an arrow). For example, B2

prunes the points l2, r2 and r1. The intersection point
l1 is called a left pruning intersection of B1 because it

prunes every point on B1 that lies on its left side. The

bisector B3 prunes every point on B1 that lies on the

right side of r2 (e.g., the points l2, l1 and r3). The in-
tersection point r2 is called a right pruning intersection

of B1. In Fig. 11, the right pruning intersection points

are shown as ri (black circles) and the left pruning in-

tersection points are shown as li (the hollow circles).

To keep Fig. 11 simple, we do not show the bisectors
related to r1, r3 and l2.

Note that the counter of any point p that lies on B1

is at least equal to the number of left pruning intersec-

tions on its right side plus the number of right pruning

intersections on its left side. For example, the counter

of point l2 is 1 + 2 = 3 because it is pruned by l1, r1
and r2. Lemma 12 shows that each existing bisector can

have at most 2k valid intersection points.

Lemma 12 For any bisector B1, the number of valid

intersection points3 on it is at most 2k.

Proof Let the number of right pruning intersection points

of B1 be u. We denote the right pruning intersections

of B1 by r1, ..., ru such that for any intersection ri there
are i−1 right pruning intersections on its left. For exam-

ple, in Fig. 11, there are two right pruning intersections

(r1 and r2) on the left side of r3. For any right pruning

intersection point ri, its counter is at least equal to i−1
because ri is pruned by at least i−1 right pruning inter-

sections. Hence, only the intersections ri for 0 < i ≤ k

can have counters less than k. This implies that the

number of right pruning intersection points that are

valid is at most k. Following similar arguments, it can
be shown that at most k left pruning intersection points

are valid intersections. Hence, the total number of valid

intersection points on B1 is at most 2k. ⊓⊔

3 The proof of this lemma assumes that each intersection point
is unique, i.e., two bisectors do not intersect B1 at the same
point. However, the complexity analysis remains the same even
in the absence of this assumption. This is because such intersec-
tion points can be merged and treated as one intersection point
because their counters would be exactly the same.

Now, we analyse the complexity of Algorithm 2. For

each line of Algorithm 2, we show that its complexity

is at most O(km).

5.4.2 Complexity of line 1: compute new intersection

points and their counters

The number of new intersection points is O(m) because

each existing bisector intersects the new bisector Bf :q

at most once. To compute the counter of a new intersec-

tion point p, we count the number of existing bisectors
that prune p. Hence, computing the counter of a new

intersection point takes O(m). Since there are O(m)

new intersection points, the complexity of computing

the counters of these points is O(m2). Next, we show
that the complexity can be reduced to O(km).

Let p be an intersection point between Bf :q and an

existing bisector. If p lies outside the current influence

zone (the unpruned polygon) then its counter is at least

equal to k and p can be discarded for this reason. Hence,

the counters of only the intersection points that lie in-
side the unpruned polygon are to be computed. We im-

plement the whole procedure in two steps: 1) for each

intersection point p, check whether p lies inside the un-

pruned polygon or not; 2) for each intersection point
p that lies inside the unpruned polygon, compute its

counter.

Fig. 11 Lemma 12 Fig. 12 Even-odd test

First we show that the step 1 can be implemented

in O(km) by using even-odd test [16] to determine if p

lies inside the unpruned polygon or not. According to

an even-odd test, a point p lies inside a polygon if and
only if, for any ray starting from the point p, there is

an odd number of crossings of this ray with the edges

of the polygon. For example, in Fig. 12, point p lies

outside the polygon ABCDEFG and any ray starting

from p intersects the edges of the polygon even number
of times. For instance, the ray starting from p in the

direction of x intersects the polygon at two points (w

and x). Hence, p lies outside the polygon. Now, we show

that for any intersection point p, we can conduct even-
odd test in O(k). Since we have at most O(m) new

intersection points, this ensures the overall complexity

of O(km).

15

Assume that p is an intersection point of Bf :q and

an existing bisector B1 as shown in Fig. 12. Note that

B1 is an existing bisector and the algorithm maintains

the existing valid intersection points of B1. For exam-

ple, the system maintains the intersection points u, v, w
and x. To determine the number of intersections of the

ray starting from p with the boundary of the unpruned

polygon, we simply count the number of valid intersec-

tion points of B1 that lie on the right side of p and lie
on the boundary of the unpruned polygon. In Fig. 12,

such intersection points are w and x. Since B1 has at

most 2k intersection points (Lemma 12), we need to

choose the boundary points among at most 2k points.

Later in this section, we show that we can determine
whether an intersection point lies on the boundary or

not in constant time by using its counter (Lemma 15).

Hence, determining the intersection points that lie on

the right side of p and lie on the boundary of the un-
pruned polygon takes O(k).

As a special case, if the intersection point p lies on

the boundary of the unpruned polygon we assume as

if it lies inside the unpruned polygon. In Fig. 12, the

intersection point p′ between Bf :q and B2 lies on the
boundary of the unpruned polygon. Note that any bi-

sector B2 can contribute at most O(k) edges to the

unpruned polygon (a direct implication of Lemma 12).

Hence, to check whether p′ lies on an edge of the poly-

gon, we check if it intersects with any edge of the poly-
gon contributed by B2. It takes O(k).

Now, we show that step 2 can be done in O(km).

As inferred from Lemma 12, the number of new inter-

section points that lie in the unpruned polygon is at

most O(k). Computing the counter of one intersection
point takes O(m). Hence, the total complexity of step

2 is O(km).

5.4.3 Complexity of line 2: update the counters of

existing intersection points

Lemma 12 shows that each existing bisector can have

at most O(k) valid intersection points. Since m is the
number of existing bisectors, the total number of valid

intersection points is O(km). Recall that, to update the

counter of an intersection point p, we only need to check

whether it is pruned by Bf :q or not where f is the new
facility being considered. This can be done in constant

time. Hence, the complexity of line 2 of Algorithm 2 is

O(km).

5.4.4 Complexity of line 3: discard intersection points

with counters at least equal to k

We scan the list of intersection points and remove any
intersection point that has a counter at least equal to

k. Clearly, the complexity is O(km).

5.4.5 Complexity of line 4: find the convex vertices

We show that we only need to scan the list of the in-

tersection points once to determine the convex vertices.

Since the total number of intersection points is O(km),

the complexity of this step is O(km). Lemma 13 is the
key to obtain the required complexity.

Lemma 13 Among the intersection points that do not

lie on the boundary of the data universe, only the in-
tersection points with counters equal to k− 1 can be the

convex vertices.

Proof Any intersection that has a counter greater than

k−1 is pruned by at least k objects hence cannot be on

the boundary of the influence zone (hence, cannot be

a convex vertex). Now, we show that the intersections
that have counters less than k−1 cannot be the convex

vertices.

Consider the example of Fig. 13(a) where a vertex

V has been shown which is the intersection point of two

bisectors Ba:q and Bc:q. Suppose that the counter of the

vertex V is n. Now, imagine a point p that lies on the
line V N and is infinitely close to the vertex V . Clearly,

the point p is pruned by at most n+ 1 bisectors4. This

is because it is pruned by n bisectors that prune V and

the bisector Bc:q. Following the similar argument, we

can say that any point e that lies on the line V Z and
is infinitely close to V has a counter at most n+1. The

counter of any point u that lies in the polygon V NY Z

(white area) and is infinitely close to V is at least n+2

(it is pruned by Bc:q and Ba:q in addition to all the
bisectors that prune V).

If the counter n of the vertex V is less than or equal
to k− 2, then the line V N has at least one point p that

has counter at most k − 1 (i.e., n+ 1 as shown above).

Hence, the line V N has at least one point p that lies in

the influence zone. Similarly, the line V Z has at least
one point e that lies in the influence zone. Clearly, the

angle eV p is at least 180∘. By definition of a convex

hull, no internal angle of a convex hull can be greater

4 In this proof, we assume that only two bisectors pass through
the intersection point V . For the special case, when more than
two bisectors pass through a vertex V , we may choose to treat V
as a convex vertex. Note that this does not affect the correctness
of the algorithm because checking containment in a vertex that
is not a convex vertex does not affect the correctness.

16

than 1800. Hence, the vertex V is not a convex vertex

if its counter is less than or equal to k − 2. ⊓⊔

(a) Lemma 13 (b) Counters

Fig. 13 Finding convex vertices

In Fig. 13(b), we revisit the example of Fig. 6. The

vertices v7 and v9 do not lie on the boundary of the data

universe and have counters less than k − 1 (where k =

2). Hence, they are not the convex vertices. Among the
points that lie on the boundary of the data universe and

have counters less than k, only the two extreme points

for each boundary line can be the convex vertices. For

example, in Fig. 6, the lower horizontal boundary line
contains 4 vertices (v3, v4, v5 and v6). The vertex v6
has counter not less than k and can be ignored. Among

the remaining vertices, we consider the extreme vertices

(v3 and v5) as the convex vertices. Following the above

strategy, the convex vertices in Fig. 6 are v3, v2, v8 and
v5.

The above discussion shows that the convex vertices

can be found by scanning the list of intersection points

once. Hence, the cost of finding the convex vertices is
O(km).

5.4.6 Complexity of line 5: compute the unpruned

polygon

For any point p, we use �p to denote the angle formed

by the horizontal line passing through q and the line

segment pq (see Fig. 13(b)). Recall that line 1 adds
O(k) new intersection points. These intersection points

are always inserted in sorted order of �p and this takes

O(k ⋅ log m) because O(k) points are inserted and each

insertion takes O(log m) (the maximum number of ex-

isting intersection points is O(m2)). Next, we show that
the unpruned polygon can be computed in O(km) if all

the intersection points are sorted according to �p.

Lemma 14 The unpruned polygon is always a star-

shaped polygon and q is its kernel point.

Proof Consider that F ′ ⊂ F is a set of facilities that
consist of only the facilities that have been considered

so far. Clearly, the current unpruned polygon is the

influence zone of q for the data set F ′. Hence, Lemma 6

can be immediately applied to prove that the unpruned

polygon is always a star-shaped polygon. ⊓⊔

Since the unpruned polygon P is a star-shaped poly-

gon and q is its kernel point, every point on its boundary

is visible from q [20]. This implies that �p is unique for

every point p on the boundary of P , i.e., �p ∕= �p′ for
any two points p and p′ that lie on the boundary of P .

Hence, given a list of points that lie on the boundary

of P , we can construct the polygon P by connecting

the points in sorted order of the angles they make with

q. Finally, we need to determine the intersection points
that lie on the boundary of the unpruned polygon.

Lemma 15 Among the intersection points that do not

lie on the boundary of the data universe, any intersec-

tion point V that has a counter less than k− 2 does not

lie on the boundary of the unpruned polygon. Secondly,
any intersection point V that has a counter equal to

k − 2 lies on the boundary of the unpruned polygon.

Proof Consider the vertex V as shown in Fig. 13(a) and

assume that it has a counter equal to n. The counter of

any point u that lies infinitely close to V and lies in the

white area is n+2. This is because it is pruned by the n
bisectors that prune V and the bisectors Ba:q and Bc:q.

Note that any point u that is infinitely close to V can

be pruned by at most n+ 2 bisectors (n bisectors that

prune V and Ba:q and Bc:q). If the counter of V is less
than k−2 then the counter of any such point u is always

smaller than k. Hence, u is a point inside the unpruned

polygon. Since every u that lies infinitely close to V (in

any direction) is a point of the unpruned polygon, V

does not lie on the boundary of the unpruned polygon.

Now, we prove the second part of the lemma. As-

sume that the counter of V is equal to k − 2. Clearly,

the counter of u is k. Hence, u lies outside the unpruned

polygon. Since u is infinitely close to V , V is a point on
the boundary of the unpruned polygon. ⊓⊔

Lemma 15 along with Lemma 13 show that the

boundary of the unpruned polygon consists of only the

valid intersection points that either lie on the boundary

of the data universe or have counters equal to k − 1 or

k − 2. Hence, the list containing all intersection points
sorted according to �p is scanned and the points that do

not lie on the boundary of the polygon are ignored. Re-

maining points are connected in sorted order of �p to ob-

tain the unpruned polygon. For example, in Fig. 13(b),
the unpruned polygon is obtained by connecting the

vertices in counter clock wise order, i.e., v10, v2, v9, v8,

v7, v5, v4 and v3 in this order.

17

6 Handling data updates

In this section, we present techniques to efficiently up-

date the influence zone for two dimensional data sets

for the case when the facilities issue updates, e.g., fa-

cilities are added or deleted in/from the data set or

facilities stop/resume providing the service. Such data
updates are frequent in many real world applications.

For instance, a facility must be ignored (treated as a

deletion) if it is already providing service to its maxi-

mum capacity and is unable to provide the service to
more users. If the load on the facility reduces and it

can accommodate new users, the server must start con-

sidering it for the influence zone computation and it is

treated as an insertion.

Consider the example of a restaurant that sends pro-
motional SMS to the people in its influence zone. Note

that its influence zone may change when one or more

restaurants close or open due to different business tim-

ings or when a restaurant stops/resumes providing the
service constrained by its seating capacity. Similarly,

consider the example of parking space problem where

the server informs the cars about their nearby avail-

able parking slots. A parking space may be considered

as a deletion if it is occupied. When the parking space
becomes available, it may be treated as an insertion.

It may seem that a materialized approach that is

based on all of the facilities is feasible for handling the

case when facilities stop/resume providing the service.
However, a careful consideration reveals that the ma-

terialized approach has several serious limitations. For

instance, this approach suffers from the problems men-

tioned in Section 5.1. In addition, it requires comput-

ing and storing all possible order k Voronoi diagrams
(or influence zones) for every possible combination of

facilities. This is because an order k Voronoi diagram

is different for every unique combination of facilities.

Hence, a huge number of order k Voronoi diagrams (or
influence zones) will have to be pre-computed. Next, we

present a technique to efficiently update the influence

zone that does not require pre-processing.

6.1 Solution overview

Assume a set of facilities and a set of queries where each

query may have a different value of k. Note that a single
update (insertion or deletion) may or may not affect

the influence zone of a particular query q. Hence, it is

important to identify the queries that are affected by

an update. To enable us to quickly identify the affected
queries, we define impact region of a query. The impact

region of a query q is the area covered by Cv for every

convex vertex v of the influence zone of q. Fig. 14(a)

shows an example where the influence zone of q1 is the

polygon ABCDEFG and the impact region is shown

shaded.

(a) Impact region of q1 (b) An update in c2 does not
affect the influence zone of q2

Fig. 14 Finding the queries affected by an update

As inferred from Lemmas 6 and 7, a facility f affects
the influence zone of a query q1 if and only if f lies in

Cv for at least one convex vertex v of the influence zone.

Hence, a query is affected by a facility if and only if f

lies in the impact region of the query. In the example of
Fig. 14(a), a facility that lies outside of the shaded area

does not affect the influence zone. Hence, the update

issued by every such facility can be safely ignored.

To quickly identify the queries that are affected by
an update, we index the impact regions of all the queries

by a grid data structure. Each cell c of the grid has a

list called qList which is denoted as c.qList. The qList

of a cell c contains every query q for which the impact
region of q overlaps or contains the cell c. In Fig. 14(a),

c1.qList and c2.qList contain q1. On the other hand,

c3.qList does not contain q1. Note that an update in

c3 cannot affect the influence zone of q1. On the other

hand, an update in c1 or c2 may or may not affect the
influence zone of q1. For instance, if a facility f is in-

serted in c1 and lies inside the impact region of q1 then

it affects the influence zone. Otherwise, if f lies in c1 but

is outside the impact region of q1 then it does not affect
the influence zone. Hence, for each facility update in c1,

we specifically check if f lies inside the impact region

of q1 or not.

The qList of a cell c helps in pruning the queries
that are not affected by an update of a facility in cell c.

Consider the example of Fig. 14(b) where, in addition

to q1, another query q2 along with its influence zone is

shown. To keep the illustration simple, the impact re-

gions of the queries are not shown. However, we remark
that the impact region of q2 overlaps with c1 and does

not overlap with c2. Hence, c1.qList contains q1 and q2
whereas c2.qList contains only q1. If a facility f is in-

serted or deleted in c1 then the influence zones of the
queries in c1.qList (i.e., q1 and q2) may be affected. If f

is inserted or deleted in c2 then only q1 may be affected

because c2.qList contains only q1.

18

Algorithm 3 Handling update
Input: an update issued by f
Output: updated influence zone of every query in the system
1: identify the cell c that contains f
2: for each query q in c.qList do
3: if f lies inside the impact region of q then

4: if f is a new facility or has resumed service then

5: update influence zone of q as stated in Section 6.2
6: else /* f is deleted or has stopped its service */
7: update influence zone of q as stated in Section 6.3

Algorithm 3 presents the details. For an update is-

sued by a facility f , we first identify the cell c of the
grid that contains f (line 1). The update of f may af-

fect only the queries in c.qList. For each such query q,

we specifically check if f lies inside its impact region or

not (line 3). If f lies inside the impact region of q, we

update the influence zone accordingly (lines 4 to line 7).
Otherwise, the influence zone of q is not required to be

updated.

Note that when the influence zone of a query q is

updated, the qList of several cells may have changed

and must be updated. We add q in every cell c of the

grid that overlaps or is contained by the new impact
region of q. We also delete q from every cell c′ that is

not overlapped by the impact region of q but previously

contained q in its qList. To efficiently do this, we use

conceptual grid tree which we introduced in [10] and
then further studied in [19,17]. For details, please see

one of [10,19,17].

In Section 6.2, we show how to update the influence

zone of a query q if f is a new facility or has resumed its

service (e.g., the update is an insertion). In Section 6.3,

we show the procedure to update the influence zone of
q when a facility f is deleted or stops providing the

service (e.g., the update is a deletion).

6.2 Handling an insertion

As stated earlier, we use qList to identify every query

that contains f in its impact region. We update the

influence zone of each of such query by calling Algo-

rithm 2. As shown earlier, the complexity of Algorithm 2
is O(km). Next, we present few geometric observations

that although do not reduce the complexity but help to

give more insight into the properties of the problem.

Recall that, at line 1 of Algorithm 2, we compute

new intersection points between Bf :q and all existing

bisectors and then compute their counters. Next, we
present few geometric observations that show that we

do not need to consider the intersection points of the

new bisector Bf :q with all of the existing bisectors.

Lemma 16 Given a line segment AB and a facility f ,

the bisector Bf :q intersects the line segment AB if and

only if exactly one of CA or CB contains f , i.e., if both

of CA and CB contain f or none of CA and CB contain

f then Bf :q does not intersect AB.

Proof First, we show that Bf :q intersects AB only if

exactly one of CA or CB contains f . We prove this by

showing that Bf :q does not intersect AB if either both

of CA and CB contain f or none of CA or CB contains
f .

Consider the example of Fig. 15(a) where the line

segment AB and the circles CA and CB are shown.

Recall that the bisector Bf :q divides the space in two

half planes. Hf :q denotes the plane that contains f (the

white area) and Hq:f denotes the plane that contains q
(the shaded area). If both CA and CB contain f then it

means that the bisector Bf :q prunes both A and B, i.e.,

both A and B lie in Hf :q (as shown in Fig. 15(a)). Since

Bf :q is a line, the whole line segment AB lies in the
plane Hf :q which implies that Bf :q does not intersect

AB.

If none of CA or CB contains f then the bisector

Bf :q does not prune any of A or B. In other words, both

A and B lie in Hq:f . Since Bf :q is a line, the whole line

segment AB lies in the plane Hq:f . This implies that
Bf :q does not intersect AB.

Now, we show that Bf :q intersects AB if exactly

one of CA or CB contains f . Without loss of generality,

assume that CA contains f and CB does not contain f .

This means that the bisector Bf :q prunes A and does
not prune B. In other words, A lies in Hf :q and B lies in

Hq:f . Since Bf :q is a line, the line segment AB intersects

Bf :q. ⊓⊔

(a) Lemma 16 (b) Lemma 17

Fig. 15

The above lemma shows that we may not need to

compute the intersection of Bf :q with all of the existing
bisectors. Let A and B be two end points of a bisector

within the influence zone. We only need to compute the

intersection of Bf :q with the bisector if exactly one of

CA or CB contains f . However, we first need to effi-
ciently identify such bisectors. Before we show how to

identify such bisectors, we define few terms and nota-

tions.

19

Let v be a vertex such that Cv contains f . We call

such a vertex v a container vertex. In Fig. 15(b), A is

a container vertex because CA contains f . Any edge

XY of the influence zone is called a container edge if

at least one of CX or CY contains f . Any edge that is
not a container edge is called a non-container edge. In

Fig. 15(b), AB and AG are the only container edges.

The next lemma shows that we only need to consider

the intersection of Bf :q with the existing bisectors that
intersect with a container edge.

Lemma 17 Let Bf ′:q be a bisector that does not in-

tersect with any of the container edges of the influ-
ence zone. The intersection point of Bf ′:q and Bf :q lies

outside the influence zone, i.e., the intersection has a

counter at least equal to k and can be ignored for this

reason.

Proof Consider the example of Fig. 15(b) where a poly-

gon ABCDEFG is shown. A is the only container ver-

tex of the polygon. The bisector Bf ′:q does not intersect
any of the container edges AB or AG. Without loss of

generality, assume that the two end points of the bisec-

tor Bf ′:q that lie within the influence zone are x and y

(see Fig. 15(b)). We prove the lemma by showing that
the bisector Bf :q does not intersect the line segment xy.

We show that both Cx and Cy do not contain f which

implies (see Lemma 16) that Bf :q does not intersect xy.

We prove that Cx does not contain f and the proof

for Cy is similar. As inferred by Lemma 4, Cx is con-
tained by CB ∪ CC . Since BC is a non-container edge,

both CB and CC do not contain f . This implies that

Cx does not contain f because Cx ⊆ CB ∪CC . ⊓⊔

As inferred from Lemma 17, we only need to check

the intersection of Bf :q with the bisectors that inter-

sect with any of the container edges. Next issue is to

determine the container edges efficiently. Recall that,
in our grid structure, we maintain q.vList for each cell

c that contains the list of the vertices that overlap or

contain the cell c. If a facility f lies in the cell c, we

use q.vList and can identify the vertices of the influ-
ence zone of q that contain f . These vertices are the

container vertices and the related container edges can

be easily determined.

Recall that line 2 of Algorithm 2 requires updat-

ing the counters of all existing intersection points. As
stated earlier, we increment the counter of an intersec-

tion point p if and only if Bf :q prunes p. The number

of existing intersection points is O(km). Next, we show

that we may not need to check whether Bf :q prunes p
for all of the intersection points.

First, we define few terms and notations. Let x be a

point inside the influence zone. Beam of x is a line start-

(a) Lemma 18 (b) Optimization

Fig. 16

ing from q that passes through the point x. Fig. 16(a)
shows the beam of a point x in broken line.

Lemma 18 An intersection point x is not pruned by
a bisector Bf :q if the beam of x does not intersect with

any container edge of the influence zone.

Proof Consider the example of Fig. 16(a) whereA is the

only container vertex. Recall that a point x is pruned by
a bisectorBf :q if and only if Cx contains f . Without loss

of generality, assume that the beam of x intersects the

influence zone at a non-container edge CD at a point

w (see Fig. 16(a)). From Lemma 2, Cx is contained by
Cw. From Lemma 4, Cw is contained by CC ∪CD. The

object f is not contained in CC ∪ CD because CD is

a non-container edge. Hence, f is not contained by Cx

which implies that Bf :q does not prune x. ⊓⊔

From above lemma, we know that we only need to

update the counters of an intersection point if its beam

intersects a container edge. Next issue is to efficiently

determine the intersection points for which their beams
intersect with a container edge. Recall that, for any

point x, �x is the angle between line qx and the hori-

zontal line passing through q (see Fig. 16(a)). For the

edge CD in the Fig. 16(a), note that the beam of any

intersection point x intersects CD if and only if �x lies
between the angle range �D and �C (i.e., x lies in the

shaded area). Hence, we can use the �p of an intersec-

tion point p to test if its beam intersects an edge or

not.

We further improve the above observation. Consider

the example of Fig. 16(b), where the intersection point

x is shown and its beam intersects a container edge AB.

Although the beam of x intersects a container edge, x is
not pruned by Bf :q as shown in Fig. 16(b). Assume that

the bisector Bf :q intersects the influence zone at two

points u and v as shown in Fig. 16(b). An intersection

point x can be pruned by Bf :q only if �x is greater
than �u and is smaller than �v (i.e., x lies in the shaded

area of Fig. 16(b)). The proof is straight forward and

is omitted.

20

We can quickly identify the intersection points that

lie within the shaded area as follows. Recall that we

keep the list of intersection points sorted in order of

their �p. We do a binary search on this list and obtain

the first intersection point p that has �p just greater
than �u. Then, the list is scanned in sorted order until

the next intersection point p′ has �p′ greater than �v.

Let n be the number of intersection points that lie in

the shaded area of Fig. 16(b), the above procedure can
find all such intersection points in O(n+ log m). Hence,

the complexity of updating the counters of existing in-

tersection points is O(n + log m) where n is at most

equal to O(km) (the number of all existing intersection

points).

6.3 Handling a deletion

If the deleted facility f lies inside the impact region

of q then it means that the facility f contributes a bi-

sector to the influence zone. Assume that the influence

zone was determined by considering m facilities. When

f is deleted, we create the new unpruned polygon P
by considering the bisectors of remaining m − 1 facili-

ties. During the creation of the new unpruned polygon

P , we use the following optimizations to improve the

efficiency.

(a) Before deleting Bf :q (b) After deleting Bf :q

Fig. 17 Handling a deletion

1. The counter of any intersection point p that is not

pruned by Bf :q remains unaffected. Hence, the coun-

ters of all such intersection points are not required to

be recomputed. This also implies that the part of the
influence zone that lies in Hq:f remains unaffected.

Consider the example of Fig. 17(a) that shows the

influence zone (k = 2), intersection points and their

counters before a facility f and its corresponding bisec-
tor Bf :q is deleted. The influence zone is shown shaded

and it contains the intersection points that have coun-

ters less than k. Fig. 17(b) shows the new unpruned

polygon P , intersection points and their counters after
f is deleted. Note that the counters of all the inter-

section points that are not pruned by Bf :q (i.e., the

intersection points on the left side of Bf :q) remain un-

changed. Also, the part of the influence zone that lies

on the left side of Bf :q remains unaffected.

2. The counter of any existing intersection point that is

pruned by Bf :q is decremented by 1. Hence, the counter

of such intersection point is not needed to be computed
from scratch. The counter of any new intersection point

that is pruned by Bf :q is recomputed.

In the example of Fig. 17(a), there is only one valid

intersection point v10 that is pruned by Bf :q. Its counter

is decremented by one after the deletion. Note that the
intersection point v2 had a counter equal to k = 2 before

f was deleted. Hence, v2 was not maintained before the

deletion of f . The counter of such intersection point is

needed to be recomputed.

Note that the new unpruned polygon P is always
larger than the previous influence zone. Hence, there

may be a facility f ′ that affects the new unpruned poly-

gon P but was not considered before. To identify all

such facilities, we check if there exists a new facility f ′

that lies in any Cv for any convex vertex of the new un-
pruned polygon. We can do this by calling Algorithm 1

with two small changes. Firstly, at line 1, the influence

zone Zk is initialized to the new unpruned polygon P

instead of initializing it to the whole data universe. Sec-
ondly, the algorithm ignores any facility f that had al-

ready been considered to construct the influence zone.

Finally, we present another minor optimization. Note

that at line 5 of Algorithm 1, we check if an entry e of

R-tree is contained by Cv for every convex vertex of the
influence zone. However, note that there are some con-

vex vertices of the unpruned polygon P (see Fig. 17(b))

that existed in previous influence zone (see Fig. 17(a)).

For example, the convex vertex v8 is a convex vertex of
the previous influence zone as well as the new unpruned

polygon. Hence, we do not need to consider v8 at line 5

of Algorithm 1. This is because if there was a facility in

the circle of such convex vertex, that would have been

considered before. Hence, the convex vertices that ex-
isted in the influence zone before the deletion can be

ignored at line 5 of Algorithm 1.

7 Experiments

In Section 7.1, we evaluate the performance of our al-
gorithms for snapshot RkNN queries. Since computa-

tion of the influence zone is a sub-task of our snapshot

RkNN algorithm, we evaluate the cost of computing in-

fluence zone while evaluating the performance of RkNN
algorithms. In Section 7.2, we evaluate the performance

of our algorithm for continuous monitoring of RkNN

queries.

21

7.1 Snapshot RkNN queries

We use both synthetic and real datasets. Each synthetic

dataset consists of 50000, 100000, 150000 or 200000
points following either Uniform or Normal distribution.

The real dataset consists of 175, 812 extracted locations

in North America5 and we randomly divide these points

into two sets of almost equal sizes. One of the sets cor-
responds to the set of facilities and the other to the

set of users. We use the two real datasets to evaluate

the performance unless mentioned otherwise. We vary

k from 1 to 16 and the default value is 8. From the set of

facilities, we randomly choose 500 points as the query
points. The experiment results correspond to the total

cost of processing these 500 queries.

7.1.1 Monochromatic RkNN queries

We compare our algorithm with two best known al-

gorithms FINCH [41] and Boost [13]. Boost is an op-
timized version of the algorithm presented in [1] and

uses more powerful and cheaper pruning techniques.

The page size is set to 4096 bytes. Following the ex-

perimental settings used in [41] for FINCH, the buffer

size for FINCH is set to 10 pages which uses random
eviction strategy. We remark that our algorithm and

Boost both do not need any buffer and the cost remains

unaffected even if no buffer is used.

In Fig. 18, we vary the value of k and study the ef-

fect on the algorithms. As shown in Fig. 18(a), our algo-

rithm outperforms the other two algorithms in terms of
CPU time consumption. FINCH performs better than

Boost for smaller values of k. CPU cost of our algo-

rithm is lower mainly because we use efficient checks

to prune the entries of the R-tree and because we do
not need to compute the convex hull (in contrast to

FINCH that computes a convex polygon to approxi-

mate the unpruned area). Fig. 18(b) shows that the IO

cost of Boost is the lowest and the cost of our algorithm

is reasonably close.

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16

T
im

e
(in

 s
ec

)

k

FINCH
InfZone

Boost

(a) CPU time

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1 2 4 8 16

#n
od

es
 a

cc
es

se
d

k

FINCH
InfZone

Boost

(b) Nodes accesses

Fig. 18 Effect of k (monochromatic queries)

Fig. 19 studies the effect of number of facilities. Lo-

cations of the facilities in each data set follow Nor-

mal distribution. Fig. 19(a) shows that the computa-

tion cost of each algorithm slightly increases with the

5 http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

increase in the number of facilities. However, our al-

gorithm performs significantly better and scales well.

Fig. 19(b) shows that the number of facilities do not

significantly affect the IO cost of the algorithms. Also,

the IO cost of the three algorithms is reasonably close
to each other.

 0

 2

 4

 6

 8

 10

 12

 14

 50000 100000 150000 200000

T
im

e
(in

 s
ec

)

Number of facilities

InfZone
FINCH
Boost

(a) CPU time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 50000 100000 150000 200000

#n
od

es
 a

cc
es

se
d

Number of facilities

InfZone
FINCH
Boost

(b) Nodes accesses

Fig. 19 Effect of number of facilities (monochromatic queries)

7.1.2 Bichromatic RkNN queries

Boost [13] is designed for monochromatic queries and

uses self pruning and mutual pruning techniques. Un-

fortunately, it is not trivial to extend it for efficiently
processing bichromatic queries. This is because self prun-

ing cannot be applied and also because Boost uses a

special order for R-tree traversal which cannot be ex-

tended for bichromatic queries that uses two R-trees.
We tried a straight forward extension of Boost and it

performed quite poor. Therefore, we compare our algo-

rithm only with FINCH [41] which is the best known ex-

isting algorithm for two dimensional bichromatic RkNN

queries.
As stated in Section 2.2, FINCH has three phases

namely pruning, containment and verification. Our al-

gorithm has only pruning and containment phases. We

show the CPU and IO cost of each phase for both of the
algorithms. Experiment results demonstrate that our

algorithm outperforms FINCH in terms of both CPU

time and the number of nodes accessed. FINCH is de-

noted as FN in the experiment figures.

Fig. 20 studies the effect of k on the cost of bichro-
matic RkNN queries. The CPU time taken by contain-

ment phase of our algorithm is much smaller as com-

pared to FINCH. This is mainly because i) the un-

pruned area of our algorithm is smaller and ii) we use
efficient containment checking to prune the entries and

the objects. IO cost of the containment phase is also

smaller for our algorithm because the unpruned area

of our algorithm is smaller. Our algorithm does not re-

quire the verification. On the other hand, FINCH con-
sumes significant amount of CPU time and IOs in the

verification phase.

Fig. 21 studies the effect of the number of the users

on both of algorithms. The set of facilities corresponds
to the real dataset and the locations of the users follow

normal distribution. Our algorithm scales much better.

On the other hand, the cost of FINCH degrades with

22

 0

 5

 10

 15

 20

 25

 1 2 4 8 16

T
im

e
(in

 s
ec

)

k

Our Our Our Our OurFN FN FN FN FN

Verification
Containment

Pruning

(a) CPU time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 4 8 16

no

de
s

ac
ce

ss
ed

k

Our Our Our Our OurFN FN FN FN FN

Verification
Containment

Pruning

(b) Nodes accesses

Fig. 20 Effect of k (bichromatic queries)

the increase in the number of users because a larger

number of users are within the unpruned area and re-
quire verification.

In Fig. 22(a), we study the effect of the number of

the facilities. The set of the users correspond to the

real dataset and the locations of the facilities follow
normal distribution. Both of the algorithms are not sig-

nificantly affected by the increase in the number of the

facilities and our algorithm performs significantly bet-

ter than FINCH.

 0

 5

 10

 15

 20

 25

 50000 100000 150000 200000

T
im

e
(in

 s
ec

)

Number of users

Our Our Our OurFN FN FN FN

Verification
Containment

Pruning

(a) CPU time

 0

 10000

 20000

 30000

 40000

 50000

 50000 100000 150000 200000

no

de
s

ac
ce

ss
ed

Number of users

Our Our Our OurFN FN FN FN

Verification
Containment

Pruning

(b) Nodes accesses

Fig. 21 Effect of number of users

Fig. 22(b) studies the effect of the data distribu-

tion on both of the algorithms. The data distributions
of the facilities and the users are shown in the form

(Dist1,Dist2) whereDist1 and Dist2 correspond to the

data distribution of the facilities and the users, respec-

tively. U, R and N correspond to Uniform, Real and

Normal distributions, respectively. For example, (U,R)
corresponds to the case where the facilities follow uni-

form distribution and the users correspond to the real

dataset. Each dataset contains around 88, 000 objects.

Our algorithm outperforms FINCH both in terms of
CPU time and the number of nodes accessed for all of

the data distributions.

 0

 2

 4

 6

 8

 10

 12

 14

 50000 100000 150000 200000

T
im

e
(in

 s
ec

)

Number of facilities

Our Our Our OurFN FN FN FN

5608 5562 5308 5324

7619 9668
6785 7600

of nodes accessedVerification
Containment

Pruning

(a) number of facilities

 0

 5

 10

 15

 20

 25

 30

(U,R) (R,R) (N,R) (U,N) (R,N) (N,N)

T
im

e
(in

 s
ec

)

Data distribution

Our Our Our Our Our OurFN FN FN FN FN FN

5867 5524 5943 5288 5989 5711

23419

9292
21251

7522

30495

9418

of nodes accessed Verification
Containment

Pruning

(b) Data distribution

Fig. 22 Effect of data size and distribution

Fig. 23 studies the effect of the buffer size on both

of the algorithms. As the pruning and the containment

phases do not visit a node twice, our algorithm is not af-

fected by the buffer size. FINCH issues multiple range
queries to verify the candidate objects. For this rea-

son, the cost of its verification phase depends on the

buffer size. Note that FINCH performs worse than our

algorithm even when it uses large buffer size. Number

of nodes accessed by FINCH is around 194, 000 and

61, 000 when the buffer size is 2 and 5, respectively.

 0

 5000

 10000

 15000

 20000

 25000

 2 5 10 20 40 100

no

de
s

ac
ce

ss
ed

Number of buffers

Our Our Our Our Our OurFN FN FN FN FN FN

19
4,

69
8

61
,6

34

Verification
Containment

Pruning

Fig. 23 Effect of buffer size

7.1.3 RkNN queries in higher dimensionality

In this section, we evaluate the performance of our al-

gorithm for multidimensional data sets. We compare

our algorithm with TPL [36] and Boost [13]. These two

are the best known algorithms that are applicable to

arbitrary dimensionality. We remark that, in two di-
mensional space, FINCH was shown [41] to be superior

to TPL. However, FINCH [41] is designed only for two

dimensional data and, for this reason, is not considered

as a competitor in this section. The points in each data
set follow Normal distribution and the number of points

(users/facilites) in the default data sets is 100, 000. The

default value of k is 8.

 1
 2

 10

 100

 500

 2 3 4

T
im

e
(in

 s
ec

)

Dimensionality

TPL
InfZone

Boost

(a) CPU time

5
10

30

100

500

 2 3 4

#n
od

es
 (

in
 th

ou
sa

nd
s)

Dimensionality

TPL
InfZone

Boost

(b) Nodes accesses

Fig. 24 Effect of dimensionality (monochromatic queries)

In Fig. 24, we process monochromatic RkNN queries

on 2d, 3d and 4d data sets. The performance of each al-
gorithm is significantly affected as the dimensionality

increases. However, the performance of our algorithm

deteriorates more seriously. This is because the geome-

try of the influence zone becomes significantly complex

in higher dimensionality. However, it is worth noting
that the CPU cost of our algorithm is still lower than

the CPU cost of Boost (see Fig. 24(a)). On the other

hand, Fig. 24(b) shows that the IO cost of our algorithm

is lower than the IO cost of TPL when the dimension-
ality is at most 4.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 2 4 8 16

T
im

e
(in

 s
ec

)

k

TPL
InfZone

Boost

(a) CPU time

100

200

300

400

500

 1 2 4 8 16

#n
od

es
 (

in
 th

ou
sa

nd
s)

k

TPL
InfZone

Boost

(b) Nodes accesses

Fig. 25 Effect of k (3d monochromatic queries)

23

Fig. 25 shows the effect of k on each of the three

algorithms (on 3d data sets). Fig. 25(a) shows that

the computational cost of our algorithm is significantly

lower than the cost of Boost and is quite close to the

cost of TPL. Fig. 25(b) shows that the IO cost of our
algorithm is reasonably close to the IO cost of Boost

and is signifcantly lower than the IO cost of TPL. Note

that Boost performs poor in terms of CPU cost and

TPL performs poor in terms of IO cost. In contrast,
the IO and CPU cost of our algorithm is reasonably

low.

 0

 2

 4

 6

 8

 10

 12

 14

 50000 100000 150000 200000

T
im

e
(in

 s
ec

)

Number of users

TPL
InfZone

(a) CPU time

100

200

300

400

 50000 100000 150000 200000

#n
od

es
 (

in
 th

ou
sa

nd
s)

Number of users

TPL
InfZone

(b) Nodes accesses

Fig. 26 Effect of number of users (3d bichromatic queries)

Next, we evaluate the performance of our algorithm

for bichromatic RkNN queries. As discussed in Sec-

tion 7.1.2, Boost cannot be efficiently extended for bichro-
matic queries. For this reason, we compare our algo-

rithm only with TPL. The experimental results for vary-

ing dimensionality and k are similar to the results pre-

sented in Fig. 24 and Fig. 25. Therefore, we omit the
results for varying dimensionality and k.

Fig. 26 shows the effect of number of users on both

of the algorithms (on 3d data sets). As the number of

users increases, the cost of TPL increases significantly.

This is because TPL needs to verify more objects. On

the other hand, the cost of our algorithm is not sig-
nificantly affected. This is because our algorithm does

not need verification. We omit the results for varying

number of facilities because both of the algorithms are

not significantly affected by the change in the number
of facilities (similar to the results in Fig. 22(a)).

7.1.4 Verification of theoretical analysis

In this section, we evaluate our theoretical analysis pre-

sented in Section 5. In all the experiments, we run

bichromatic RkNN queries on uniform data sets con-

sisting of 100, 000 facilities and the same number of

users.

 0

 2000

 4000

 6000

 8000

 10000

 1 2 4 8 16

no

de
s

ac
ce

ss
ed

k

Experimental Theoretical
Verification

Pruning
Pruning

Total

(a) 2d data set

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 4 8 16

no

de
s

ac
ce

ss
ed

k

Experimental Theoretical
Verification

Pruning
Pruning

Total

(b) 3d data set

Fig. 27 Verification of theoretical analysis (IO cost)

In Fig. 27, we compare the experimental value of to-

tal number of nodes accessed with the theoretical value.

Fig. 27(a) and Fig. 27(b) show the results for two and

three dimensional data sets, respectively. Recall that

the pruning phase of our algorithm corresponds to the
computation of the influence zone. Fig. 27 shows the

accuracy of our theoretical analysis for the IO cost of

computing the influence zone and the total cost of our

RkNN algorithm.

 0

5

10

15

20

 1 2 4 8 16

S
iz

e
(

in
 1

0-5
 u

ni
ts

d)

k

Theoretical 2d & 3d
Experimental d=2
Experimental d=3

(a) Size of influence zone

 0

 5

 10

 15

 20

 1 2 4 8 16

N
um

be
r

of
 R

kN
N

s

k

Theoretical 2d & 3d
Experimental d=2
Experimental d=3

(b) Number of RkNNs

Fig. 28 Theoretical Analysis

In Fig. 28(a) and Fig. 28(b), we vary k and verify our

theoretical analysis of the area/volume of the influence
zone and the results size of RkNN queries, respectively.

As mentioned in Section 5, our theoretical analysis of

the area/volume of the influence zone and the result size

does not depend on the dimensionality. Fig. 28 shows
the theoretical values and the experimental values on

2d and 3d data sets. The experimental results verify the

theoretical analysis.

7.2 Continuous Monitoring of RkNN

As mentioned earlier, the problem addressed by the in-

fluence zone based algorithm is a special case of the con-

tinuous RkNN queries. Hence, it is not fair to use the

existing best known algorithms without making any ob-

vious changes that improve the performance. As stated
earlier in Section 2.2, Lazy Updates [10] is the best

known algorithm for continuous monitoring of RkNN

queries (even for this special case, we find that it out-

performs other algorithms after necessary changes are
made to all the existing algorithms). Hence, we compare

our algorithm with Lazy Updates.

To conduct a fair evaluation, we set the size of the

safe region for the Lazy Updates algorithm to zero. This

is because the facilities do not move and the safe regions

will not be useful in this case. We tested different possi-
ble sizes of the safe region and confirmed that this is the

best possible setting for Lazy Updates for this special

case of the continuous RkNN query.

Our experiment settings are similar to the settings

used in [10] by Lazy Updates. More specifically, we use

Brinkhoff generator [5] to generate the users moving on
the road map of Texas (data universe is approximately

1000Km×1000Km). The facilities are randomly gener-

ated points in the same data universe. Table 2 shows

24

Table 2 System Parameters

Parameter Range

Number of users (×1000) 40, 60, 80, 100, 120

Number of facilities (×1000) 40, 60, 80, 100, 120

Number of queries 100, 300, 500, 700, 1000

k 1, 2, 4, 8, 16

Speed of objects (users) in km/ℎr 40, 60, 80, 100, 120

Mobility of objects (users) in % 5, 20, 40, 60, 80, 100

the parameters used in our experiments and the default
values are shown in bold.

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16

T
im

e
(s

ec
on

ds
)

k

LazyUpdates
InfZone

Fig. 29 Effect of k

The locations of the users are reported to the server

after every one second (i.e., timestamp length is one

second). The mobility of the objects refers to the per-

centage of the objects that report location updates at a
given timestamp. In accordance with [10], the grid car-

dinality of both of the algorithms is set to 64×64. Each

query is monitored for 5 minutes (300 timestamps) and

the total time taken by all the queries is reported.

 0

 20

 40

 60

 80

 100

 120

 140

5 20 40 60 80 100

T
im

e
(in

 s
ec

)

Mobility (in %)

LazyUpdates
InfZone

(a) Mobility

 0

 50

 100

 150

 200

 250

 100 300 500 700 1000

T
im

e
(s

ec
on

ds
)

Number of queries

LazyUpdates
InfZone

(b) # of queries

Fig. 30 Effect of mobility and number of queries

 0

 20

 40

 60

 80

 100

 120

 140

40 60 80 100 120

T
im

e
(s

ec
on

ds
)

Number of users (in thousands)

LazyUpdates
InfZone

(a) # of users

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

40 60 80 100 120

T
im

e
(in

 s
ec

)

Number of Facilities (in thousands)

LazyUpdates
InfZone

(b) # of facilities

Fig. 31 Effect of data size

In Fig. 29, 30(a), 30(b), 31(a) and 31(b), we study

the effect of k, the data mobility, the number of the

queries, the number of the users and the number of

the facilities, respectively. Influence zone based algo-

rithm is shown as InfZone. Clearly, the influence zone
based algorithm outperforms Lazy Updates for all the

settings and scales better. In Fig. 31(b), both of the

algorithms perform better as the number of facilities

increases. This is because the unpruned area becomes
smaller when the number of facilities is large. Hence, a

smaller area is to be monitored by both the algorithms

and it results in lower cost.

7.3 Handling data updates

We compare our proposed technique with BASIC al-

gorithm. BASIC calls Algorithm 2 whenever a new fa-
cility is added and recomputes the influence zone from

scratch whenever a facility that contributes to the ex-

isting influence zone is deleted. We randomly generate

1000 updates such that half of the updates are inser-

tions and the other half consists of deletions. The de-
fault value of k is 8, number of facilities in the default

data set is 100, 000 and the number of queries is 500.

The influence zone of each of the query is updated after

every data update and the results show the total cost
of handling all data updates.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16

T
im

e
(s

ec
on

ds
)

k

Basic
OUR

(a) effect of k

 0

 5

 10

 15

 20

 25

 50000 100000 150000 200000

T
im

e
(s

ec
on

ds
)

number of facilities

Basic
OUR

(b) # of facilities

Fig. 32 Handling data updates

Fig. 32(a) shows that our proposed technique not
only performs significantly better than BASIC approach

but also scales better as the value of k increases. Fig. 32(b)

shows that both of the algorithms are not significantly

affected as the number of facilities increases.

8 Conclusion

We introduce the concept of an influence zone which

does not only have applications in target marketing and
market analysis but can also be used to answer snapshot

and continuous RkNN queries. We present a detailed

theoretical analysis to study different aspects of the

problem. Extensive experiment results verify the the-
oretical analysis and demonstrate that influence zone

based algorithm outperforms existing algorithms. We

also extend our technique to compute influence zone

in dimensionality higher than two. and present efficient

techniques to update the influence zone as the under-
lying data set is updated by insertions or deletion.

Acknowledgements We would like to thank the editors and
the anonymous reviewers for their very helpful comments that
have significantly improved this paper. The work was partially
done when the corresponding author was taking a Chinese aca-
demic program at East China Normal University; and the first
and second authors were visiting East China Normal University,
and supported by NSFC61021004. The research of Wenjie Zhang
was supported by ARC DP120104168 and DE120102144. The re-
search of Xuemin Lin was also supported by ARC DP120104168,
DP110102937 and DP0987557. The research of Ying Zhang was
supported by ARC DP110104880 and UNSW ECR PSE1799.

25

References

1. E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle.
Reverse k-nearest neighbor search in dynamic and general
metric databases. In EDBT, pages 886–897, 2009.

2. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis.
Nearest neighbor and reverse nearest neighbor queries for
moving objects. In IDEAS, 2002.

3. T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis,
M. Renz, and A. Züfle. A novel probabilistic pruning ap-
proach to speed up similarity queries in uncertain databases.
In ICDE, pages 339–350, 2011.

4. T. Bernecker, T. Emrich, H.-P. Kriegel, M. Renz, , and
S. Z. A. Züfle. Efficient probabilistic reverse nearest neighbor
query processing on uncertain data. In PVLDB, 2011.

5. T. Brinkhoff. A framework for generating network-based
moving objects. GeoInformatica, 2002.

6. M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and
W. Wang. Multi-guarded safe zone: An effective technique
to monitor moving circular range queries. In ICDE, 2010.

7. M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and
W. Wang. Continuous monitoring of distance-based range
queries. IEEE TKDE, 23(8):1182–1199, 2011.

8. M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei.

Probabilistic reverse nearest neighbor queries on uncertain
data. IEEE Trans. Knowl. Data Eng., 22(4):550–564, 2010.

9. M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. Influ-
ence zone: Efficiently processing reverse k nearest neighbors
queries. In ICDE, pages 577–588, 2011.

10. M. A. Cheema, X. Lin, Y. Zhang, W. Wang, and W. Zhang.
Lazy updates: An efficient technique to continuously moni-
toring reverse knn. PVLDB, 2(1):1138–1149, 2009.

11. M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li.
Continuous reverse k nearest neighbors queries in euclidean
space and in spatial networks. VLDB J., 21(1):69–95, 2012.

12. T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, N. Xu, and
A. Züfle. Reverse k-nearest neighbor monitoring on mobile
objects. In GIS, pages 494–497, 2010.

13. T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle.
Boosting spatial pruning: on optimal pruning of mbrs. In
SIGMOD Conference, pages 39–50, 2010.

14. B. Gedik and L. Liu. Mobieyes: Distributed processing of
continuously moving queries on moving objects in a mobile
system. In EDBT, pages 67–87, 2004.

15. A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD Conference, 1984.

16. E. Haines. Graphics Gems IV, chapter Point in Polygon
Strategies. Academic Press Professional, Cambridge, 1994.

17. M. Hasan, M. A. Cheema, X. Lin, and W. Zhang. A unified
algorithm for continuous monitoring of spatial queries. In
DASFAA (2), pages 104–118, 2011.

18. M. Hasan, M. A. Cheema, X. Lin, and Y. Zhang. Efficient
construction of safe regions for moving knn queries over dy-

namic datasets. In SSTD, 2009.
19. M. Hasan, M. A. Cheema, W. Qu, and X. Lin. Efficient algo-

rithms to monitor continuous constrained nearest neighbor
queries. In DASFAA (1), pages 233–249, 2010.

20. C. Icking and R. Klein. Searching for the kernel of a polygon
- a competitive strategy. In SoCG, pages 258–266, 1995.

21. G. S. Iwerks, H. Samet, and K. P. Smith. Continuous k-
nearest neighbor queries for continuously moving points with
updates. In VLDB, pages 512–523, 2003.

22. I. Kamel and C. Faloutsos. On packing r-trees. In CIKM,
1993.

23. J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang.
Continuous evaluation of monochromatic and bichromatic re-
verse nearest neighbors. In ICDE, 2007.

24. F. Korn and S. Muthukrishnan. Influence sets based on re-
verse nearest neighbor queries. In SIGMOD, 2000.

25. I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic queries
over mobile objects. In EDBT, pages 269–286, 2002.

26. G. Li, Y. Li, J. Li, S. LihChyun, and F. Yang. Continuous
reverse k nearest neighbor monitoring on moving objects in
road networks. Inf. Syst., 35:860–883, December 2010.

27. X. Lian and L. C. 0002. Efficient processing of probabilistic
reverse nearest neighbor queries over uncertain data. VLDB
J., 18(3):787–808, 2009.

28. K.-I. Lin, M. Nolen, and C. Yang. Applying bulk insertion
techniques for dynamic reverse nearest neighbor problems.
IDEAS, 2003.

29. K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Con-
ceptual partitioning: An efficient method for continuous near-
est neighbor monitoring. In SIGMOD, 2005.

30. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi Dia-
grams. Wiley, 1999.

31. F. P. Preparata and M. I. Shamos. Computational Geometry
An Introduction. Springer, 1985.

32. M. Safar, D. Ebrahimi, and D. Taniar. Voronoi-based re-
verse nearest neighbor query processing on spatial networks.
Multimedia Syst., 15(5):295–308, 2009.

33. I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest
neighbor queries for dynamic databases. In ACM SIGMOD
Workshop, 2000.

34. I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi. Dis-
covery of influence sets in frequently updated databases. In
VLDB, 2001.

35. H.-L. Sun, C. Jiang, J.-L. Liu, and L. Sun. Continuous re-
verse nearest neighbor queries on moving objects in road net-
works. In WAIM, pages 238–245, 2008.

36. Y. Tao, D. Papadias, and X. Lian. Reverse knn search in
arbitrary dimensionality. In VLDB, 2004.

37. Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neigh-
bor search. In VLDB, pages 287–298, 2002.

38. Y. Theodoridis, E. Stefanakis, and T. K. Sellis. Efficient cost
models for spatial queries using r-trees. IEEE TKDE, 2000.

39. Q. T. Tran, D. Taniar, and M. Safar. Reverse k nearest
neighbor and reverse farthest neighbor search on spatial net-
works. T. Large-Scale Data- and Knowledge-Centered Sys-
tems, 1:353–372, 2009.

40. W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan. Continuous
reverse k-nearest-neighbor monitoring. In MDM, 2008.

41. W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan. Finch: Evalu-
ating reverse k-nearest-neighbor queries on location data. In
VLDB, 2008.

42. T. Xia and D. Zhang. Continuous reverse nearest neighbor
monitoring. In ICDE, page 77, 2006.

43. Z. Xing, J. Pei, and P. S. Yu. Early prediction on time series:
A nearest neighbor approach. In IJCAI, 2009.

44. X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable
processing of continuous k-nearest neighbor queries in spatio-
temporal databases. In ICDE, pages 643–654, 2005.

45. C. Yang and K.-I. Lin. An index structure for efficient reverse
nearest neighbor queries. In ICDE, 2001.

46. M. L. Yiu, N. Mamoulis, and P. Karras. Common influence
join: A natural join operation for spatial pointsets. In ICDE,
2008.

47. M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse
nearest neighbors in large graphs. IEEE TKDE, 2006.

48. X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neigh-
bor queries over moving objects. In ICDE, 2005.

49. J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based spatial queries. In SIGMOD, 2003.

