HGMatch: A Match-by-Hyperedge Approach for Subgraph Matching on Hypergraphs

Zhengyi Yang1, Wenjie Zhang1, Xuemin Lin2, Ying Zhang3, Shunyang Li1

1University of New South Wales, 2Shanghai Jiao Tong University, 3University of Technology Sydney
Graphs vs Hypergraphs

Graph

Hypergraph
Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph
Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph
Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph
Applications

- Mining Biological Networks
 - e.g., protein interactions, gene interactions

- Querying Hypergraph Databases
 - e.g., AtomSpace, HyperGraphDB, TypeDB

- Pattern Learning in NLP
 - e.g., semantic hypergraphs (each word is a vertex, and each sentence is a hyperedge)

- Q/A over Hypergraph Knowledge Base
 - e.g., JF17K dataset (a subset of non-binary relations extracted from Freebase)
Example Queries for *JF17K* Dataset

Which football players represented different teams in different matches?

Which actors played the same character in a TV show on different seasons?
Strawman Approach

- Convert the hypergraph to a *bipartite graph* and apply existing *subgraph matching algorithms*

 - by taking the incidence matrix and treating this as the incidence matrix of a bipartite graph

- Directly extend existing subgraph matching *algorithms* to the case of *hypergraphs*

 - recursively expand the partial embedding *vertex-by-vertex* by mapping a query vertex to a data vertex following a given matching order and backtrack when necessary
Motivations

1. The *match-by-vertex* approach in the strawman approaches generally underutilise high-order information in hypergraphs
 • hyperedges are used as a verification condition in the match-by-vertex framework, which can lead to a huge search space and large enumeration cost

2. It is difficult to compute subgraph matching on *massive hypergraphs* using sequential algorithms
 • none of the existing subhypergraph matching algorithms supports parallel execution
Contributions

1. **A match-by-hyperedge framework**
 - Match the query by hyperedges instead of vertices
 - Use set operations to efficiently generate candidates
 - Filter out false positives with set comparison

2. **A highly optimised parallel execution engine**
 - Adopt the dataflow model for parallelisation
 - Bounded memory consumption with our task-based scheduler
 - Load balancing with dynamic work-stealing
HGMatch Overview

Offline Preprocessing
- Data Hypergraph
- Load Graph
- Build Index
- Indexed Data Hypergraph

Fetch Cardinality

Read data

Online Processing
- Query Hypergraph
- Generate Execution Plan
- Execution Plan
- Parallel Execution Engine
- Subhypergraph Embeddings

11
Hypergraph Data Layout

- Hypergraphs are stored as **hyperedge tables** with **inverted hyperedge index**
 - **Hyperedge Signature**: a *multiset* of all vertex labels contained in a hyperedge
Suppose partial result $m = (e_1, e_3)$, we want to match $\{u_0, u_1, u_3, u_4\}$ the next data hyperedge e.

Match-by-Hyperedge Framework

![Diagram of Match-by-Hyperedge Framework](image)

(a) Partition 1

- $S(e) = \{A, B\}$
- $E = \{e_1 = \{v_2, v_4\}, e_2 = \{v_4, v_6\}\}$
- $I = \{v_2 \to e_1, v_4 \to e_1, e_2, v_6 \to e_2\}$

(b) Partition 2

- $S(e) = \{A, A, C\}$
- $E = \{e_3 = \{v_0, v_1, v_2\}, e_4 = \{v_3, v_5, v_6\}\}$
- $I = \{v_0, v_1, v_2 \to e_3, v_3, v_5, v_6 \to e_4\}$

(c) Partition 3

- $S(e) = \{A, A, B, C\}$
- $E = \{e_5 = \{v_0, v_1, v_4, v_6\}, e_6 = \{v_2, v_3, v_4, v_5\}\}$
- $I = \{v_0, v_1, v_6 \to e_5, v_4 \to e_5, e_6, v_2, v_3, v_5 \to e_6\}$
Match-by-Hyperedge Framework

Suppose partial result $m = (e_1, e_3)$, we want to match $\{u_0, u_1, u_3, u_4\}$ the next data hyperedge e.

- e must have the same signature with the query hyperedge.

![Diagram](image)
Match-by-Hyperedge Framework

Suppose partial result $m = (e_1, e_3)$, we want to match $\{u_0, u_1, u_3, u_4\}$ the next data hyperedge e.

- e must have the same signature with the query hyperedge
- e must be incident to $v_4 \in e_1$ and $v_0, v_1 \in e_3$
Suppose partial result \(m = (e_1, e_3) \), we want to match \(\{u_0, u_1, u_3, u_4\} \) the next data hyperedge \(e \).

- \(e \) must have the same signature with the query hyperedge
- \(e \) must be incident to \(v_4 \in e_1 \) and \(v_0, v_1 \in e_3 \)

\[
\Rightarrow C(e) = \{e_5\} \cap \{e_5\} \cap \{e_5, e_6\} = \{e_5\}
\]
Parallel Execution

- Dataflow Model
 - We designed three operators: SCAN, EXPAND, SINK
- Task-based Scheduler
 - Computation are broken down into tasks and scheduled in LIFO order to bound memory
- Dynamic Work Stealing
 - Idle worker will steal tasks from others for load balancing

Example Dataflow Graph and Task Tree
Experimental Setup

- **Hardware**: a server with two 20-core Xeon E5-2698 V4 CPU and 512G of memory

- **Baselines**: we propose a generic framework to extend existing subgraph matching algorithms to the case of hypergraphs
 - We compared the extended version of *CFL* (SIGMOD16), *DAF* (SIGMOD19), *CECI* (SIGMOD19), and *RapidMatch* (VLDB20)

- **Queries**: randomly sample subhypergraphs from the data hypergraphs with given number of hyperedges and vertices
Datasets

- **Datasets**: we use 10 real-world hypergraphs as data hypergraphs

| Dataset | $|V|$ | $|E|$ | $|\Sigma|$ | a_{max} | \bar{a} | $|Index|$ |
|---------|-----|-----|-----|-------|------|-------|
| HC | 1,290 | 331 | 2 | 81 | 34.8 | 178KB |
| MA | 73,851 | 5,444 | 1,456 | 1,784 | 24.2 | 2.1MB |
| CH | 327 | 7,818 | 9 | 5 | 2.3 | 109KB |
| CP | 242 | 12,704 | 11 | 5 | 2.4 | 190KB |
| SB | 294 | 20,584 | 2 | 99 | 8.0 | 2.1MB |
| HB | 1,494 | 52,960 | 2 | 399 | 20.5 | 15.5MB |
| WT | 88,860 | 65,507 | 11 | 25 | 6.6 | 6.8MB |
| TC | 172,738 | 212,483 | 160 | 85 | 4.1 | 7.8MB |
| SA | 15,211,989 | 1,103,193 | 56,502 | 61,315 | 23.7 | 419.7MB |
| AR | 2,268,264 | 4,239,108 | 29 | 9,350 | 17.1 | 998.6MB |
Index Building

Building Time and Size of Index
Single-thread Comparisons

Execution Time for each Query Set
Parallel Comparisons

(a) q_3^1

(b) q_3^2

Vary Number of Threads

Task-based Scheduling

Work Stealing
Thank you!